oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/sp0838.c

2085 lines
46 KiB
C
Raw Normal View History

2022-05-07 01:01:45 +02:00
/*
* A V4L2 driver for Superpix SP0838 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("EricYuan");
MODULE_DESCRIPTION("A low-level driver for Superpix SP0838 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[CSI_DEBUG][SP0838]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[CSI_ERR][SP0838]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[CSI][SP0838]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0838
#define AWB_EN (1<<4)
#define AWB_DIS (~(1<<4))
#define AE_EN (1<<0)
#define AE_DIS (~(1<<0))
#define VGA_WIDTH 640
#define VGA_HEIGHT 480
#define QVGA_WIDTH 320
#define QVGA_HEIGHT 240
#define CIF_WIDTH 352
#define CIF_HEIGHT 288
#define QCIF_WIDTH 176
#define QCIF_HEIGHT 144
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 10
/*
* The sp0838 sits on i2c with ID 0x30
*/
#define I2C_ADDR 0x30
#define SENSOR_NAME "sp0838"
//HEQ
#define Pre_Value_P0_0xdd 0x70
#define Pre_Value_P0_0xde 0x90
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] =
{
//[Sensor]
{0xfd,0x00}, //P0
{0x1B,0x02},
{0x27,0xe8},
{0x28,0x0B},
{0x32,0x00},
{0x22,0xc0},
{0x26,0x10},
{0x31,0x10}, //Upside/mirr/Pclk inv/sub
{0x5f,0x11}, //Bayer order
{0xfd,0x01}, //P1
{0x25,0x1a}, //Awb start
{0x26,0xfb},
{0x28,0x75},
{0x29,0x4e},
{0xfd,0x00},
{0xe7,0x03},
{0xe7,0x00},
{0xfd,0x01},
{0x31,0x60},//64
{0x32,0x18},
{0x4d,0xdc},
{0x4e,0x53},
{0x41,0x8c},
{0x42,0x57},
{0x55,0xff},
{0x56,0x00},
{0x59,0x82},
{0x5a,0x00},
{0x5d,0xff},
{0x5e,0x6f},
{0x57,0xff},
{0x58,0x00},
{0x5b,0xff},
{0x5c,0xa8},
{0x5f,0x75},
{0x60,0x00},
{0x2d,0x00},
{0x2e,0x00},
{0x2f,0x00},
{0x30,0x00},
{0x33,0x00},
{0x34,0x00},
{0x37,0x00},
{0x38,0x00}, //awb end
{0xfd,0x00}, //P0
{0x33,0x6f}, //LSC BPC EN
{0x51,0x3f}, //BPC debug start
{0x52,0x09},
{0x53,0x00},
{0x54,0x00},
{0x55,0x10}, //BPC debug end
{0x4f,0x08}, //blueedge
{0x50,0x08},
{0x57,0x10}, //Raw filter debut start
{0x58,0x10},
{0x59,0x10},
{0x56,0x71},
{0x5a,0x02},
{0x5b,0x05},
{0x5c,0x28}, //Raw filter debut end
{0x65,0x04}, //Sharpness debug start
{0x66,0x01},
{0x67,0x03},
{0x68,0x45},
{0x69,0x7f},
{0x6a,0x01},
{0x6b,0x06},//zyy20130709
{0x6c,0x01},
{0x6d,0x03}, //Edge gain normal
{0x6e,0x43}, //Edge gain normal
{0x6f,0x7f},
{0x70,0x01},
{0x71,0x08}, //<2F><><EFBFBD><EFBFBD>ֵ
{0x72,0x01}, //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
{0x73,0x03}, //<2F><>Ե<EFBFBD><D4B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
{0x74,0x43}, //<2F><>Ե<EFBFBD><D4B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
{0x75,0x7f}, //ʹ<><CAB9>λ
{0x76,0x01}, //Sharpness debug end
{0xcb,0x07}, //HEQ&Saturation debug start
{0xcc,0x04},
{0xce,0xff},
{0xcf,0x10},
{0xd0,0x20},
{0xd1,0x00},
{0xd2,0x1c},
{0xd3,0x16},
{0xd4,0x00},
{0xd6,0x1c},
{0xd7,0x16},
{0xdd,0x70}, //Contrast
{0xde,0x94}, //HEQ&Saturation debug end
{0x7f,0xd7}, //Color Correction start
{0x80,0xbc},
{0x81,0xed},
{0x82,0xd7},
{0x83,0xd4},
{0x84,0xd6},
{0x85,0xff},
{0x86,0x89},
{0x87,0xf8},
{0x88,0x3c},
{0x89,0x33},
{0x8a,0x0f}, //Color Correction end
{0x8b,0x00}, //gamma start
{0x8c,0x1a},
{0x8d,0x29},
{0x8e,0x41},
{0x8f,0x62},
{0x90,0x7c},
{0x91,0x90},
{0x92,0xa2},
{0x93,0xaf},
{0x94,0xbc},
{0x95,0xc5},
{0x96,0xcd},
{0x97,0xd5},
{0x98,0xdd},
{0x99,0xe5},
{0x9a,0xed},
{0x9b,0xf5},
{0xfd,0x01}, //P1
{0x8d,0xfd},
{0x8e,0xff}, //gamma end
{0xfd,0x00}, //P0
{0xca,0xcf},
{0xd8,0x48}, //UV outdoor
{0xd9,0x48}, //UV indoor
{0xda,0x44}, //UV dummy//zyy
{0xdb,0x40}, //UV lowlight
{0xb9,0x00}, //Ygamma start
{0xba,0x04},
{0xbb,0x08},
{0xbc,0x10},
{0xbd,0x20},
{0xbe,0x30},
{0xbf,0x40},
{0xc0,0x50},
{0xc1,0x60},
{0xc2,0x70},
{0xc3,0x80},
{0xc4,0x90},
{0xc5,0xA0},
{0xc6,0xB0},
{0xc7,0xC0},
{0xc8,0xD0},
{0xc9,0xE0},
{0xfd,0x01}, //P1
{0x89,0xf0},
{0x8a,0xff}, //Ygamma end
{0xfd,0x00}, //P0
{0xe8,0x30}, //AEdebug start
{0xe9,0x30},
{0xea,0x40}, //Alc Window sel
{0xf4,0x1b}, //outdoor mode sel
{0xf5,0x80},
{0xf7,0x78}, //AE target
{0xf8,0x63},
{0xf9,0x68}, //AE target
{0xfa,0x53},
{0xfd,0x01}, //P1
{0x09,0x31}, //AE Step 3.0
{0x0a,0x85},
{0x0b,0x0b}, //AE Step 3.0
{0x14,0x20},
{0x15,0x0f},
//caprure preview daylight 24M 50hz 20-8FPS maxgain:0x70
{0xfd,0x00},
{0x05,0x00},
{0x06,0x00},
{0x09,0x01},
{0x0a,0x76},
{0xf0,0x62},
{0xf1,0x00},
{0xf2,0x5f},
{0xf5,0x78},
{0xfd,0x01},
{0x00,0xb2},
{0x0f,0x60},
{0x16,0x60},
{0x17,0xa2},
{0x18,0xaa},
{0x1b,0x60},
{0x1c,0xaa},
{0xb4,0x20},
{0xb5,0x3a},
{0xb6,0x5e},
{0xb9,0x40},
{0xba,0x4f},
{0xbb,0x47},
{0xbc,0x45},
{0xbd,0x43},
{0xbe,0x42},
{0xbf,0x42},
{0xc0,0x42},
{0xc1,0x41},
{0xc2,0x41},
{0xc3,0x41},
{0xc4,0x41},
{0xc5,0x70},
{0xc6,0x41},
{0xca,0x70},
{0xcb,0xc },
{0xfd,0x00}, //P0
{0x32,0x15}, //Auto_mode set
{0x34,0x66}, //Isp_mode set
{0x35,0x00}, //out format
};
/*
* The white balance settings
* Here only tune the R G B channel gain.
* The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb
*/
static struct regval_list sensor_wb_manual[] = {
//null
};
static struct regval_list sensor_wb_auto_regs[] = {
//sp0838_reg_WB_auto
{0xfd, 0x01},
{0x28, 0x75},
{0x29, 0x4e},
{0xfd, 0x00}, // AUTO 3000K~7000K
{0x32, 0x15},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_incandescence_regs[] = {
//bai re guang
{0xfd, 0x00},
{0x32, 0x05},
{0xfd, 0x01},
{0x28, 0x41},
{0x29, 0x71},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_fluorescent_regs[] = {
//ri guang deng
{0xfd, 0x00},
{0x32, 0x05},
{0xfd, 0x01},
{0x28, 0x5a},
{0x29, 0x62},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_tungsten_regs[] = {
//wu si deng
{0xfd, 0x00},
{0x32, 0x05},
{0xfd, 0x01},
{0x28, 0x57},
{0x29, 0x66},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_horizon[] = {
//null
};
static struct regval_list sensor_wb_daylight_regs[] = {
//tai yang guang
{0xfd, 0x00},
{0x32, 0x05},
{0xfd, 0x01},
{0x28, 0x6b},
{0x29, 0x4b},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_flash[] = {
//null
};
static struct regval_list sensor_wb_cloud_regs[] = {
{0xfd, 0x00},
{0x32, 0x05},
{0xfd, 0x01},
{0x28, 0x71},
{0x29, 0x41},
{0xfd, 0x00},
};
static struct regval_list sensor_wb_shade[] = {
//null
};
static struct cfg_array sensor_wb[] = {
{
.regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL
.size = ARRAY_SIZE(sensor_wb_manual),
},
{
.regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO
.size = ARRAY_SIZE(sensor_wb_auto_regs),
},
{
.regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT
.size = ARRAY_SIZE(sensor_wb_incandescence_regs),
},
{
.regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT
.size = ARRAY_SIZE(sensor_wb_fluorescent_regs),
},
{
.regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H
.size = ARRAY_SIZE(sensor_wb_tungsten_regs),
},
{
.regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON
.size = ARRAY_SIZE(sensor_wb_horizon),
},
{
.regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT
.size = ARRAY_SIZE(sensor_wb_daylight_regs),
},
{
.regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH
.size = ARRAY_SIZE(sensor_wb_flash),
},
{
.regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY
.size = ARRAY_SIZE(sensor_wb_cloud_regs),
},
{
.regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE
.size = ARRAY_SIZE(sensor_wb_shade),
},
};
/*
* The color effect settings
*/
static struct regval_list sensor_colorfx_none_regs[] = {
{0xfd, 0x00},
{0x62, 0x00},
{0x63, 0x80},
{0x64, 0x80},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_bw_regs[] = {
{0xfd, 0x00},
{0x62, 0x40},
{0x63, 0x80},
{0x64, 0x80},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_sepia_regs[] = {
{0xfd, 0x00},
{0x62, 0x20},
{0x63, 0xc0},
{0x64, 0x20},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_negative_regs[] = {
{0xfd, 0x00},
{0x62, 0x10},
{0x63, 0x80},
{0x64, 0x80},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_emboss_regs[] = {
//null
};
static struct regval_list sensor_colorfx_sketch_regs[] = {
//null
};
static struct regval_list sensor_colorfx_sky_blue_regs[] = {
{0xfd, 0x00},
{0x62, 0x20},
{0x63, 0x20},
{0x64, 0xf0},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_grass_green_regs[] = {
{0xfd, 0x00},
{0x62, 0x20},
{0x63, 0x20},
{0x64, 0x20},
{0xfd, 0x00}
};
static struct regval_list sensor_colorfx_skin_whiten_regs[] = {
//null
};
static struct regval_list sensor_colorfx_vivid_regs[] = {
//NULL
};
static struct regval_list sensor_colorfx_aqua_regs[] = {
//null
};
static struct regval_list sensor_colorfx_art_freeze_regs[] = {
//null
};
static struct regval_list sensor_colorfx_silhouette_regs[] = {
//null
};
static struct regval_list sensor_colorfx_solarization_regs[] = {
//null
};
static struct regval_list sensor_colorfx_antique_regs[] = {
//null
};
static struct regval_list sensor_colorfx_set_cbcr_regs[] = {
//null
};
static struct cfg_array sensor_colorfx[] = {
{
.regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0,
.size = ARRAY_SIZE(sensor_colorfx_none_regs),
},
{
.regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1,
.size = ARRAY_SIZE(sensor_colorfx_bw_regs),
},
{
.regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2,
.size = ARRAY_SIZE(sensor_colorfx_sepia_regs),
},
{
.regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3,
.size = ARRAY_SIZE(sensor_colorfx_negative_regs),
},
{
.regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4,
.size = ARRAY_SIZE(sensor_colorfx_emboss_regs),
},
{
.regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5,
.size = ARRAY_SIZE(sensor_colorfx_sketch_regs),
},
{
.regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6,
.size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs),
},
{
.regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7,
.size = ARRAY_SIZE(sensor_colorfx_grass_green_regs),
},
{
.regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8,
.size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs),
},
{
.regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9,
.size = ARRAY_SIZE(sensor_colorfx_vivid_regs),
},
{
.regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10,
.size = ARRAY_SIZE(sensor_colorfx_aqua_regs),
},
{
.regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11,
.size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs),
},
{
.regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12,
.size = ARRAY_SIZE(sensor_colorfx_silhouette_regs),
},
{
.regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13,
.size = ARRAY_SIZE(sensor_colorfx_solarization_regs),
},
{
.regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14,
.size = ARRAY_SIZE(sensor_colorfx_antique_regs),
},
{
.regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15,
.size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs),
},
};
/*
* The brightness setttings
*/
static struct regval_list sensor_brightness_neg4_regs[] = {
{0xfd, 0x00},
{0xdc, 0xc0},
};
static struct regval_list sensor_brightness_neg3_regs[] = {
{0xfd, 0x00},
{0xdc, 0xd0},
};
static struct regval_list sensor_brightness_neg2_regs[] = {
{0xfd, 0x00},
{0xdc, 0xe0},
};
static struct regval_list sensor_brightness_neg1_regs[] = {
{0xfd, 0x00},
{0xdc, 0xf0},
};
static struct regval_list sensor_brightness_zero_regs[] = {
{0xfd, 0x00},
{0xdc, 0x00},
};
static struct regval_list sensor_brightness_pos1_regs[] = {
{0xfd, 0x00},
{0xdc, 0x10},
};
static struct regval_list sensor_brightness_pos2_regs[] = {
{0xfd, 0x00},
{0xdc, 0x20},
};
static struct regval_list sensor_brightness_pos3_regs[] = {
{0xfd, 0x00},
{0xdc, 0x30},
};
static struct regval_list sensor_brightness_pos4_regs[] = {
{0xfd, 0x00},
{0xdc, 0x40},
};
static struct cfg_array sensor_brightness[] = {
{
.regs = sensor_brightness_neg4_regs,
.size = ARRAY_SIZE(sensor_brightness_neg4_regs),
},
{
.regs = sensor_brightness_neg3_regs,
.size = ARRAY_SIZE(sensor_brightness_neg3_regs),
},
{
.regs = sensor_brightness_neg2_regs,
.size = ARRAY_SIZE(sensor_brightness_neg2_regs),
},
{
.regs = sensor_brightness_neg1_regs,
.size = ARRAY_SIZE(sensor_brightness_neg1_regs),
},
{
.regs = sensor_brightness_zero_regs,
.size = ARRAY_SIZE(sensor_brightness_zero_regs),
},
{
.regs = sensor_brightness_pos1_regs,
.size = ARRAY_SIZE(sensor_brightness_pos1_regs),
},
{
.regs = sensor_brightness_pos2_regs,
.size = ARRAY_SIZE(sensor_brightness_pos2_regs),
},
{
.regs = sensor_brightness_pos3_regs,
.size = ARRAY_SIZE(sensor_brightness_pos3_regs),
},
{
.regs = sensor_brightness_pos4_regs,
.size = ARRAY_SIZE(sensor_brightness_pos4_regs),
},
};
/*
* The contrast setttings
*/
static struct regval_list sensor_contrast_neg4_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd-0x40}, //level -4
{0xde, Pre_Value_P0_0xde-0x40}
};
static struct regval_list sensor_contrast_neg3_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd-0x30}, //level -3
{0xde, Pre_Value_P0_0xde-0x30}
};
static struct regval_list sensor_contrast_neg2_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd-0x20}, //level -2
{0xde, Pre_Value_P0_0xde-0x20}
};
static struct regval_list sensor_contrast_neg1_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd-0x10}, //level -1
{0xde, Pre_Value_P0_0xde-0x10}
};
static struct regval_list sensor_contrast_zero_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd}, //level 0
{0xde, Pre_Value_P0_0xde},
};
static struct regval_list sensor_contrast_pos1_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd+0x10}, //level +1
{0xde, Pre_Value_P0_0xde+0x10}
};
static struct regval_list sensor_contrast_pos2_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd+0x20}, //level +2
{0xde, Pre_Value_P0_0xde+0x20}
};
static struct regval_list sensor_contrast_pos3_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd+0x30}, //level +3
{0xde, Pre_Value_P0_0xde+0x30}
};
static struct regval_list sensor_contrast_pos4_regs[] = {
{0xfd, 0x00},
{0xdd, Pre_Value_P0_0xdd+0x40}, //level +4
{0xde, Pre_Value_P0_0xde+0x40}
};
static struct cfg_array sensor_contrast[] = {
{
.regs = sensor_contrast_neg4_regs,
.size = ARRAY_SIZE(sensor_contrast_neg4_regs),
},
{
.regs = sensor_contrast_neg3_regs,
.size = ARRAY_SIZE(sensor_contrast_neg3_regs),
},
{
.regs = sensor_contrast_neg2_regs,
.size = ARRAY_SIZE(sensor_contrast_neg2_regs),
},
{
.regs = sensor_contrast_neg1_regs,
.size = ARRAY_SIZE(sensor_contrast_neg1_regs),
},
{
.regs = sensor_contrast_zero_regs,
.size = ARRAY_SIZE(sensor_contrast_zero_regs),
},
{
.regs = sensor_contrast_pos1_regs,
.size = ARRAY_SIZE(sensor_contrast_pos1_regs),
},
{
.regs = sensor_contrast_pos2_regs,
.size = ARRAY_SIZE(sensor_contrast_pos2_regs),
},
{
.regs = sensor_contrast_pos3_regs,
.size = ARRAY_SIZE(sensor_contrast_pos3_regs),
},
{
.regs = sensor_contrast_pos4_regs,
.size = ARRAY_SIZE(sensor_contrast_pos4_regs),
},
};
/*
* The saturation setttings
*/
static struct regval_list sensor_saturation_neg4_regs[] = {
//null
};
static struct regval_list sensor_saturation_neg3_regs[] = {
//null
};
static struct regval_list sensor_saturation_neg2_regs[] = {
//null
};
static struct regval_list sensor_saturation_neg1_regs[] = {
//null
};
static struct regval_list sensor_saturation_zero_regs[] = {
//null
};
static struct regval_list sensor_saturation_pos1_regs[] = {
//null
};
static struct regval_list sensor_saturation_pos2_regs[] = {
//null
};
static struct regval_list sensor_saturation_pos3_regs[] = {
//null
};
static struct regval_list sensor_saturation_pos4_regs[] = {
//null
};
static struct cfg_array sensor_saturation[] = {
{
.regs = sensor_saturation_neg4_regs,
.size = ARRAY_SIZE(sensor_saturation_neg4_regs),
},
{
.regs = sensor_saturation_neg3_regs,
.size = ARRAY_SIZE(sensor_saturation_neg3_regs),
},
{
.regs = sensor_saturation_neg2_regs,
.size = ARRAY_SIZE(sensor_saturation_neg2_regs),
},
{
.regs = sensor_saturation_neg1_regs,
.size = ARRAY_SIZE(sensor_saturation_neg1_regs),
},
{
.regs = sensor_saturation_zero_regs,
.size = ARRAY_SIZE(sensor_saturation_zero_regs),
},
{
.regs = sensor_saturation_pos1_regs,
.size = ARRAY_SIZE(sensor_saturation_pos1_regs),
},
{
.regs = sensor_saturation_pos2_regs,
.size = ARRAY_SIZE(sensor_saturation_pos2_regs),
},
{
.regs = sensor_saturation_pos3_regs,
.size = ARRAY_SIZE(sensor_saturation_pos3_regs),
},
{
.regs = sensor_saturation_pos4_regs,
.size = ARRAY_SIZE(sensor_saturation_pos4_regs),
},
};
/*
* The exposure target setttings
*/
static struct regval_list sensor_ev_neg4_regs[] = {
{0xfd, 0x00},
{0xdc, 0xc0},
};
static struct regval_list sensor_ev_neg3_regs[] = {
{0xfd, 0x00},
{0xdc, 0xd0},
};
static struct regval_list sensor_ev_neg2_regs[] = {
{0xfd, 0x00},
{0xdc, 0xe0},
};
static struct regval_list sensor_ev_neg1_regs[] = {
{0xfd, 0x00},
{0xdc, 0xf0},
};
static struct regval_list sensor_ev_zero_regs[] = {
{0xfd, 0x00},
{0xdc, 0x00},
};
static struct regval_list sensor_ev_pos1_regs[] = {
{0xfd, 0x00},
{0xdc, 0x10},
};
static struct regval_list sensor_ev_pos2_regs[] = {
{0xfd, 0x00},
{0xdc, 0x20},
};
static struct regval_list sensor_ev_pos3_regs[] = {
{0xfd, 0x00},
{0xdc, 0x30},
};
static struct regval_list sensor_ev_pos4_regs[] = {
{0xfd, 0x00},
{0xdc, 0x40},
};
static struct cfg_array sensor_ev[] = {
{
.regs = sensor_ev_neg4_regs,
.size = ARRAY_SIZE(sensor_ev_neg4_regs),
},
{
.regs = sensor_ev_neg3_regs,
.size = ARRAY_SIZE(sensor_ev_neg3_regs),
},
{
.regs = sensor_ev_neg2_regs,
.size = ARRAY_SIZE(sensor_ev_neg2_regs),
},
{
.regs = sensor_ev_neg1_regs,
.size = ARRAY_SIZE(sensor_ev_neg1_regs),
},
{
.regs = sensor_ev_zero_regs,
.size = ARRAY_SIZE(sensor_ev_zero_regs),
},
{
.regs = sensor_ev_pos1_regs,
.size = ARRAY_SIZE(sensor_ev_pos1_regs),
},
{
.regs = sensor_ev_pos2_regs,
.size = ARRAY_SIZE(sensor_ev_pos2_regs),
},
{
.regs = sensor_ev_pos3_regs,
.size = ARRAY_SIZE(sensor_ev_pos3_regs),
},
{
.regs = sensor_ev_pos4_regs,
.size = ARRAY_SIZE(sensor_ev_pos4_regs),
},
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_yuv422_yuyv[] = {
{0xfd, 0x00}, //YCbYCr
{0x35, 0x40}
};
static struct regval_list sensor_fmt_yuv422_yvyu[] = {
{0xfd, 0x00}, //YCrYCb
{0x35, 0x40}
};
static struct regval_list sensor_fmt_yuv422_vyuy[] = {
{0xfd, 0x00}, //CrYCbY
{0x35, 0x01}
};
static struct regval_list sensor_fmt_yuv422_uyvy[] = {
{0xfd, 0x00}, //CbYCrY
{0x35, 0x00}
};
static struct regval_list sensor_fmt_raw[] = {
{0xfd, 0x00}, //raw
{0x35, 0x20}
};
static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x31, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_hflip!\n");
return ret;
}
val &= (1<<5);
val = val>>5; //0x31 bit5 is mirror
*value = val;
info->hflip = *value;
return 0;
}
static int sensor_s_hflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
msleep(100);
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
msleep(100);
ret = sensor_read(sd, 0x31, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
msleep(100);
switch (value) {
case 0:
val &= 0xdf;
break;
case 1:
val |= 0x20;
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x31, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
msleep(10);
info->hflip = value;
return 0;
}
static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_vflip!\n");
return ret;
}
ret = sensor_read(sd, 0x31, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_vflip!\n");
return ret;
}
val &= (1<<6);
val = val>>6; //0x31 bit6 is upsidedown
*value = val;
info->vflip = *value;
return 0;
}
static int sensor_s_vflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
msleep(100);
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_vflip!\n");
return ret;
}
msleep(100);
ret = sensor_read(sd, 0x31, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_vflip!\n");
return ret;
}
msleep(100);
switch (value) {
case 0:
val &= 0xbf;
break;
case 1:
val |= 0x40;
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x31, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_vflip!\n");
return ret;
}
msleep(10);
info->vflip = value;
return 0;
}
static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_autogain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x32, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autoexp!\n");
return ret;
}
val &= 0x01;
if (val == 0x01) {
*value = V4L2_EXPOSURE_AUTO;
}
else
{
*value = V4L2_EXPOSURE_MANUAL;
}
info->autoexp = *value;
return 0;
}
static int sensor_s_autoexp(struct v4l2_subdev *sd,
enum v4l2_exposure_auto_type value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x32, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autoexp!\n");
return ret;
}
switch (value) {
case V4L2_EXPOSURE_AUTO:
val |= AE_EN;
break;
case V4L2_EXPOSURE_MANUAL:
val &= AE_DIS;
break;
case V4L2_EXPOSURE_SHUTTER_PRIORITY:
return -EINVAL;
case V4L2_EXPOSURE_APERTURE_PRIORITY:
return -EINVAL;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x32, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
msleep(10);
info->autoexp = value;
return 0;
}
static int sensor_g_autowb(struct v4l2_subdev *sd, int *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x32, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autowb!\n");
return ret;
}
val &= (1<<4);
val = val>>4; //0x22 bit1 is awb enable
*value = val;
info->autowb = *value;
return 0;
}
static int sensor_s_autowb(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs));
if (ret < 0) {
vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x32, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autowb!\n");
return ret;
}
switch(value) {
case 0:
val &= AWB_DIS;
break;
case 1:
val |= AWB_EN;
break;
default:
break;
}
ret = sensor_write(sd, 0x32, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
msleep(10);
info->autowb = value;
return 0;
}
static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_hue(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
/* *********************************************end of ******************************************** */
static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->brightness;
return 0;
}
static int sensor_s_brightness(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->brightness == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size))
info->brightness = value;
return 0;
}
static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->contrast;
return 0;
}
static int sensor_s_contrast(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->contrast == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size))
info->contrast = value;
return 0;
}
static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->saturation;
return 0;
}
static int sensor_s_saturation(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->saturation == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size))
info->saturation = value;
return 0;
}
static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp_bias;
return 0;
}
static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->exp_bias == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size))
info->exp_bias = value;
return 0;
}
static int sensor_g_wb(struct v4l2_subdev *sd, int *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value;
*wb_type = info->wb;
return 0;
}
static int sensor_s_wb(struct v4l2_subdev *sd,
enum v4l2_auto_n_preset_white_balance value)
{
struct sensor_info *info = to_state(sd);
if(info->capture_mode == V4L2_MODE_IMAGE)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs ,sensor_wb[value].size) )
if (value == V4L2_WHITE_BALANCE_AUTO)
info->autowb = 1;
else
info->autowb = 0;
info->wb = value;
return 0;
}
static int sensor_g_colorfx(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value;
*clrfx_type = info->clrfx;
return 0;
}
static int sensor_s_colorfx(struct v4l2_subdev *sd,
enum v4l2_colorfx value)
{
struct sensor_info *info = to_state(sd);
if(info->clrfx == value)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size))
info->clrfx = value;
return 0;
}
static int sensor_g_flash_mode(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value;
*flash_mode = info->flash_mode;
return 0;
}
static int sensor_s_flash_mode(struct v4l2_subdev *sd,
enum v4l2_flash_led_mode value)
{
struct sensor_info *info = to_state(sd);
info->flash_mode = value;
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
cci_lock(sd);
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n");
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(30000,31000);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n");
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(30000,31000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n");
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
usleep_range(20000,22000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(30000,31000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n");
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_set_mclk(sd,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
break;
default:
return -EINVAL;
}
cci_unlock(sd);
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val) {
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
int ret;
data_type val;
ret = sensor_write(sd, 0xfd, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_detect!\n");
return ret;
}
ret = sensor_read(sd, 0x02, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_detect!\n");
return ret;
}
if(val != 0x27)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
return sensor_write_array(sd, sensor_default_regs , ARRAY_SIZE(sensor_default_regs));
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "YUYV 4:2:2",
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
.regs = sensor_fmt_yuv422_yuyv,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv),
.bpp = 2,
},
{
.desc = "YVYU 4:2:2",
.mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,
.regs = sensor_fmt_yuv422_yvyu,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu),
.bpp = 2,
},
{
.desc = "UYVY 4:2:2",
.mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,
.regs = sensor_fmt_yuv422_uyvy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy),
.bpp = 2,
},
{
.desc = "VYUY 4:2:2",
.mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,
.regs = sensor_fmt_yuv422_vyuy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy),
.bpp = 2,
},
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,//linux-3.0
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)//linux-3.0
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;//linux-3.0
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;//linux-3.0
fmt->height = wsize->height;//linux-3.0
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)//linux-3.0
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
{
ret = sensor_write_array(sd, wsize->regs , wsize->regs_size);
if (ret < 0)
return ret;
}
if (wsize->set_size)
{
ret = wsize->set_size(sd);
if (ret < 0)
return ret;
}
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
//struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->timeperframe.numerator = 1;
cp->timeperframe.denominator = SENSOR_FRAME_RATE;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
return 0;
}
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
/* *********************************************begin of ******************************************** */
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
/* see sensor_s_parm and sensor_g_parm for the meaning of value */
switch (qc->id) {
// case V4L2_CID_BRIGHTNESS:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_CONTRAST:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_SATURATION:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_HUE:
// return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
case V4L2_CID_VFLIP:
case V4L2_CID_HFLIP:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
// case V4L2_CID_GAIN:
// return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
// case V4L2_CID_AUTOGAIN:
// return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0);
case V4L2_CID_EXPOSURE_AUTO:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return v4l2_ctrl_query_fill(qc, 0, 9, 1, 1);
case V4L2_CID_AUTO_WHITE_BALANCE:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
case V4L2_CID_COLORFX:
return v4l2_ctrl_query_fill(qc, 0, 15, 1, 0);
case V4L2_CID_FLASH_LED_MODE:
return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_g_brightness(sd, &ctrl->value);
case V4L2_CID_CONTRAST:
return sensor_g_contrast(sd, &ctrl->value);
case V4L2_CID_SATURATION:
return sensor_g_saturation(sd, &ctrl->value);
case V4L2_CID_HUE:
return sensor_g_hue(sd, &ctrl->value);
case V4L2_CID_VFLIP:
return sensor_g_vflip(sd, &ctrl->value);
case V4L2_CID_HFLIP:
return sensor_g_hflip(sd, &ctrl->value);
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_AUTOGAIN:
return sensor_g_autogain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_g_exp_bias(sd, &ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_g_autoexp(sd, &ctrl->value);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_g_wb(sd, &ctrl->value);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_g_autowb(sd, &ctrl->value);
case V4L2_CID_COLORFX:
return sensor_g_colorfx(sd, &ctrl->value);
case V4L2_CID_FLASH_LED_MODE:
return sensor_g_flash_mode(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
//vfe_dev_dbg("sensor_s_ctrl ctrl->id=0x%8x\n", ctrl->id);
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (qc.type == V4L2_CTRL_TYPE_MENU ||
qc.type == V4L2_CTRL_TYPE_INTEGER ||
qc.type == V4L2_CTRL_TYPE_BOOLEAN)
{
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum)
{
return -ERANGE;
}
}
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_s_brightness(sd, ctrl->value);
case V4L2_CID_CONTRAST:
return sensor_s_contrast(sd, ctrl->value);
case V4L2_CID_SATURATION:
return sensor_s_saturation(sd, ctrl->value);
case V4L2_CID_HUE:
return sensor_s_hue(sd, ctrl->value);
case V4L2_CID_VFLIP:
return sensor_s_vflip(sd, ctrl->value);
case V4L2_CID_HFLIP:
return sensor_s_hflip(sd, ctrl->value);
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_AUTOGAIN:
return sensor_s_autogain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_s_exp_bias(sd, ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_s_autoexp(sd,(enum v4l2_exposure_auto_type) ctrl->value);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_s_wb(sd,(enum v4l2_auto_n_preset_white_balance) ctrl->value);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_s_autowb(sd, ctrl->value);
case V4L2_CID_COLORFX:
return sensor_s_colorfx(sd,(enum v4l2_colorfx) ctrl->value);
case V4L2_CID_FLASH_LED_MODE:
return sensor_s_flash_mode(sd,(enum v4l2_flash_led_mode) ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
if(client)
{
client->addr=0x30>>1;
}
info->fmt = &sensor_formats[0];
info->brightness = 0;
info->contrast = 0;
info->saturation = 0;
info->hue = 0;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->autogain = 1;
info->exp = 0;
info->autoexp = 0;
info->autowb = 1;
info->wb = 0;
info->clrfx = 0;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{ SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);