/* * A V4L2 driver for GalaxyCore GC0311 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("raymonxiu"); MODULE_DESCRIPTION("A low-level driver for GalaxyCore GC0311 sensors"); MODULE_LICENSE("GPL"); #define GC0329_12M_MCLK //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[CSI_DEBUG][GC0311]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[CSI_ERR][GC0311]"x,##arg) #define vfe_dev_print(x,arg...) printk("[CSI][GC0311]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0311 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 10 /* * The gc0311 sits on i2c with ID 0x66 */ #define I2C_ADDR 0x66 #define SENSOR_NAME "gc0311" /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } static struct regval_list sensor_default_regs[] = { {0xfe,0xf0}, {0xfe,0xf0}, {0xfe,0xf0}, {0x42,0x00}, {0x4f,0x00}, {0x03,0x01}, {0x04,0x20}, {0xfc,0x16}, #ifdef GC0329_12M_MCLK {0xfa,0x11}, #else {0xfa,0x00}, #endif /////////////////////////////////////////////// /////////// system reg //////////////////////// /////////////////////////////////////////////// {0xf1,0x07}, {0xf2,0x01}, {0xfc,0x16}, /////////////////////////////////////////////// /////////// CISCTL//////////////////////// /////////////////////////////////////////////// {0xfe,0x00}, //////window setting///// {0x0d,0x01}, {0x0e,0xe8}, {0x0f,0x02}, {0x10,0x88}, {0x09,0x00}, {0x0a,0x00}, {0x0b,0x00}, {0x0c,0x04}, #ifdef GC0329_12M_MCLK {0x05, 0x01}, {0x06, 0x32}, {0x07, 0x00}, {0x08, 0x70}, {0xfe, 0x01}, {0x29, 0x00}, //anti-flicker step [11:8] {0x2a, 0x3c}, //anti-flicker step [7:0] {0x2b, 0x02}, //exp level 0 14.28fps {0x2c, 0x58}, {0x2d, 0x02}, //exp level 1 12.50fps {0x2e, 0x58}, {0x2f, 0x02}, //exp level 2 10.00fps {0x30, 0xd0}, {0x31, 0x03}, //exp level 3 7.14fps {0x32, 0x48}, {0x33, 0x20}, {0xfe, 0x00}, #else {0x05, 0x02}, {0x06, 0x2c}, {0x07, 0x00}, {0x08, 0xb8}, {0xfe, 0x01}, {0x29, 0x00}, //anti-flicker step [11:8] {0x2a, 0x60}, //anti-flicker step [7:0] {0x2b, 0x02}, //exp level 0 14.28fps {0x2c, 0xa0}, {0x2d, 0x03}, //exp level 1 12.50fps {0x2e, 0x00}, {0x2f, 0x03}, //exp level 2 10.00fps {0x30, 0xc0}, {0x31, 0x05}, //exp level 3 7.14fps {0x32, 0x40}, {0x33, 0x20}, #endif ///////////20120703//////////////////////// {0x77,0x7c}, {0x78,0x40}, {0x79,0x56}, {0x17,0x14}, {0x19,0x04}, {0x1f,0x08}, {0x20,0x01}, {0x21,0x48}, {0x1b,0x48}, {0x22,0xba}, {0x23,0x06},// 07--06 20120905 {0x24,0x16}, //global gain for range {0x70,0x54}, {0x73,0x80}, {0x76,0x80}, //////////////////////////////////////////////// ///////////////////////BLK////////////////////// //////////////////////////////////////////////// {0x26,0xf7}, {0x28,0x7f}, {0x29,0x40}, {0x33,0x18}, {0x34,0x18}, {0x35,0x18}, {0x36,0x18}, //////////////////////////////////////////////// //////////////block enable///////////////////// //////////////////////////////////////////////// {0x40,0xdf}, {0x41,0x2e}, {0x42,0xfe}, {0x44,0xa0}, {0x46,0x03}, {0x4d,0x01}, {0x4f,0x01}, {0x7e,0x08}, {0x7f,0xc3}, //DN & EEINTP {0x80,0xe7}, {0x82,0x30}, {0x84,0x02}, {0x89,0x22}, {0x90,0xbc}, {0x92,0x08}, {0x94,0x08}, {0x95,0x64}, /////////////////////ASDE///////////// {0x9a,0x15}, {0x9c,0x46}, /////////////////////////////////////// ////////////////Y gamma /////////////////// //////////////////////////////////////////// {0xfe,0x00}, {0x63,0x00}, {0x64,0x06}, {0x65,0x0c}, {0x66,0x18}, {0x67,0x2A}, {0x68,0x3D}, {0x69,0x50}, {0x6A,0x60}, {0x6B,0x80}, {0x6C,0xA0}, {0x6D,0xC0}, {0x6E,0xE0}, {0x6F,0xFF}, {0xfe,0x00}, /////////////////////////////////////// ////////////////RGB gamma ////////////// /////////////////////////////////////// {0xBF,0x0b}, {0xc0,0x1a}, {0xc1,0x2c}, {0xc2,0x40}, {0xc3,0x52}, {0xc4,0x64}, {0xc5,0x76}, {0xc6,0x92}, {0xc7,0xA6}, {0xc8,0xB8}, {0xc9,0xC8}, {0xcA,0xD2}, {0xcB,0xda}, {0xcC,0xE0}, {0xcD,0xea}, {0xcE,0xF3}, {0xcF,0xFF}, //////////////////////////// /////////////YCP////////////// //////////////////////////// {0xd1,0x36}, {0xd2,0x36}, {0xdd,0x00}, {0xed,0x00}, {0xde,0x38}, {0xe4,0x88}, {0xe5,0x40}, {0xfe,0x01}, {0x18,0x22}, ////////////////////////////////// ///////////MEANSURE WINDOW//////// ///////////////////////////////// {0x08,0xa4}, {0x09,0xf0}, /////////////////////////////////////////////// /////////////// AEC //////////////////////// /////////////////////////////////////////////// {0xfe,0x01}, {0x10,0x08}, {0x11,0x11}, {0x12,0x14}, {0x13,0x40}, {0x16,0xd8}, {0x17,0x98}, {0x18,0x01}, {0x21,0xc0}, {0x22,0x40}, ////////////////////////////// /////////////AWB/////////////// //////////////////////////////// {0x06,0x10}, {0x08,0xa0}, {0x50,0xfe}, {0x51,0x05}, {0x52,0x28}, {0x53,0x05}, {0x54,0x10}, {0x55,0x20}, {0x56,0x16}, {0x57,0x10}, {0x58,0xf0}, {0x59,0x10}, {0x5a,0x10}, {0x5b,0xf0}, {0x5e,0xe8}, {0x5f,0x20}, {0x60,0x20}, {0x61,0xe0}, {0x62,0x03}, {0x63,0x30}, {0x64,0xc0}, {0x65,0xd0}, {0x66,0x20}, {0x67,0x00}, {0x6d,0x40}, {0x6e,0x08}, {0x6f,0x08}, {0x70,0x10}, {0x71,0x62}, {0x72,0x2e},//26 fast mode {0x73,0x71}, {0x74,0x23}, {0x75,0x40}, {0x76,0x48}, {0x77,0xc2}, {0x78,0xa5}, {0x79,0x18}, {0x7a,0x40}, {0x7b,0xb0}, {0x7c,0xf5}, {0x81,0x80}, {0x82,0x60}, {0x83,0xa0}, {0x8a,0xf8}, {0x8b,0xf4}, {0x8c,0x0a}, {0x8d,0x00}, {0x8e,0x00}, {0x8f,0x00}, {0x90,0x12}, {0xfe,0x00}, /////////////////////////////////////////////// /////////// SPI reciver//////////////////////// /////////////////////////////////////////////// {0xad,0x00}, ///////////////////////////// ///////////LSC/////////////// ///////////////////////////// {0xfe,0x01}, {0xa0,0x00}, {0xa1,0x3c}, {0xa2,0x50}, {0xa3,0x00}, {0xa8,0x09}, {0xa9,0x04}, {0xaa,0x00}, {0xab,0x0c}, {0xac,0x02}, {0xad,0x00}, {0xae,0x15}, {0xaf,0x05}, {0xb0,0x00}, {0xb1,0x0f}, {0xb2,0x06}, {0xb3,0x00}, {0xb4,0x36}, {0xb5,0x2a}, {0xb6,0x25}, {0xba,0x36}, {0xbb,0x25}, {0xbc,0x22}, {0xc0,0x1e}, {0xc1,0x18}, {0xc2,0x17}, {0xc6,0x1c}, {0xc7,0x18}, {0xc8,0x17}, {0xb7,0x00}, {0xb8,0x00}, {0xb9,0x00}, {0xbd,0x00}, {0xbe,0x00}, {0xbf,0x00}, {0xc3,0x00}, {0xc4,0x00}, {0xc5,0x00}, {0xc9,0x00}, {0xca,0x00}, {0xcb,0x00}, {0xa4,0x00}, {0xa5,0x00}, {0xa6,0x00}, {0xa7,0x00}, ////////////20120613 start//////////// {0xfe,0x01}, {0x74,0x13}, {0x15,0xfe}, {0x21,0xe0}, {0xfe,0x00}, {0x41,0x6e}, {0x83,0x03}, {0x7e,0x08}, {0x9c,0x64}, {0x95,0x65}, {0xd1,0x2d}, {0xd2,0x28}, {0xb0,0x13}, {0xb1,0x26}, {0xb2,0x07}, {0xb3,0xf5}, {0xb4,0xea}, {0xb5,0x21}, {0xb6,0x21}, {0xb7,0xe4}, {0xb8,0xfb}, ////////////20120613 end///////////// {0xfe,0x00}, {0x50,0x01}, //crop {0x44,0xa0}, }; /* * The white balance settings * Here only tune the R G B channel gain. * The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb */ static struct regval_list sensor_wb_manual[] = { //null }; static struct regval_list sensor_wb_auto_regs[] = { {0x77,0x7c}, {0x78,0x40}, {0x79,0x56}, }; static struct regval_list sensor_wb_incandescence_regs[] = { //bai re guang {0x77,0x48}, {0x78,0x40}, {0x79,0x5c}, }; static struct regval_list sensor_wb_fluorescent_regs[] = { //ri guang deng {0x77,0x40}, {0x78,0x42}, {0x79,0x50}, }; static struct regval_list sensor_wb_tungsten_regs[] = { //wu si deng {0x77,0x40}, {0x78,0x54}, {0x79,0x70}, }; static struct regval_list sensor_wb_horizon[] = { //null }; static struct regval_list sensor_wb_daylight_regs[] = { //tai yang guang {0x77,0x74}, {0x78,0x52}, {0x79,0x40}, }; static struct regval_list sensor_wb_flash[] = { //null }; static struct regval_list sensor_wb_cloud_regs[] = { {0x77,0x8c}, {0x78,0x50}, {0x79,0x40}, }; static struct regval_list sensor_wb_shade[] = { //null }; static struct cfg_array sensor_wb[] = { { .regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL .size = ARRAY_SIZE(sensor_wb_manual), }, { .regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO .size = ARRAY_SIZE(sensor_wb_auto_regs), }, { .regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT .size = ARRAY_SIZE(sensor_wb_incandescence_regs), }, { .regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT .size = ARRAY_SIZE(sensor_wb_fluorescent_regs), }, { .regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H .size = ARRAY_SIZE(sensor_wb_tungsten_regs), }, { .regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON .size = ARRAY_SIZE(sensor_wb_horizon), }, { .regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT .size = ARRAY_SIZE(sensor_wb_daylight_regs), }, { .regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH .size = ARRAY_SIZE(sensor_wb_flash), }, { .regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY .size = ARRAY_SIZE(sensor_wb_cloud_regs), }, { .regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE .size = ARRAY_SIZE(sensor_wb_shade), }, }; /* * The color effect settings */ static struct regval_list sensor_colorfx_none_regs[] = { {0x43,0x00}, }; static struct regval_list sensor_colorfx_bw_regs[] = { {0x43,0x02}, {0xda,0x00}, {0xdb,0x00}, }; static struct regval_list sensor_colorfx_sepia_regs[] = { {0x43,0x00}, {0xda,0xd0}, {0xdb,0x28}, }; static struct regval_list sensor_colorfx_negative_regs[] = { {0x43,0x01}, }; static struct regval_list sensor_colorfx_emboss_regs[] = { {0x43,0x00}, }; static struct regval_list sensor_colorfx_sketch_regs[] = { {0x43,0x00}, }; static struct regval_list sensor_colorfx_sky_blue_regs[] = { {0x43,0x02}, {0xda,0x50}, {0xdb,0xe0}, }; static struct regval_list sensor_colorfx_grass_green_regs[] = { {0x43,0x02}, {0xda,0xc0}, {0xdb,0xc0}, }; static struct regval_list sensor_colorfx_skin_whiten_regs[] = { //{0x43,0x00}, }; static struct regval_list sensor_colorfx_vivid_regs[] = { //NULL }; static struct regval_list sensor_colorfx_aqua_regs[] = { //null }; static struct regval_list sensor_colorfx_art_freeze_regs[] = { //null }; static struct regval_list sensor_colorfx_silhouette_regs[] = { //null }; static struct regval_list sensor_colorfx_solarization_regs[] = { //null }; static struct regval_list sensor_colorfx_antique_regs[] = { //null }; static struct regval_list sensor_colorfx_set_cbcr_regs[] = { //null }; static struct cfg_array sensor_colorfx[] = { { .regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0, .size = ARRAY_SIZE(sensor_colorfx_none_regs), }, { .regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1, .size = ARRAY_SIZE(sensor_colorfx_bw_regs), }, { .regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2, .size = ARRAY_SIZE(sensor_colorfx_sepia_regs), }, { .regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3, .size = ARRAY_SIZE(sensor_colorfx_negative_regs), }, { .regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4, .size = ARRAY_SIZE(sensor_colorfx_emboss_regs), }, { .regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5, .size = ARRAY_SIZE(sensor_colorfx_sketch_regs), }, { .regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6, .size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs), }, { .regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7, .size = ARRAY_SIZE(sensor_colorfx_grass_green_regs), }, { .regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8, .size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs), }, { .regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9, .size = ARRAY_SIZE(sensor_colorfx_vivid_regs), }, { .regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10, .size = ARRAY_SIZE(sensor_colorfx_aqua_regs), }, { .regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11, .size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs), }, { .regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12, .size = ARRAY_SIZE(sensor_colorfx_silhouette_regs), }, { .regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13, .size = ARRAY_SIZE(sensor_colorfx_solarization_regs), }, { .regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14, .size = ARRAY_SIZE(sensor_colorfx_antique_regs), }, { .regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15, .size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs), }, }; /* * The brightness setttings */ static struct regval_list sensor_brightness_neg4_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg3_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg2_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg1_regs[] = { //NULL }; static struct regval_list sensor_brightness_zero_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos1_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos2_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos3_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos4_regs[] = { //NULL }; static struct cfg_array sensor_brightness[] = { { .regs = sensor_brightness_neg4_regs, .size = ARRAY_SIZE(sensor_brightness_neg4_regs), }, { .regs = sensor_brightness_neg3_regs, .size = ARRAY_SIZE(sensor_brightness_neg3_regs), }, { .regs = sensor_brightness_neg2_regs, .size = ARRAY_SIZE(sensor_brightness_neg2_regs), }, { .regs = sensor_brightness_neg1_regs, .size = ARRAY_SIZE(sensor_brightness_neg1_regs), }, { .regs = sensor_brightness_zero_regs, .size = ARRAY_SIZE(sensor_brightness_zero_regs), }, { .regs = sensor_brightness_pos1_regs, .size = ARRAY_SIZE(sensor_brightness_pos1_regs), }, { .regs = sensor_brightness_pos2_regs, .size = ARRAY_SIZE(sensor_brightness_pos2_regs), }, { .regs = sensor_brightness_pos3_regs, .size = ARRAY_SIZE(sensor_brightness_pos3_regs), }, { .regs = sensor_brightness_pos4_regs, .size = ARRAY_SIZE(sensor_brightness_pos4_regs), }, }; /* * The contrast setttings */ static struct regval_list sensor_contrast_neg4_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg3_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg2_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg1_regs[] = { //NULL }; static struct regval_list sensor_contrast_zero_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos1_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos2_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos3_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos4_regs[] = { }; static struct cfg_array sensor_contrast[] = { { .regs = sensor_contrast_neg4_regs, .size = ARRAY_SIZE(sensor_contrast_neg4_regs), }, { .regs = sensor_contrast_neg3_regs, .size = ARRAY_SIZE(sensor_contrast_neg3_regs), }, { .regs = sensor_contrast_neg2_regs, .size = ARRAY_SIZE(sensor_contrast_neg2_regs), }, { .regs = sensor_contrast_neg1_regs, .size = ARRAY_SIZE(sensor_contrast_neg1_regs), }, { .regs = sensor_contrast_zero_regs, .size = ARRAY_SIZE(sensor_contrast_zero_regs), }, { .regs = sensor_contrast_pos1_regs, .size = ARRAY_SIZE(sensor_contrast_pos1_regs), }, { .regs = sensor_contrast_pos2_regs, .size = ARRAY_SIZE(sensor_contrast_pos2_regs), }, { .regs = sensor_contrast_pos3_regs, .size = ARRAY_SIZE(sensor_contrast_pos3_regs), }, { .regs = sensor_contrast_pos4_regs, .size = ARRAY_SIZE(sensor_contrast_pos4_regs), }, }; /* * The saturation setttings */ static struct regval_list sensor_saturation_neg4_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg3_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg2_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg1_regs[] = { //NULL }; static struct regval_list sensor_saturation_zero_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos1_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos2_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos3_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos4_regs[] = { //NULL }; static struct cfg_array sensor_saturation[] = { { .regs = sensor_saturation_neg4_regs, .size = ARRAY_SIZE(sensor_saturation_neg4_regs), }, { .regs = sensor_saturation_neg3_regs, .size = ARRAY_SIZE(sensor_saturation_neg3_regs), }, { .regs = sensor_saturation_neg2_regs, .size = ARRAY_SIZE(sensor_saturation_neg2_regs), }, { .regs = sensor_saturation_neg1_regs, .size = ARRAY_SIZE(sensor_saturation_neg1_regs), }, { .regs = sensor_saturation_zero_regs, .size = ARRAY_SIZE(sensor_saturation_zero_regs), }, { .regs = sensor_saturation_pos1_regs, .size = ARRAY_SIZE(sensor_saturation_pos1_regs), }, { .regs = sensor_saturation_pos2_regs, .size = ARRAY_SIZE(sensor_saturation_pos2_regs), }, { .regs = sensor_saturation_pos3_regs, .size = ARRAY_SIZE(sensor_saturation_pos3_regs), }, { .regs = sensor_saturation_pos4_regs, .size = ARRAY_SIZE(sensor_saturation_pos4_regs), }, }; /* * The exposure target setttings */ static struct regval_list sensor_ev_neg4_regs[] = { {0xfe,0x00}, {0xd5,0xc0}, {0xfe,0x01}, {0x13,0x20}, {0xfe,0x00}, }; static struct regval_list sensor_ev_neg3_regs[] = { {0xfe,0x00}, {0xd5,0xd0}, {0xfe,0x01}, {0x13,0x28}, {0xfe,0x00}, }; static struct regval_list sensor_ev_neg2_regs[] = { {0xfe,0x00}, {0xd5,0xe0}, {0xfe,0x01}, {0x13,0x30}, {0xfe,0x00}, }; static struct regval_list sensor_ev_neg1_regs[] = { {0xfe,0x00}, {0xd5,0xf0}, {0xfe,0x01}, {0x13,0x38}, {0xfe,0x00}, }; static struct regval_list sensor_ev_zero_regs[] = { {0xfe,0x00}, {0xd5,0x00}, {0xfe,0x01}, {0x13,0x40}, {0xfe,0x00}, }; static struct regval_list sensor_ev_pos1_regs[] = { {0xfe,0x00}, {0xd5,0x10}, {0xfe,0x01}, {0x13,0x48}, {0xfe,0x00}, }; static struct regval_list sensor_ev_pos2_regs[] = { {0xfe,0x00}, {0xd5,0x20}, {0xfe,0x01}, {0x13,0x50}, {0xfe,0x00}, }; static struct regval_list sensor_ev_pos3_regs[] = { {0xfe,0x00}, {0xd5,0x30}, {0xfe,0x01}, {0x13,0x58}, {0xfe,0x00}, }; static struct regval_list sensor_ev_pos4_regs[] = { {0xfe,0x00}, {0xd5,0x40}, {0xfe,0x01}, {0x13,0x60}, {0xfe,0x00}, }; static struct cfg_array sensor_ev[] = { { .regs = sensor_ev_neg4_regs, .size = ARRAY_SIZE(sensor_ev_neg4_regs), }, { .regs = sensor_ev_neg3_regs, .size = ARRAY_SIZE(sensor_ev_neg3_regs), }, { .regs = sensor_ev_neg2_regs, .size = ARRAY_SIZE(sensor_ev_neg2_regs), }, { .regs = sensor_ev_neg1_regs, .size = ARRAY_SIZE(sensor_ev_neg1_regs), }, { .regs = sensor_ev_zero_regs, .size = ARRAY_SIZE(sensor_ev_zero_regs), }, { .regs = sensor_ev_pos1_regs, .size = ARRAY_SIZE(sensor_ev_pos1_regs), }, { .regs = sensor_ev_pos2_regs, .size = ARRAY_SIZE(sensor_ev_pos2_regs), }, { .regs = sensor_ev_pos3_regs, .size = ARRAY_SIZE(sensor_ev_pos3_regs), }, { .regs = sensor_ev_pos4_regs, .size = ARRAY_SIZE(sensor_ev_pos4_regs), }, }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_yuv422_yuyv[] = { {0x44,0xa2}, //YCbYCr }; static struct regval_list sensor_fmt_yuv422_yvyu[] = { {0x44,0xa3}, //YCrYCb }; static struct regval_list sensor_fmt_yuv422_vyuy[] = { {0x44,0xa1}, //CrYCbY }; static struct regval_list sensor_fmt_yuv422_uyvy[] = { {0x44,0xa0}, //CbYCrY }; static struct regval_list sensor_fmt_raw[] = { {0x44,0xb7},//raw }; static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_hflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_hflip!\n"); return ret; } val &= (1<<0); val = val>>0; //0x14 bit0 is mirror *value = val; info->hflip = *value; return 0; } static int sensor_s_hflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; //return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_hflip!\n"); return ret; } switch (value) { case 0: val &= 0xfc; break; case 1: val |= (0x01|(info->vflip<<1)); break; default: return -EINVAL; } ret = sensor_write(sd, 0x17, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } usleep_range(10000,12000); info->hflip = value; return 0; } static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_vflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_vflip!\n"); return ret; } val &= (1<<1); val = val>>1; //0x14 bit1 is upsidedown *value = val; info->vflip = *value; return 0; } static int sensor_s_vflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; // return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_vflip!\n"); return ret; } switch (value) { case 0: val &= 0xfc; break; case 1: val |= (0x02|info->hflip); break; default: return -EINVAL; } ret = sensor_write(sd, 0x17, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } usleep_range(10000,12000); info->vflip = value; return 0; } static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_autogain(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autoexp!\n"); return ret; } ret = sensor_read(sd, 0x4f, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autoexp!\n"); return ret; } val &= 0x01; if (val == 0x01) { *value = V4L2_EXPOSURE_AUTO; } else { *value = V4L2_EXPOSURE_MANUAL; } info->autoexp = *value; return 0; } static int sensor_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } ret = sensor_read(sd, 0x4f, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autoexp!\n"); return ret; } switch (value) { case V4L2_EXPOSURE_AUTO: val |= 0x01; break; case V4L2_EXPOSURE_MANUAL: val &= 0xfe; break; case V4L2_EXPOSURE_SHUTTER_PRIORITY: return -EINVAL; case V4L2_EXPOSURE_APERTURE_PRIORITY: return -EINVAL; default: return -EINVAL; } ret = sensor_write(sd, 0x4f, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } usleep_range(10000,12000); info->autoexp = value; return 0; } static int sensor_g_autowb(struct v4l2_subdev *sd, int *value) { #if 0 int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autowb!\n"); return ret; } ret = sensor_read(sd, 0x42, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autowb!\n"); return ret; } val &= (1<<1); val = val>>1; //0x22 bit1 is awb enable *value = val; info->autowb = *value; #endif return 0; } static int sensor_s_autowb(struct v4l2_subdev *sd, int value) { #if 0 int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs)); if (ret < 0) { vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n"); return ret; } ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } ret = sensor_read(sd, 0x42, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autowb!\n"); return ret; } switch(value) { case 0: val &= 0xfd; break; case 1: val |= 0x02; // atuo break; default: break; } ret = sensor_write(sd, 0x42, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } usleep_range(10000,12000); info->autowb = value; #endif return 0; } static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_hue(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_gain(struct v4l2_subdev *sd, int value) { return -EINVAL; } /* *********************************************end of ******************************************** */ static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->brightness; return 0; } static int sensor_s_brightness(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->brightness == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size)) info->brightness = value; return 0; } static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->contrast; return 0; } static int sensor_s_contrast(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->contrast == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size)) info->contrast = value; return 0; } static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->saturation; return 0; } static int sensor_s_saturation(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->saturation == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size)) info->saturation = value; return 0; } static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp_bias; return 0; } static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value) { data_type REG42; int ret; struct sensor_info *info = to_state(sd); if(info->exp_bias == value) return 0; if(value < -4 || value > 4) return -ERANGE; /****************james**************/ ret = sensor_write(sd, 0xfe, 0x00); ret = sensor_read(sd, 0x42, ®42); if(value == 0) { REG42|=0x01; ret = sensor_write(sd, 0x42, REG42); usleep_range(10000,12000); ret = sensor_read(sd, 0x42, ®42); } else { REG42&=0xfe; ret = sensor_write(sd, 0x42, REG42); usleep_range(10000,12000); ret = sensor_read(sd, 0x42, ®42); } usleep_range(10000,12000); /****************james**************/ LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size)) info->exp_bias = value; return 0; } static int sensor_g_wb(struct v4l2_subdev *sd, int *value) { struct sensor_info *info = to_state(sd); enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value; *wb_type = info->wb; return 0; } static int sensor_s_wb(struct v4l2_subdev *sd, enum v4l2_auto_n_preset_white_balance value) { data_type REG42; int ret; struct sensor_info *info = to_state(sd); if(info->capture_mode == V4L2_MODE_IMAGE) return 0; /****************james**************/ ret = sensor_write(sd, 0xfe, 0x00); ret = sensor_read(sd, 0x42, ®42); if(value == V4L2_WHITE_BALANCE_AUTO) { REG42|=0x02; ret = sensor_write(sd, 0x42, REG42); // awb on usleep_range(10000,12000); ret = sensor_read(sd, 0x42, ®42); } else { REG42&=0xfd; ret = sensor_write(sd, 0x42, REG42); // awb off usleep_range(10000,12000); ret = sensor_read(sd, 0x42, ®42); } usleep_range(10000,12000); /****************james**************/ LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs ,sensor_wb[value].size) ) if (value == V4L2_WHITE_BALANCE_AUTO) info->autowb = 1; else info->autowb = 0; info->wb = value; return 0; } static int sensor_g_colorfx(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value; *clrfx_type = info->clrfx; return 0; } static int sensor_s_colorfx(struct v4l2_subdev *sd, enum v4l2_colorfx value) { struct sensor_info *info = to_state(sd); if(info->clrfx == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size)) info->clrfx = value; return 0; } static int sensor_g_flash_mode(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value; *flash_mode = info->flash_mode; return 0; } static int sensor_s_flash_mode(struct v4l2_subdev *sd, enum v4l2_flash_led_mode value) { struct sensor_info *info = to_state(sd); info->flash_mode = value; return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { cci_lock(sd); switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n"); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(30000,31000); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n"); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(30000,31000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n"); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); usleep_range(20000,22000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(30000,31000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n"); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input break; default: return -EINVAL; } cci_unlock(sd); return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { int ret; data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_detect!\n"); return ret; } ret = sensor_read(sd, 0xf0, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } if(val != 0xbb) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } return sensor_write_array(sd, sensor_default_regs , ARRAY_SIZE(sensor_default_regs)); } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code;//linux-3.0 struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "YUYV 4:2:2", .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_yuyv, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv), .bpp = 2, }, { .desc = "YVYU 4:2:2", .mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_yvyu, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu), .bpp = 2, }, { .desc = "UYVY 4:2:2", .mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_uyvy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy), .bpp = 2, }, { .desc = "VYUY 4:2:2", .mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_vyuy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy), .bpp = 2, }, { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,//linux-3.0 .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)//linux-3.0 { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)//linux-3.0 { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size); ret = 0; if (wsize->regs) { ret = sensor_write_array(sd, wsize->regs , wsize->regs_size); if (ret < 0) return ret; } if (wsize->set_size) { ret = wsize->set_size(sd); if (ret < 0) return ret; } info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->timeperframe.numerator = 1; cp->timeperframe.denominator = SENSOR_FRAME_RATE; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* *********************************************begin of ******************************************** */ static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ /* see sensor_s_parm and sensor_g_parm for the meaning of value */ switch (qc->id) { // case V4L2_CID_BRIGHTNESS: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_CONTRAST: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_SATURATION: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_HUE: // return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0); case V4L2_CID_VFLIP: case V4L2_CID_HFLIP: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); // case V4L2_CID_GAIN: // return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128); // case V4L2_CID_AUTOGAIN: // return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0); case V4L2_CID_EXPOSURE_AUTO: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 9, 1, 1); case V4L2_CID_AUTO_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_COLORFX: return v4l2_ctrl_query_fill(qc, 0, 15, 1, 0); case V4L2_CID_FLASH_LED_MODE: return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_g_brightness(sd, &ctrl->value); case V4L2_CID_CONTRAST: return sensor_g_contrast(sd, &ctrl->value); case V4L2_CID_SATURATION: return sensor_g_saturation(sd, &ctrl->value); case V4L2_CID_HUE: return sensor_g_hue(sd, &ctrl->value); case V4L2_CID_VFLIP: return sensor_g_vflip(sd, &ctrl->value); case V4L2_CID_HFLIP: return sensor_g_hflip(sd, &ctrl->value); case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_g_autogain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_g_exp_bias(sd, &ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_g_autoexp(sd, &ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_g_wb(sd, &ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_g_autowb(sd, &ctrl->value); case V4L2_CID_COLORFX: return sensor_g_colorfx(sd, &ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_g_flash_mode(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (qc.type == V4L2_CTRL_TYPE_MENU || qc.type == V4L2_CTRL_TYPE_INTEGER || qc.type == V4L2_CTRL_TYPE_BOOLEAN) { if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { return -ERANGE; } } switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_s_brightness(sd, ctrl->value); case V4L2_CID_CONTRAST: return sensor_s_contrast(sd, ctrl->value); case V4L2_CID_SATURATION: return sensor_s_saturation(sd, ctrl->value); case V4L2_CID_HUE: return sensor_s_hue(sd, ctrl->value); case V4L2_CID_VFLIP: return sensor_s_vflip(sd, ctrl->value); case V4L2_CID_HFLIP: return sensor_s_hflip(sd, ctrl->value); case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_s_autogain(sd, ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_s_exp_bias(sd, ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_s_autoexp(sd, (enum v4l2_exposure_auto_type) ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_s_wb(sd, (enum v4l2_auto_n_preset_white_balance) ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_s_autowb(sd, ctrl->value); case V4L2_CID_COLORFX: return sensor_s_colorfx(sd, (enum v4l2_colorfx) ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_s_flash_mode(sd, (enum v4l2_flash_led_mode) ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->brightness = 0; info->contrast = 0; info->saturation = 0; info->hue = 0; info->hflip = 0; info->vflip = 0; info->gain = 0; info->autogain = 1; info->exp = 0; info->autoexp = 0; info->autowb = 1; info->wb = 0; info->clrfx = 0; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { { SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);