Initial commit

This commit is contained in:
Ole André Vadla Ravnås 2022-05-07 01:01:45 +02:00
commit 169c65d57e
51358 changed files with 23120455 additions and 0 deletions

View file

@ -0,0 +1,56 @@
ASoC currently supports the three main Digital Audio Interfaces (DAI) found on
SoC controllers and portable audio CODECs today, namely AC97, I2S and PCM.
AC97
====
AC97 is a five wire interface commonly found on many PC sound cards. It is
now also popular in many portable devices. This DAI has a reset line and time
multiplexes its data on its SDATA_OUT (playback) and SDATA_IN (capture) lines.
The bit clock (BCLK) is always driven by the CODEC (usually 12.288MHz) and the
frame (FRAME) (usually 48kHz) is always driven by the controller. Each AC97
frame is 21uS long and is divided into 13 time slots.
The AC97 specification can be found at :-
http://www.intel.com/p/en_US/business/design
I2S
===
I2S is a common 4 wire DAI used in HiFi, STB and portable devices. The Tx and
Rx lines are used for audio transmission, whilst the bit clock (BCLK) and
left/right clock (LRC) synchronise the link. I2S is flexible in that either the
controller or CODEC can drive (master) the BCLK and LRC clock lines. Bit clock
usually varies depending on the sample rate and the master system clock
(SYSCLK). LRCLK is the same as the sample rate. A few devices support separate
ADC and DAC LRCLKs, this allows for simultaneous capture and playback at
different sample rates.
I2S has several different operating modes:-
o I2S - MSB is transmitted on the falling edge of the first BCLK after LRC
transition.
o Left Justified - MSB is transmitted on transition of LRC.
o Right Justified - MSB is transmitted sample size BCLKs before LRC
transition.
PCM
===
PCM is another 4 wire interface, very similar to I2S, which can support a more
flexible protocol. It has bit clock (BCLK) and sync (SYNC) lines that are used
to synchronise the link whilst the Tx and Rx lines are used to transmit and
receive the audio data. Bit clock usually varies depending on sample rate
whilst sync runs at the sample rate. PCM also supports Time Division
Multiplexing (TDM) in that several devices can use the bus simultaneously (this
is sometimes referred to as network mode).
Common PCM operating modes:-
o Mode A - MSB is transmitted on falling edge of first BCLK after FRAME/SYNC.
o Mode B - MSB is transmitted on rising edge of FRAME/SYNC.

View file

@ -0,0 +1,51 @@
Audio Clocking
==============
This text describes the audio clocking terms in ASoC and digital audio in
general. Note: Audio clocking can be complex!
Master Clock
------------
Every audio subsystem is driven by a master clock (sometimes referred to as MCLK
or SYSCLK). This audio master clock can be derived from a number of sources
(e.g. crystal, PLL, CPU clock) and is responsible for producing the correct
audio playback and capture sample rates.
Some master clocks (e.g. PLLs and CPU based clocks) are configurable in that
their speed can be altered by software (depending on the system use and to save
power). Other master clocks are fixed at a set frequency (i.e. crystals).
DAI Clocks
----------
The Digital Audio Interface is usually driven by a Bit Clock (often referred to
as BCLK). This clock is used to drive the digital audio data across the link
between the codec and CPU.
The DAI also has a frame clock to signal the start of each audio frame. This
clock is sometimes referred to as LRC (left right clock) or FRAME. This clock
runs at exactly the sample rate (LRC = Rate).
Bit Clock can be generated as follows:-
BCLK = MCLK / x
or
BCLK = LRC * x
or
BCLK = LRC * Channels * Word Size
This relationship depends on the codec or SoC CPU in particular. In general
it is best to configure BCLK to the lowest possible speed (depending on your
rate, number of channels and word size) to save on power.
It is also desirable to use the codec (if possible) to drive (or master) the
audio clocks as it usually gives more accurate sample rates than the CPU.

View file

@ -0,0 +1,195 @@
ASoC Codec Driver
=================
The codec driver is generic and hardware independent code that configures the
codec to provide audio capture and playback. It should contain no code that is
specific to the target platform or machine. All platform and machine specific
code should be added to the platform and machine drivers respectively.
Each codec driver *must* provide the following features:-
1) Codec DAI and PCM configuration
2) Codec control IO - using I2C, 3 Wire(SPI) or both APIs
3) Mixers and audio controls
4) Codec audio operations
Optionally, codec drivers can also provide:-
5) DAPM description.
6) DAPM event handler.
7) DAC Digital mute control.
Its probably best to use this guide in conjunction with the existing codec
driver code in sound/soc/codecs/
ASoC Codec driver breakdown
===========================
1 - Codec DAI and PCM configuration
-----------------------------------
Each codec driver must have a struct snd_soc_dai_driver to define its DAI and
PCM capabilities and operations. This struct is exported so that it can be
registered with the core by your machine driver.
e.g.
static struct snd_soc_dai_ops wm8731_dai_ops = {
.prepare = wm8731_pcm_prepare,
.hw_params = wm8731_hw_params,
.shutdown = wm8731_shutdown,
.digital_mute = wm8731_mute,
.set_sysclk = wm8731_set_dai_sysclk,
.set_fmt = wm8731_set_dai_fmt,
};
struct snd_soc_dai_driver wm8731_dai = {
.name = "wm8731-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8731_RATES,
.formats = WM8731_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8731_RATES,
.formats = WM8731_FORMATS,},
.ops = &wm8731_dai_ops,
.symmetric_rates = 1,
};
2 - Codec control IO
--------------------
The codec can usually be controlled via an I2C or SPI style interface
(AC97 combines control with data in the DAI). The codec drivers provide
functions to read and write the codec registers along with supplying a
register cache:-
/* IO control data and register cache */
void *control_data; /* codec control (i2c/3wire) data */
void *reg_cache;
Codec read/write should do any data formatting and call the hardware
read write below to perform the IO. These functions are called by the
core and ALSA when performing DAPM or changing the mixer:-
unsigned int (*read)(struct snd_soc_codec *, unsigned int);
int (*write)(struct snd_soc_codec *, unsigned int, unsigned int);
Codec hardware IO functions - usually points to either the I2C, SPI or AC97
read/write:-
hw_write_t hw_write;
hw_read_t hw_read;
3 - Mixers and audio controls
-----------------------------
All the codec mixers and audio controls can be defined using the convenience
macros defined in soc.h.
#define SOC_SINGLE(xname, reg, shift, mask, invert)
Defines a single control as follows:-
xname = Control name e.g. "Playback Volume"
reg = codec register
shift = control bit(s) offset in register
mask = control bit size(s) e.g. mask of 7 = 3 bits
invert = the control is inverted
Other macros include:-
#define SOC_DOUBLE(xname, reg, shift_left, shift_right, mask, invert)
A stereo control
#define SOC_DOUBLE_R(xname, reg_left, reg_right, shift, mask, invert)
A stereo control spanning 2 registers
#define SOC_ENUM_SINGLE(xreg, xshift, xmask, xtexts)
Defines an single enumerated control as follows:-
xreg = register
xshift = control bit(s) offset in register
xmask = control bit(s) size
xtexts = pointer to array of strings that describe each setting
#define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xtexts)
Defines a stereo enumerated control
4 - Codec Audio Operations
--------------------------
The codec driver also supports the following ALSA operations:-
/* SoC audio ops */
struct snd_soc_ops {
int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
};
Please refer to the ALSA driver PCM documentation for details.
http://www.alsa-project.org/~iwai/writing-an-alsa-driver/
5 - DAPM description.
---------------------
The Dynamic Audio Power Management description describes the codec power
components and their relationships and registers to the ASoC core.
Please read dapm.txt for details of building the description.
Please also see the examples in other codec drivers.
6 - DAPM event handler
----------------------
This function is a callback that handles codec domain PM calls and system
domain PM calls (e.g. suspend and resume). It is used to put the codec
to sleep when not in use.
Power states:-
SNDRV_CTL_POWER_D0: /* full On */
/* vref/mid, clk and osc on, active */
SNDRV_CTL_POWER_D1: /* partial On */
SNDRV_CTL_POWER_D2: /* partial On */
SNDRV_CTL_POWER_D3hot: /* Off, with power */
/* everything off except vref/vmid, inactive */
SNDRV_CTL_POWER_D3cold: /* Everything Off, without power */
7 - Codec DAC digital mute control
----------------------------------
Most codecs have a digital mute before the DACs that can be used to
minimise any system noise. The mute stops any digital data from
entering the DAC.
A callback can be created that is called by the core for each codec DAI
when the mute is applied or freed.
i.e.
static int wm8974_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
u16 mute_reg = snd_soc_read(codec, WM8974_DAC) & 0xffbf;
if (mute)
snd_soc_write(codec, WM8974_DAC, mute_reg | 0x40);
else
snd_soc_write(codec, WM8974_DAC, mute_reg);
return 0;
}

View file

@ -0,0 +1,294 @@
Dynamic Audio Power Management for Portable Devices
===================================================
1. Description
==============
Dynamic Audio Power Management (DAPM) is designed to allow portable
Linux devices to use the minimum amount of power within the audio
subsystem at all times. It is independent of other kernel PM and as
such, can easily co-exist with the other PM systems.
DAPM is also completely transparent to all user space applications as
all power switching is done within the ASoC core. No code changes or
recompiling are required for user space applications. DAPM makes power
switching decisions based upon any audio stream (capture/playback)
activity and audio mixer settings within the device.
DAPM spans the whole machine. It covers power control within the entire
audio subsystem, this includes internal codec power blocks and machine
level power systems.
There are 4 power domains within DAPM
1. Codec domain - VREF, VMID (core codec and audio power)
Usually controlled at codec probe/remove and suspend/resume, although
can be set at stream time if power is not needed for sidetone, etc.
2. Platform/Machine domain - physically connected inputs and outputs
Is platform/machine and user action specific, is configured by the
machine driver and responds to asynchronous events e.g when HP
are inserted
3. Path domain - audio susbsystem signal paths
Automatically set when mixer and mux settings are changed by the user.
e.g. alsamixer, amixer.
4. Stream domain - DACs and ADCs.
Enabled and disabled when stream playback/capture is started and
stopped respectively. e.g. aplay, arecord.
All DAPM power switching decisions are made automatically by consulting an audio
routing map of the whole machine. This map is specific to each machine and
consists of the interconnections between every audio component (including
internal codec components). All audio components that effect power are called
widgets hereafter.
2. DAPM Widgets
===============
Audio DAPM widgets fall into a number of types:-
o Mixer - Mixes several analog signals into a single analog signal.
o Mux - An analog switch that outputs only one of many inputs.
o PGA - A programmable gain amplifier or attenuation widget.
o ADC - Analog to Digital Converter
o DAC - Digital to Analog Converter
o Switch - An analog switch
o Input - A codec input pin
o Output - A codec output pin
o Headphone - Headphone (and optional Jack)
o Mic - Mic (and optional Jack)
o Line - Line Input/Output (and optional Jack)
o Speaker - Speaker
o Supply - Power or clock supply widget used by other widgets.
o Pre - Special PRE widget (exec before all others)
o Post - Special POST widget (exec after all others)
(Widgets are defined in include/sound/soc-dapm.h)
Widgets are usually added in the codec driver and the machine driver. There are
convenience macros defined in soc-dapm.h that can be used to quickly build a
list of widgets of the codecs and machines DAPM widgets.
Most widgets have a name, register, shift and invert. Some widgets have extra
parameters for stream name and kcontrols.
2.1 Stream Domain Widgets
-------------------------
Stream Widgets relate to the stream power domain and only consist of ADCs
(analog to digital converters) and DACs (digital to analog converters).
Stream widgets have the following format:-
SND_SOC_DAPM_DAC(name, stream name, reg, shift, invert),
NOTE: the stream name must match the corresponding stream name in your codec
snd_soc_codec_dai.
e.g. stream widgets for HiFi playback and capture
SND_SOC_DAPM_DAC("HiFi DAC", "HiFi Playback", REG, 3, 1),
SND_SOC_DAPM_ADC("HiFi ADC", "HiFi Capture", REG, 2, 1),
2.2 Path Domain Widgets
-----------------------
Path domain widgets have a ability to control or affect the audio signal or
audio paths within the audio subsystem. They have the following form:-
SND_SOC_DAPM_PGA(name, reg, shift, invert, controls, num_controls)
Any widget kcontrols can be set using the controls and num_controls members.
e.g. Mixer widget (the kcontrols are declared first)
/* Output Mixer */
static const snd_kcontrol_new_t wm8731_output_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Bypass Switch", WM8731_APANA, 3, 1, 0),
SOC_DAPM_SINGLE("Mic Sidetone Switch", WM8731_APANA, 5, 1, 0),
SOC_DAPM_SINGLE("HiFi Playback Switch", WM8731_APANA, 4, 1, 0),
};
SND_SOC_DAPM_MIXER("Output Mixer", WM8731_PWR, 4, 1, wm8731_output_mixer_controls,
ARRAY_SIZE(wm8731_output_mixer_controls)),
If you dont want the mixer elements prefixed with the name of the mixer widget,
you can use SND_SOC_DAPM_MIXER_NAMED_CTL instead. the parameters are the same
as for SND_SOC_DAPM_MIXER.
2.3 Platform/Machine domain Widgets
-----------------------------------
Machine widgets are different from codec widgets in that they don't have a
codec register bit associated with them. A machine widget is assigned to each
machine audio component (non codec) that can be independently powered. e.g.
o Speaker Amp
o Microphone Bias
o Jack connectors
A machine widget can have an optional call back.
e.g. Jack connector widget for an external Mic that enables Mic Bias
when the Mic is inserted:-
static int spitz_mic_bias(struct snd_soc_dapm_widget* w, int event)
{
gpio_set_value(SPITZ_GPIO_MIC_BIAS, SND_SOC_DAPM_EVENT_ON(event));
return 0;
}
SND_SOC_DAPM_MIC("Mic Jack", spitz_mic_bias),
2.4 Codec Domain
----------------
The codec power domain has no widgets and is handled by the codecs DAPM event
handler. This handler is called when the codec powerstate is changed wrt to any
stream event or by kernel PM events.
2.5 Virtual Widgets
-------------------
Sometimes widgets exist in the codec or machine audio map that don't have any
corresponding soft power control. In this case it is necessary to create
a virtual widget - a widget with no control bits e.g.
SND_SOC_DAPM_MIXER("AC97 Mixer", SND_SOC_DAPM_NOPM, 0, 0, NULL, 0),
This can be used to merge to signal paths together in software.
After all the widgets have been defined, they can then be added to the DAPM
subsystem individually with a call to snd_soc_dapm_new_control().
3. Codec Widget Interconnections
================================
Widgets are connected to each other within the codec and machine by audio paths
(called interconnections). Each interconnection must be defined in order to
create a map of all audio paths between widgets.
This is easiest with a diagram of the codec (and schematic of the machine audio
system), as it requires joining widgets together via their audio signal paths.
e.g., from the WM8731 output mixer (wm8731.c)
The WM8731 output mixer has 3 inputs (sources)
1. Line Bypass Input
2. DAC (HiFi playback)
3. Mic Sidetone Input
Each input in this example has a kcontrol associated with it (defined in example
above) and is connected to the output mixer via its kcontrol name. We can now
connect the destination widget (wrt audio signal) with its source widgets.
/* output mixer */
{"Output Mixer", "Line Bypass Switch", "Line Input"},
{"Output Mixer", "HiFi Playback Switch", "DAC"},
{"Output Mixer", "Mic Sidetone Switch", "Mic Bias"},
So we have :-
Destination Widget <=== Path Name <=== Source Widget
Or:-
Sink, Path, Source
Or :-
"Output Mixer" is connected to the "DAC" via the "HiFi Playback Switch".
When there is no path name connecting widgets (e.g. a direct connection) we
pass NULL for the path name.
Interconnections are created with a call to:-
snd_soc_dapm_connect_input(codec, sink, path, source);
Finally, snd_soc_dapm_new_widgets(codec) must be called after all widgets and
interconnections have been registered with the core. This causes the core to
scan the codec and machine so that the internal DAPM state matches the
physical state of the machine.
3.1 Machine Widget Interconnections
-----------------------------------
Machine widget interconnections are created in the same way as codec ones and
directly connect the codec pins to machine level widgets.
e.g. connects the speaker out codec pins to the internal speaker.
/* ext speaker connected to codec pins LOUT2, ROUT2 */
{"Ext Spk", NULL , "ROUT2"},
{"Ext Spk", NULL , "LOUT2"},
This allows the DAPM to power on and off pins that are connected (and in use)
and pins that are NC respectively.
4 Endpoint Widgets
===================
An endpoint is a start or end point (widget) of an audio signal within the
machine and includes the codec. e.g.
o Headphone Jack
o Internal Speaker
o Internal Mic
o Mic Jack
o Codec Pins
When a codec pin is NC it can be marked as not used with a call to
snd_soc_dapm_set_endpoint(codec, "Widget Name", 0);
The last argument is 0 for inactive and 1 for active. This way the pin and its
input widget will never be powered up and consume power.
This also applies to machine widgets. e.g. if a headphone is connected to a
jack then the jack can be marked active. If the headphone is removed, then
the headphone jack can be marked inactive.
5 DAPM Widget Events
====================
Some widgets can register their interest with the DAPM core in PM events.
e.g. A Speaker with an amplifier registers a widget so the amplifier can be
powered only when the spk is in use.
/* turn speaker amplifier on/off depending on use */
static int corgi_amp_event(struct snd_soc_dapm_widget *w, int event)
{
gpio_set_value(CORGI_GPIO_APM_ON, SND_SOC_DAPM_EVENT_ON(event));
return 0;
}
/* corgi machine dapm widgets */
static const struct snd_soc_dapm_widget wm8731_dapm_widgets =
SND_SOC_DAPM_SPK("Ext Spk", corgi_amp_event);
Please see soc-dapm.h for all other widgets that support events.
5.1 Event types
---------------
The following event types are supported by event widgets.
/* dapm event types */
#define SND_SOC_DAPM_PRE_PMU 0x1 /* before widget power up */
#define SND_SOC_DAPM_POST_PMU 0x2 /* after widget power up */
#define SND_SOC_DAPM_PRE_PMD 0x4 /* before widget power down */
#define SND_SOC_DAPM_POST_PMD 0x8 /* after widget power down */
#define SND_SOC_DAPM_PRE_REG 0x10 /* before audio path setup */
#define SND_SOC_DAPM_POST_REG 0x20 /* after audio path setup */

View file

@ -0,0 +1,71 @@
ASoC jack detection
===================
ALSA has a standard API for representing physical jacks to user space,
the kernel side of which can be seen in include/sound/jack.h. ASoC
provides a version of this API adding two additional features:
- It allows more than one jack detection method to work together on one
user visible jack. In embedded systems it is common for multiple
to be present on a single jack but handled by separate bits of
hardware.
- Integration with DAPM, allowing DAPM endpoints to be updated
automatically based on the detected jack status (eg, turning off the
headphone outputs if no headphones are present).
This is done by splitting the jacks up into three things working
together: the jack itself represented by a struct snd_soc_jack, sets of
snd_soc_jack_pins representing DAPM endpoints to update and blocks of
code providing jack reporting mechanisms.
For example, a system may have a stereo headset jack with two reporting
mechanisms, one for the headphone and one for the microphone. Some
systems won't be able to use their speaker output while a headphone is
connected and so will want to make sure to update both speaker and
headphone when the headphone jack status changes.
The jack - struct snd_soc_jack
==============================
This represents a physical jack on the system and is what is visible to
user space. The jack itself is completely passive, it is set up by the
machine driver and updated by jack detection methods.
Jacks are created by the machine driver calling snd_soc_jack_new().
snd_soc_jack_pin
================
These represent a DAPM pin to update depending on some of the status
bits supported by the jack. Each snd_soc_jack has zero or more of these
which are updated automatically. They are created by the machine driver
and associated with the jack using snd_soc_jack_add_pins(). The status
of the endpoint may configured to be the opposite of the jack status if
required (eg, enabling a built in microphone if a microphone is not
connected via a jack).
Jack detection methods
======================
Actual jack detection is done by code which is able to monitor some
input to the system and update a jack by calling snd_soc_jack_report(),
specifying a subset of bits to update. The jack detection code should
be set up by the machine driver, taking configuration for the jack to
update and the set of things to report when the jack is connected.
Often this is done based on the status of a GPIO - a handler for this is
provided by the snd_soc_jack_add_gpio() function. Other methods are
also available, for example integrated into CODECs. One example of
CODEC integrated jack detection can be see in the WM8350 driver.
Each jack may have multiple reporting mechanisms, though it will need at
least one to be useful.
Machine drivers
===============
These are all hooked together by the machine driver depending on the
system hardware. The machine driver will set up the snd_soc_jack and
the list of pins to update then set up one or more jack detection
mechanisms to update that jack based on their current status.

View file

@ -0,0 +1,91 @@
ASoC Machine Driver
===================
The ASoC machine (or board) driver is the code that glues together the platform
and codec drivers.
The machine driver can contain codec and platform specific code. It registers
the audio subsystem with the kernel as a platform device and is represented by
the following struct:-
/* SoC machine */
struct snd_soc_card {
char *name;
...
int (*probe)(struct platform_device *pdev);
int (*remove)(struct platform_device *pdev);
/* the pre and post PM functions are used to do any PM work before and
* after the codec and DAIs do any PM work. */
int (*suspend_pre)(struct platform_device *pdev, pm_message_t state);
int (*suspend_post)(struct platform_device *pdev, pm_message_t state);
int (*resume_pre)(struct platform_device *pdev);
int (*resume_post)(struct platform_device *pdev);
...
/* CPU <--> Codec DAI links */
struct snd_soc_dai_link *dai_link;
int num_links;
...
};
probe()/remove()
----------------
probe/remove are optional. Do any machine specific probe here.
suspend()/resume()
------------------
The machine driver has pre and post versions of suspend and resume to take care
of any machine audio tasks that have to be done before or after the codec, DAIs
and DMA is suspended and resumed. Optional.
Machine DAI Configuration
-------------------------
The machine DAI configuration glues all the codec and CPU DAIs together. It can
also be used to set up the DAI system clock and for any machine related DAI
initialisation e.g. the machine audio map can be connected to the codec audio
map, unconnected codec pins can be set as such.
struct snd_soc_dai_link is used to set up each DAI in your machine. e.g.
/* corgi digital audio interface glue - connects codec <--> CPU */
static struct snd_soc_dai_link corgi_dai = {
.name = "WM8731",
.stream_name = "WM8731",
.cpu_dai_name = "pxa-is2-dai",
.codec_dai_name = "wm8731-hifi",
.platform_name = "pxa-pcm-audio",
.codec_name = "wm8713-codec.0-001a",
.init = corgi_wm8731_init,
.ops = &corgi_ops,
};
struct snd_soc_card then sets up the machine with its DAIs. e.g.
/* corgi audio machine driver */
static struct snd_soc_card snd_soc_corgi = {
.name = "Corgi",
.dai_link = &corgi_dai,
.num_links = 1,
};
Machine Power Map
-----------------
The machine driver can optionally extend the codec power map and to become an
audio power map of the audio subsystem. This allows for automatic power up/down
of speaker/HP amplifiers, etc. Codec pins can be connected to the machines jack
sockets in the machine init function.
Machine Controls
----------------
Machine specific audio mixer controls can be added in the DAI init function.

View file

@ -0,0 +1,86 @@
ALSA SoC Layer
==============
The overall project goal of the ALSA System on Chip (ASoC) layer is to
provide better ALSA support for embedded system-on-chip processors (e.g.
pxa2xx, au1x00, iMX, etc) and portable audio codecs. Prior to the ASoC
subsystem there was some support in the kernel for SoC audio, however it
had some limitations:-
* Codec drivers were often tightly coupled to the underlying SoC
CPU. This is not ideal and leads to code duplication - for example,
Linux had different wm8731 drivers for 4 different SoC platforms.
* There was no standard method to signal user initiated audio events (e.g.
Headphone/Mic insertion, Headphone/Mic detection after an insertion
event). These are quite common events on portable devices and often require
machine specific code to re-route audio, enable amps, etc., after such an
event.
* Drivers tended to power up the entire codec when playing (or
recording) audio. This is fine for a PC, but tends to waste a lot of
power on portable devices. There was also no support for saving
power via changing codec oversampling rates, bias currents, etc.
ASoC Design
===========
The ASoC layer is designed to address these issues and provide the following
features :-
* Codec independence. Allows reuse of codec drivers on other platforms
and machines.
* Easy I2S/PCM audio interface setup between codec and SoC. Each SoC
interface and codec registers its audio interface capabilities with the
core and are subsequently matched and configured when the application
hardware parameters are known.
* Dynamic Audio Power Management (DAPM). DAPM automatically sets the codec to
its minimum power state at all times. This includes powering up/down
internal power blocks depending on the internal codec audio routing and any
active streams.
* Pop and click reduction. Pops and clicks can be reduced by powering the
codec up/down in the correct sequence (including using digital mute). ASoC
signals the codec when to change power states.
* Machine specific controls: Allow machines to add controls to the sound card
(e.g. volume control for speaker amplifier).
To achieve all this, ASoC basically splits an embedded audio system into 3
components :-
* Codec driver: The codec driver is platform independent and contains audio
controls, audio interface capabilities, codec DAPM definition and codec IO
functions.
* Platform driver: The platform driver contains the audio DMA engine and audio
interface drivers (e.g. I2S, AC97, PCM) for that platform.
* Machine driver: The machine driver handles any machine specific controls and
audio events (e.g. turning on an amp at start of playback).
Documentation
=============
The documentation is spilt into the following sections:-
overview.txt: This file.
codec.txt: Codec driver internals.
DAI.txt: Description of Digital Audio Interface standards and how to configure
a DAI within your codec and CPU DAI drivers.
dapm.txt: Dynamic Audio Power Management
platform.txt: Platform audio DMA and DAI.
machine.txt: Machine driver internals.
pop_clicks.txt: How to minimise audio artifacts.
clocking.txt: ASoC clocking for best power performance.

View file

@ -0,0 +1,66 @@
ASoC Platform Driver
====================
An ASoC platform driver can be divided into audio DMA and SoC DAI configuration
and control. The platform drivers only target the SoC CPU and must have no board
specific code.
Audio DMA
=========
The platform DMA driver optionally supports the following ALSA operations:-
/* SoC audio ops */
struct snd_soc_ops {
int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
int (*trigger)(struct snd_pcm_substream *, int);
};
The platform driver exports its DMA functionality via struct
snd_soc_platform_driver:-
struct snd_soc_platform_driver {
char *name;
int (*probe)(struct platform_device *pdev);
int (*remove)(struct platform_device *pdev);
int (*suspend)(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai);
int (*resume)(struct platform_device *pdev, struct snd_soc_cpu_dai *cpu_dai);
/* pcm creation and destruction */
int (*pcm_new)(struct snd_card *, struct snd_soc_codec_dai *, struct snd_pcm *);
void (*pcm_free)(struct snd_pcm *);
/*
* For platform caused delay reporting.
* Optional.
*/
snd_pcm_sframes_t (*delay)(struct snd_pcm_substream *,
struct snd_soc_dai *);
/* platform stream ops */
struct snd_pcm_ops *pcm_ops;
};
Please refer to the ALSA driver documentation for details of audio DMA.
http://www.alsa-project.org/~iwai/writing-an-alsa-driver/
An example DMA driver is soc/pxa/pxa2xx-pcm.c
SoC DAI Drivers
===============
Each SoC DAI driver must provide the following features:-
1) Digital audio interface (DAI) description
2) Digital audio interface configuration
3) PCM's description
4) SYSCLK configuration
5) Suspend and resume (optional)
Please see codec.txt for a description of items 1 - 4.

View file

@ -0,0 +1,52 @@
Audio Pops and Clicks
=====================
Pops and clicks are unwanted audio artifacts caused by the powering up and down
of components within the audio subsystem. This is noticeable on PCs when an
audio module is either loaded or unloaded (at module load time the sound card is
powered up and causes a popping noise on the speakers).
Pops and clicks can be more frequent on portable systems with DAPM. This is
because the components within the subsystem are being dynamically powered
depending on the audio usage and this can subsequently cause a small pop or
click every time a component power state is changed.
Minimising Playback Pops and Clicks
===================================
Playback pops in portable audio subsystems cannot be completely eliminated
currently, however future audio codec hardware will have better pop and click
suppression. Pops can be reduced within playback by powering the audio
components in a specific order. This order is different for startup and
shutdown and follows some basic rules:-
Startup Order :- DAC --> Mixers --> Output PGA --> Digital Unmute
Shutdown Order :- Digital Mute --> Output PGA --> Mixers --> DAC
This assumes that the codec PCM output path from the DAC is via a mixer and then
a PGA (programmable gain amplifier) before being output to the speakers.
Minimising Capture Pops and Clicks
==================================
Capture artifacts are somewhat easier to get rid as we can delay activating the
ADC until all the pops have occurred. This follows similar power rules to
playback in that components are powered in a sequence depending upon stream
startup or shutdown.
Startup Order - Input PGA --> Mixers --> ADC
Shutdown Order - ADC --> Mixers --> Input PGA
Zipper Noise
============
An unwanted zipper noise can occur within the audio playback or capture stream
when a volume control is changed near its maximum gain value. The zipper noise
is heard when the gain increase or decrease changes the mean audio signal
amplitude too quickly. It can be minimised by enabling the zero cross setting
for each volume control. The ZC forces the gain change to occur when the signal
crosses the zero amplitude line.