Final merge of Google Summer of Code 2008 work...
Audio Ideas - Resampling and Pitch Shifting by Aaron Wishnick, mentored by Ryan C. Gordon --HG-- extra : convert_revision : svn%3Ac70aab31-4412-0410-b14c-859654838e24/trunk%403165
This commit is contained in:
parent
09f8ad29e2
commit
0eeb8c92b6
3 changed files with 774 additions and 56 deletions
|
@ -20,12 +20,45 @@
|
|||
slouken@libsdl.org
|
||||
*/
|
||||
#include "SDL_config.h"
|
||||
#include <math.h>
|
||||
|
||||
/* Functions for audio drivers to perform runtime conversion of audio format */
|
||||
|
||||
#include "SDL_audio.h"
|
||||
#include "SDL_audio_c.h"
|
||||
|
||||
#define DEBUG_CONVERT
|
||||
|
||||
/* These are fractional multiplication routines. That is, their inputs
|
||||
are two numbers in the range [-1, 1) and the result falls in that
|
||||
same range. The output is the same size as the inputs, i.e.
|
||||
32-bit x 32-bit = 32-bit.
|
||||
*/
|
||||
|
||||
/* We hope here that the right shift includes sign extension */
|
||||
#ifdef SDL_HAS_64BIT_Type
|
||||
#define SDL_FixMpy32(a, b) ((((Sint64)a * (Sint64)b) >> 31) & 0xffffffff)
|
||||
#else
|
||||
/* If we don't have the 64-bit type, do something more complicated. See http://www.8052.com/mul16.phtml or http://www.cs.uaf.edu/~cs301/notes/Chapter5/node5.html */
|
||||
#define SDL_FixMpy32(a, b) ((((Sint64)a * (Sint64)b) >> 31) & 0xffffffff)
|
||||
#endif
|
||||
#define SDL_FixMpy16(a, b) ((((Sint32)a * (Sint32)b) >> 14) & 0xffff)
|
||||
#define SDL_FixMpy8(a, b) ((((Sint16)a * (Sint16)b) >> 7) & 0xff)
|
||||
/* This macro just makes the floating point filtering code not have to be a special case. */
|
||||
#define SDL_FloatMpy(a, b) (a * b)
|
||||
|
||||
/* These macros take floating point numbers in the range [-1.0f, 1.0f) and
|
||||
represent them as fixed-point numbers in that same range. There's no
|
||||
checking that the floating point argument is inside the appropriate range.
|
||||
*/
|
||||
|
||||
#define SDL_Make_1_7(a) (Sint8)(a * 128.0f)
|
||||
#define SDL_Make_1_15(a) (Sint16)(a * 32768.0f)
|
||||
#define SDL_Make_1_31(a) (Sint32)(a * 2147483648.0f)
|
||||
#define SDL_Make_2_6(a) (Sint8)(a * 64.0f)
|
||||
#define SDL_Make_2_14(a) (Sint16)(a * 16384.0f)
|
||||
#define SDL_Make_2_30(a) (Sint32)(a * 1073741824.0f)
|
||||
|
||||
/* Effectively mix right and left channels into a single channel */
|
||||
static void SDLCALL
|
||||
SDL_ConvertMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
||||
|
@ -1309,6 +1342,468 @@ SDL_BuildAudioTypeCVT(SDL_AudioCVT * cvt,
|
|||
return 0; /* no conversion necessary. */
|
||||
}
|
||||
|
||||
/* Generate the necessary IIR lowpass coefficients for resampling.
|
||||
Assume that the SDL_AudioCVT struct is already set up with
|
||||
the correct values for len_mult and len_div, and use the
|
||||
type of dst_format. Also assume the buffer is allocated.
|
||||
Note the buffer needs to be 6 units long.
|
||||
For now, use RBJ's cookbook coefficients. It might be more
|
||||
optimal to create a Butterworth filter, but this is more difficult.
|
||||
*/
|
||||
int
|
||||
SDL_BuildIIRLowpass(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
||||
{
|
||||
float fc; /* cutoff frequency */
|
||||
float coeff[6]; /* floating point iir coefficients b0, b1, b2, a0, a1, a2 */
|
||||
float scale;
|
||||
float w0, alpha, cosw0;
|
||||
int i;
|
||||
|
||||
/* The higher Q is, the higher CUTOFF can be. Need to find a good balance to avoid aliasing */
|
||||
static const float Q = 5.0f;
|
||||
static const float CUTOFF = 0.4f;
|
||||
|
||||
fc = (cvt->len_mult >
|
||||
cvt->len_div) ? CUTOFF / (float) cvt->len_mult : CUTOFF /
|
||||
(float) cvt->len_div;
|
||||
|
||||
w0 = 2.0f * M_PI * fc;
|
||||
cosw0 = cosf(w0);
|
||||
alpha = sin(w0) / (2.0f * Q);
|
||||
|
||||
/* Compute coefficients, normalizing by a0 */
|
||||
scale = 1.0f / (1.0f + alpha);
|
||||
|
||||
coeff[0] = (1.0f - cosw0) / 2.0f * scale;
|
||||
coeff[1] = (1.0f - cosw0) * scale;
|
||||
coeff[2] = coeff[0];
|
||||
|
||||
coeff[3] = 1.0f; /* a0 is normalized to 1 */
|
||||
coeff[4] = -2.0f * cosw0 * scale;
|
||||
coeff[5] = (1.0f - alpha) * scale;
|
||||
|
||||
/* Copy the coefficients to the struct. If necessary, convert coefficients to fixed point, using the range (-2.0, 2.0) */
|
||||
#define convert_fixed(type, fix) { \
|
||||
type *cvt_coeff = (type *)cvt->coeff; \
|
||||
for(i = 0; i < 6; ++i) { \
|
||||
cvt_coeff[i] = fix(coeff[i]); \
|
||||
} \
|
||||
}
|
||||
|
||||
if (SDL_AUDIO_ISFLOAT(format) && SDL_AUDIO_BITSIZE(format) == 32) {
|
||||
float *cvt_coeff = (float *) cvt->coeff;
|
||||
for (i = 0; i < 6; ++i) {
|
||||
cvt_coeff[i] = coeff[i];
|
||||
}
|
||||
} else {
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
convert_fixed(Uint8, SDL_Make_2_6);
|
||||
break;
|
||||
case 16:
|
||||
convert_fixed(Uint16, SDL_Make_2_14);
|
||||
break;
|
||||
case 32:
|
||||
convert_fixed(Uint32, SDL_Make_2_30);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_CONVERT
|
||||
#define debug_iir(type) { \
|
||||
type *cvt_coeff = (type *)cvt->coeff; \
|
||||
for(i = 0; i < 6; ++i) { \
|
||||
printf("coeff[%u] = %f = 0x%x\n", i, coeff[i], cvt_coeff[i]); \
|
||||
} \
|
||||
}
|
||||
if (SDL_AUDIO_ISFLOAT(format) && SDL_AUDIO_BITSIZE(format) == 32) {
|
||||
float *cvt_coeff = (float *) cvt->coeff;
|
||||
for (i = 0; i < 6; ++i) {
|
||||
printf("coeff[%u] = %f = %f\n", i, coeff[i], cvt_coeff[i]);
|
||||
}
|
||||
} else {
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
debug_iir(Uint8);
|
||||
break;
|
||||
case 16:
|
||||
debug_iir(Uint16);
|
||||
break;
|
||||
case 32:
|
||||
debug_iir(Uint32);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#undef debug_iir
|
||||
#endif
|
||||
|
||||
/* Initialize the state buffer to all zeroes, and set initial position */
|
||||
memset(cvt->state_buf, 0, 4 * SDL_AUDIO_BITSIZE(format) / 4);
|
||||
cvt->state_pos = 0;
|
||||
#undef convert_fixed
|
||||
}
|
||||
|
||||
/* Apply the lowpass IIR filter to the given SDL_AudioCVT struct */
|
||||
/* This was implemented because it would be much faster than the fir filter,
|
||||
but it doesn't seem to have a steep enough cutoff so we'd need several
|
||||
cascaded biquads, which probably isn't a great idea. Therefore, this
|
||||
function can probably be discarded.
|
||||
*/
|
||||
static void
|
||||
SDL_FilterIIR(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
||||
{
|
||||
Uint32 i, n;
|
||||
|
||||
/* TODO: Check that n is calculated right */
|
||||
n = 8 * cvt->len_cvt / SDL_AUDIO_BITSIZE(format);
|
||||
|
||||
/* Note that the coefficients are 2_x and the input is 1_x. Do we need to shift left at the end here? The right shift temp = buf[n] >> 1 needs to depend on whether the type is signed or not for sign extension. */
|
||||
/* cvt->state_pos = 1: state[0] = x_n-1, state[1] = x_n-2, state[2] = y_n-1, state[3] - y_n-2 */
|
||||
#define iir_fix(type, mult) {\
|
||||
type *coeff = (type *)cvt->coeff; \
|
||||
type *state = (type *)cvt->state_buf; \
|
||||
type *buf = (type *)cvt->buf; \
|
||||
type temp; \
|
||||
for(i = 0; i < n; ++i) { \
|
||||
temp = buf[i] >> 1; \
|
||||
if(cvt->state_pos) { \
|
||||
buf[i] = mult(coeff[0], temp) + mult(coeff[1], state[0]) + mult(coeff[2], state[1]) - mult(coeff[4], state[2]) - mult(coeff[5], state[3]); \
|
||||
state[1] = temp; \
|
||||
state[3] = buf[i]; \
|
||||
cvt->state_pos = 0; \
|
||||
} else { \
|
||||
buf[i] = mult(coeff[0], temp) + mult(coeff[1], state[1]) + mult(coeff[2], state[0]) - mult(coeff[4], state[3]) - mult(coeff[5], state[2]); \
|
||||
state[0] = temp; \
|
||||
state[2] = buf[i]; \
|
||||
cvt->state_pos = 1; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
/* Need to test to see if the previous method or this one is faster */
|
||||
/*#define iir_fix(type, mult) {\
|
||||
type *coeff = (type *)cvt->coeff; \
|
||||
type *state = (type *)cvt->state_buf; \
|
||||
type *buf = (type *)cvt->buf; \
|
||||
type temp; \
|
||||
for(i = 0; i < n; ++i) { \
|
||||
temp = buf[i] >> 1; \
|
||||
buf[i] = mult(coeff[0], temp) + mult(coeff[1], state[0]) + mult(coeff[2], state[1]) - mult(coeff[4], state[2]) - mult(coeff[5], state[3]); \
|
||||
state[1] = state[0]; \
|
||||
state[0] = temp; \
|
||||
state[3] = state[2]; \
|
||||
state[2] = buf[i]; \
|
||||
} \
|
||||
}*/
|
||||
|
||||
if (SDL_AUDIO_ISFLOAT(format) && SDL_AUDIO_BITSIZE(format) == 32) {
|
||||
float *coeff = (float *) cvt->coeff;
|
||||
float *state = (float *) cvt->state_buf;
|
||||
float *buf = (float *) cvt->buf;
|
||||
float temp;
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
/* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a[2] * y[n-2] */
|
||||
temp = buf[i];
|
||||
if (cvt->state_pos) {
|
||||
buf[i] =
|
||||
coeff[0] * buf[n] + coeff[1] * state[0] +
|
||||
coeff[2] * state[1] - coeff[4] * state[2] -
|
||||
coeff[5] * state[3];
|
||||
state[1] = temp;
|
||||
state[3] = buf[i];
|
||||
cvt->state_pos = 0;
|
||||
} else {
|
||||
buf[i] =
|
||||
coeff[0] * buf[n] + coeff[1] * state[1] +
|
||||
coeff[2] * state[0] - coeff[4] * state[3] -
|
||||
coeff[5] * state[2];
|
||||
state[0] = temp;
|
||||
state[2] = buf[i];
|
||||
cvt->state_pos = 1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Treat everything as signed! */
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
iir_fix(Sint8, SDL_FixMpy8);
|
||||
break;
|
||||
case 16:
|
||||
iir_fix(Sint16, SDL_FixMpy16);
|
||||
break;
|
||||
case 32:
|
||||
iir_fix(Sint32, SDL_FixMpy32);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#undef iir_fix
|
||||
}
|
||||
|
||||
/* Apply the windowed sinc FIR filter to the given SDL_AudioCVT struct.
|
||||
*/
|
||||
static void
|
||||
SDL_FilterFIR(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
||||
{
|
||||
int n = 8 * cvt->len_cvt / SDL_AUDIO_BITSIZE(format);
|
||||
int m = cvt->len_sinc;
|
||||
int i, j;
|
||||
|
||||
/*
|
||||
Note: We can make a big optimization here by taking advantage
|
||||
of the fact that the signal is zero stuffed, so we can do
|
||||
significantly fewer multiplications and additions. However, this
|
||||
depends on the zero stuffing ratio, so it may not pay off. This would
|
||||
basically be a polyphase filter.
|
||||
*/
|
||||
/* One other way to do this fast is to look at the fir filter from a different angle:
|
||||
After we zero stuff, we have input of all zeroes, except for every len_mult
|
||||
sample. If we choose a sinc length equal to len_mult, then the fir filter becomes
|
||||
much more simple: we're just taking a windowed sinc, shifting it to start at each
|
||||
len_mult sample, and scaling it by the value of that sample. If we do this, then
|
||||
we don't even need to worry about the sample histories, and the inner loop here is
|
||||
unnecessary. This probably sacrifices some quality but could really speed things up as well.
|
||||
*/
|
||||
/* We only calculate the values of samples which are 0 (mod len_div) because
|
||||
those are the only ones used. All the other ones are discarded in the
|
||||
third step of resampling. This is a huge speedup. As a warning, though,
|
||||
if for some reason this is used elsewhere where there are no samples discarded,
|
||||
the output will not be corrrect if len_div is not 1. To make this filter a
|
||||
generic FIR filter, simply remove the if statement "if(i % cvt->len_div == 0)"
|
||||
around the inner loop so that every sample is processed.
|
||||
*/
|
||||
/* This is basically just a FIR filter. i.e. for input x_n and m coefficients,
|
||||
y_n = x_n*sinc_0 + x_(n-1)*sinc_1 + x_(n-2)*sinc_2 + ... + x_(n-m+1)*sinc_(m-1)
|
||||
*/
|
||||
#define filter_sinc(type, mult) { \
|
||||
type *sinc = (type *)cvt->coeff; \
|
||||
type *state = (type *)cvt->state_buf; \
|
||||
type *buf = (type *)cvt->buf; \
|
||||
for(i = 0; i < n; ++i) { \
|
||||
state[cvt->state_pos] = buf[i]; \
|
||||
buf[i] = 0; \
|
||||
if( i % cvt->len_div == 0 ) { \
|
||||
for(j = 0; j < m; ++j) { \
|
||||
buf[i] += mult(sinc[j], state[(cvt->state_pos + j) % m]); \
|
||||
} \
|
||||
}\
|
||||
cvt->state_pos = (cvt->state_pos + 1) % m; \
|
||||
} \
|
||||
}
|
||||
|
||||
if (SDL_AUDIO_ISFLOAT(format) && SDL_AUDIO_BITSIZE(format) == 32) {
|
||||
filter_sinc(float, SDL_FloatMpy);
|
||||
} else {
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
filter_sinc(Sint8, SDL_FixMpy8);
|
||||
break;
|
||||
case 16:
|
||||
filter_sinc(Sint16, SDL_FixMpy16);
|
||||
break;
|
||||
case 32:
|
||||
filter_sinc(Sint32, SDL_FixMpy32);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#undef filter_sinc
|
||||
|
||||
}
|
||||
|
||||
/* Generate the necessary windowed sinc filter for resampling.
|
||||
Assume that the SDL_AudioCVT struct is already set up with
|
||||
the correct values for len_mult and len_div, and use the
|
||||
type of dst_format. Also assume the buffer is allocated.
|
||||
Note the buffer needs to be m+1 units long.
|
||||
*/
|
||||
int
|
||||
SDL_BuildWindowedSinc(SDL_AudioCVT * cvt, SDL_AudioFormat format,
|
||||
unsigned int m)
|
||||
{
|
||||
float fScale; /* scale factor for fixed point */
|
||||
float *fSinc; /* floating point sinc buffer, to be converted to fixed point */
|
||||
float fc; /* cutoff frequency */
|
||||
float two_pi_fc, two_pi_over_m, four_pi_over_m, m_over_two;
|
||||
float norm_sum, norm_fact;
|
||||
unsigned int i;
|
||||
|
||||
/* Check that the buffer is allocated */
|
||||
if (cvt->coeff == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Set the length */
|
||||
cvt->len_sinc = m + 1;
|
||||
|
||||
/* Allocate the floating point windowed sinc. */
|
||||
fSinc = (float *) malloc((m + 1) * sizeof(float));
|
||||
if (fSinc == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Set up the filter parameters */
|
||||
fc = (cvt->len_mult >
|
||||
cvt->len_div) ? 0.5f / (float) cvt->len_mult : 0.5f /
|
||||
(float) cvt->len_div;
|
||||
#ifdef DEBUG_CONVERT
|
||||
printf("Lowpass cutoff frequency = %f\n", fc);
|
||||
#endif
|
||||
two_pi_fc = 2.0f * M_PI * fc;
|
||||
two_pi_over_m = 2.0f * M_PI / (float) m;
|
||||
four_pi_over_m = 2.0f * two_pi_over_m;
|
||||
m_over_two = (float) m / 2.0f;
|
||||
norm_sum = 0.0f;
|
||||
|
||||
for (i = 0; i <= m; ++i) {
|
||||
if (i == m / 2) {
|
||||
fSinc[i] = two_pi_fc;
|
||||
} else {
|
||||
fSinc[i] =
|
||||
sinf(two_pi_fc * ((float) i - m_over_two)) / ((float) i -
|
||||
m_over_two);
|
||||
/* Apply blackman window */
|
||||
fSinc[i] *=
|
||||
0.42f - 0.5f * cosf(two_pi_over_m * (float) i) +
|
||||
0.08f * cosf(four_pi_over_m * (float) i);
|
||||
}
|
||||
norm_sum += fabs(fSinc[i]);
|
||||
}
|
||||
|
||||
norm_fact = 1.0f / norm_sum;
|
||||
|
||||
#define convert_fixed(type, fix) { \
|
||||
type *dst = (type *)cvt->coeff; \
|
||||
for( i = 0; i <= m; ++i ) { \
|
||||
dst[i] = fix(fSinc[i] * norm_fact); \
|
||||
} \
|
||||
}
|
||||
|
||||
/* If we're using floating point, we only need to normalize */
|
||||
if (SDL_AUDIO_ISFLOAT(format) && SDL_AUDIO_BITSIZE(format) == 32) {
|
||||
float *fDest = (float *) cvt->coeff;
|
||||
for (i = 0; i <= m; ++i) {
|
||||
fDest[i] = fSinc[i] * norm_fact;
|
||||
}
|
||||
} else {
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
convert_fixed(Uint8, SDL_Make_1_7);
|
||||
break;
|
||||
case 16:
|
||||
convert_fixed(Uint16, SDL_Make_1_15);
|
||||
break;
|
||||
case 32:
|
||||
convert_fixed(Uint32, SDL_Make_1_31);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize the state buffer to all zeroes, and set initial position */
|
||||
memset(cvt->state_buf, 0, cvt->len_sinc * SDL_AUDIO_BITSIZE(format) / 4);
|
||||
cvt->state_pos = 0;
|
||||
|
||||
/* Clean up */
|
||||
#undef convert_fixed
|
||||
free(fSinc);
|
||||
}
|
||||
|
||||
/* This is used to reduce the resampling ratio */
|
||||
inline int
|
||||
SDL_GCD(int a, int b)
|
||||
{
|
||||
int temp;
|
||||
while (b != 0) {
|
||||
temp = a % b;
|
||||
a = b;
|
||||
b = temp;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
/* Perform proper resampling. This is pretty slow but it's the best-sounding method. */
|
||||
static void SDLCALL
|
||||
SDL_Resample(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
#ifdef DEBUG_CONVERT
|
||||
printf("Converting audio rate via proper resampling (mono)\n");
|
||||
#endif
|
||||
|
||||
#define zerostuff_mono(type) { \
|
||||
const type *src = (const type *) (cvt->buf + cvt->len_cvt); \
|
||||
type *dst = (type *) (cvt->buf + (cvt->len_cvt * cvt->len_mult)); \
|
||||
for (i = cvt->len_cvt / sizeof (type); i; --i) { \
|
||||
src--; \
|
||||
dst[-1] = src[0]; \
|
||||
for( j = -cvt->len_mult; j < -1; ++j ) { \
|
||||
dst[j] = 0; \
|
||||
} \
|
||||
dst -= cvt->len_mult; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define discard_mono(type) { \
|
||||
const type *src = (const type *) (cvt->buf); \
|
||||
type *dst = (type *) (cvt->buf); \
|
||||
for (i = 0; i < (cvt->len_cvt / sizeof(type)) / cvt->len_div; ++i) { \
|
||||
dst[0] = src[0]; \
|
||||
src += cvt->len_div; \
|
||||
++dst; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Step 1: Zero stuff the conversion buffer. This upsamples by a factor of len_mult,
|
||||
creating aliasing at frequencies above the original nyquist frequency.
|
||||
*/
|
||||
#ifdef DEBUG_CONVERT
|
||||
printf("Zero-stuffing by a factor of %u\n", cvt->len_mult);
|
||||
#endif
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
zerostuff_mono(Uint8);
|
||||
break;
|
||||
case 16:
|
||||
zerostuff_mono(Uint16);
|
||||
break;
|
||||
case 32:
|
||||
zerostuff_mono(Uint32);
|
||||
break;
|
||||
}
|
||||
|
||||
cvt->len_cvt *= cvt->len_mult;
|
||||
|
||||
/* Step 2: Use a windowed sinc FIR filter (lowpass filter) to remove the alias
|
||||
frequencies. This is the slow part.
|
||||
*/
|
||||
SDL_FilterFIR(cvt, format);
|
||||
|
||||
/* Step 3: Now downsample by discarding samples. */
|
||||
|
||||
#ifdef DEBUG_CONVERT
|
||||
printf("Discarding samples by a factor of %u\n", cvt->len_div);
|
||||
#endif
|
||||
switch (SDL_AUDIO_BITSIZE(format)) {
|
||||
case 8:
|
||||
discard_mono(Uint8);
|
||||
break;
|
||||
case 16:
|
||||
discard_mono(Uint16);
|
||||
break;
|
||||
case 32:
|
||||
discard_mono(Uint32);
|
||||
break;
|
||||
}
|
||||
|
||||
#undef zerostuff_mono
|
||||
#undef discard_mono
|
||||
|
||||
cvt->len_cvt /= cvt->len_div;
|
||||
|
||||
if (cvt->filters[++cvt->filter_index]) {
|
||||
cvt->filters[cvt->filter_index] (cvt, format);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Creates a set of audio filters to convert from one format to another.
|
||||
|
@ -1399,6 +1894,17 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
}
|
||||
|
||||
/* Do rate conversion */
|
||||
if (src_rate != dst_rate) {
|
||||
int rate_gcd;
|
||||
rate_gcd = SDL_GCD(src_rate, dst_rate);
|
||||
cvt->len_mult = dst_rate / rate_gcd;
|
||||
cvt->len_div = src_rate / rate_gcd;
|
||||
cvt->len_ratio = (double) cvt->len_mult / (double) cvt->len_div;
|
||||
cvt->filters[cvt->filter_index++] = SDL_Resample;
|
||||
SDL_BuildWindowedSinc(cvt, dst_fmt, 768);
|
||||
}
|
||||
|
||||
/*
|
||||
cvt->rate_incr = 0.0;
|
||||
if ((src_rate / 100) != (dst_rate / 100)) {
|
||||
Uint32 hi_rate, lo_rate;
|
||||
|
@ -1448,25 +1954,25 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
}
|
||||
len_mult = 2;
|
||||
len_ratio = 2.0;
|
||||
}
|
||||
/* If hi_rate = lo_rate*2^x then conversion is easy */
|
||||
while (((lo_rate * 2) / 100) <= (hi_rate / 100)) {
|
||||
cvt->filters[cvt->filter_index++] = rate_cvt;
|
||||
cvt->len_mult *= len_mult;
|
||||
lo_rate *= 2;
|
||||
cvt->len_ratio *= len_ratio;
|
||||
}
|
||||
/* We may need a slow conversion here to finish up */
|
||||
if ((lo_rate / 100) != (hi_rate / 100)) {
|
||||
#if 1
|
||||
/* The problem with this is that if the input buffer is
|
||||
say 1K, and the conversion rate is say 1.1, then the
|
||||
output buffer is 1.1K, which may not be an acceptable
|
||||
buffer size for the audio driver (not a power of 2)
|
||||
*/
|
||||
/* For now, punt and hope the rate distortion isn't great.
|
||||
*/
|
||||
#else
|
||||
}*/
|
||||
/* If hi_rate = lo_rate*2^x then conversion is easy */
|
||||
/* while (((lo_rate * 2) / 100) <= (hi_rate / 100)) {
|
||||
cvt->filters[cvt->filter_index++] = rate_cvt;
|
||||
cvt->len_mult *= len_mult;
|
||||
lo_rate *= 2;
|
||||
cvt->len_ratio *= len_ratio;
|
||||
} */
|
||||
/* We may need a slow conversion here to finish up */
|
||||
/* if ((lo_rate / 100) != (hi_rate / 100)) {
|
||||
#if 1 */
|
||||
/* The problem with this is that if the input buffer is
|
||||
say 1K, and the conversion rate is say 1.1, then the
|
||||
output buffer is 1.1K, which may not be an acceptable
|
||||
buffer size for the audio driver (not a power of 2)
|
||||
*/
|
||||
/* For now, punt and hope the rate distortion isn't great.
|
||||
*/
|
||||
/*#else
|
||||
if (src_rate < dst_rate) {
|
||||
cvt->rate_incr = (double) lo_rate / hi_rate;
|
||||
cvt->len_mult *= 2;
|
||||
|
@ -1478,7 +1984,7 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
cvt->filters[cvt->filter_index++] = SDL_RateSLOW;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
/* Set up the filter information */
|
||||
if (cvt->filter_index != 0) {
|
||||
|
@ -1492,4 +1998,15 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
return (cvt->needed);
|
||||
}
|
||||
|
||||
#undef SDL_FixMpy8
|
||||
#undef SDL_FixMpy16
|
||||
#undef SDL_FixMpy32
|
||||
#undef SDL_FloatMpy
|
||||
#undef SDL_Make_1_7
|
||||
#undef SDL_Make_1_15
|
||||
#undef SDL_Make_1_31
|
||||
#undef SDL_Make_2_6
|
||||
#undef SDL_Make_2_14
|
||||
#undef SDL_Make_2_30
|
||||
|
||||
/* vi: set ts=4 sw=4 expandtab: */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue