/* * drivers/input/touchscreen/gslX680.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* history: mbgalex@163.com_2013-07-16_14:12 add tp for Q790 OGS project ,tp modules is EC8031-01 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include //#include //#include #include #include #include #include "gslX680.h" #include "gslX680_inetd71.h" #include "gsl1680e_p2.h" #include "gslX680_m86hd.h" #include "gslX680_m102.h" #include "gslX680_m102gg.h" #include "main_1680E_m320.h" #include "gslX680_m100.h" #include "gslX680_mq88.h" #include "gslX680_m71.h" #include "gslX680_m7300.h" #include "gslX680_jinghong.h" #include "gsl1680e_t1.h" #include "gsl1680e_t1_v2.h" struct gslX680_fw_array { const char* name; unsigned int size; const struct fw_data *fw; } gslx680_fw_grp[] = { {"gslX680_inetd71" , ARRAY_SIZE(GSLX680_FW_INETD71),GSLX680_FW_INETD71}, {"gsl1680e_p2" , ARRAY_SIZE(GSL1680E_FW_P2),GSL1680E_FW_P2}, {"gsl_m86_hd" , ARRAY_SIZE(GSLX680_FW_M86HD),GSLX680_FW_M86HD}, {"gsl_m102" , ARRAY_SIZE(GSLX680_FW_M102),GSLX680_FW_M102}, {"gsl_m102gg" , ARRAY_SIZE(GSLX680_FW_M102GG),GSLX680_FW_M102GG}, {"gsl_m320" , ARRAY_SIZE(GSLX680_FW_M320),GSLX680_FW_M320}, {"gsl_m100" , ARRAY_SIZE(GSLX680_FW_M100),GSLX680_FW_M100}, {"gsl_mq88" , ARRAY_SIZE(GSLX680_FW_MQ88),GSLX680_FW_MQ88}, {"gsl_m71" , ARRAY_SIZE(GSLX680_FW_M71),GSLX680_FW_M71}, {"gsl_m7300" , ARRAY_SIZE(GSLX680_FW_M7300),GSLX680_FW_M7300}, {"gsl_jinghong" , ARRAY_SIZE(GSLX680_FW_JINGHONG),GSLX680_FW_JINGHONG}, {"gsl_t1" , ARRAY_SIZE(GSL1680E_FW_T1),GSL1680E_FW_T1}, {"gsl_t1_v2" , ARRAY_SIZE(GSL1680E_FW_T1_V2),GSL1680E_FW_T1_V2}, }; unsigned int *gslX680_config_data[16] = { gsl_config_data_id_K71_OGS_1024600, gsl_config_data_id_P2, gsl_config_data_id_m86_1024600, gsl_config_data_id_m102, gsl_config_data_id_m102gg, gsl_config_data_id_m320, gsl_config_data_id_m100, gsl_config_data_id_mq88, gsl_config_data_id_m71, gsl_config_data_id_m7300, gsl_config_data_id_jinghong, gsl_config_data_id_t1, gsl_config_data_id_t1_v2, }; #define FOR_TSLIB_TEST //#define TPD_PROC_DEBUG 1 //#define HAVE_TOUCH_KEY #ifdef TPD_PROC_DEBUG #include #include static struct proc_dir_entry *gsl_config_proc = NULL; #define GSL_CONFIG_PROC_FILE "gsl_config" #define CONFIG_LEN 31 static char gsl_read[CONFIG_LEN]; static u8 gsl_data_proc[8] = {0}; static u8 gsl_proc_flag = 0; static unsigned int gsl_config_data_id[256]; #endif #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define PRESS_MAX 255 #define MAX_FINGERS 5//5 //�����ָ���� #define MAX_CONTACTS 10 #define DMA_TRANS_LEN 0x20 #define PHO_CFG2_OFFSET (0X104) #define PHO_DAT_OFFSET (0X10C) #define PHO_PULL1_OFFSET (0X11C) #define GPIOF_CON 0x7f0080a0 #define GPIOF_DAT 0x7f0080a4 #define GPIOF_PUD 0x7f0080a8 #define GSL_NOID_VERSION #ifdef GSL_MONITOR static struct delayed_work gsl_monitor_work; static struct workqueue_struct *gsl_monitor_workqueue = NULL; static char int_1st[4] = {0}; static char int_2nd[4] = {0}; #endif #ifdef HAVE_TOUCH_KEY static u16 key = 0; static int key_state_flag = 0; struct key_data { u16 key; u16 x_min; u16 x_max; u16 y_min; u16 y_max; }; const u16 key_array[]={ KEY_BACK, KEY_HOME, KEY_MENU, KEY_SEARCH, }; #define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0])) struct key_data gsl_key_data[MAX_KEY_NUM] = { {KEY_BACK, 816, 836,115, 125}, {KEY_HOME, 816, 836,259 ,269}, {KEY_MENU, 816, 836,398, 410}, {KEY_SEARCH, 2048, 2048, 2048, 2048}, }; #endif struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; u8 *touch_data; u8 device_id; u8 prev_touches; bool is_suspended; bool is_runtime_suspend; bool try_to_runtime_suspend; bool try_to_runtime_resume; bool int_pending; struct mutex sus_lock; int irq; #ifdef GSL_TIMER struct timer_list gsl_timer; #endif }; static u32 id_sign[MAX_CONTACTS+1] = {0}; static u8 id_state_flag[MAX_CONTACTS+1] = {0}; static u8 id_state_old_flag[MAX_CONTACTS+1] = {0}; static u16 x_old[MAX_CONTACTS+1] = {0}; static u16 y_old[MAX_CONTACTS+1] = {0}; static u16 x_new = 0; static u16 y_new = 0; /////////////////////////////////////////////// //specific tp related macro: need be configured for specific tp #define GSLX680_I2C_NAME "gslX680" #define CTP_IRQ_NUMBER (config_info.int_number) #define CTP_IRQ_MODE (IRQF_TRIGGER_FALLING) #define CTP_NAME GSLX680_I2C_NAME #define SCREEN_MAX_X (screen_max_x) #define SCREEN_MAX_Y (screen_max_y) static const char* fwname; static int fw_index = -1; #define GSLX680_I2C_ADDR 0x40 #define GSLX680_USED "\n \ \n+++++++++++++++++++++++++++++++++ \ \n++++++ GSLX680 new used +++++++++ \ \n+++++++++++++++++++++++++++++++++ \ \n" #define GSLX680_IC_INFO "\n============================================================== \ \nIC :GSLX680 \ \nAUTHOR :mbgalex@163.com \ \nVERSION:2013-07-20_10:41\n" static int screen_max_x = 0; static int screen_max_y = 0; static int revert_x_flag = 0; static int revert_y_flag = 0; static int exchange_x_y_flag = 0; struct ctp_config_info config_info = { .input_type = CTP_TYPE, .name = NULL, .int_number = 0, }; static __u32 twi_id = 0; static u32 debug_mask = 0; enum{ DEBUG_INIT = 1U << 0, DEBUG_SUSPEND = 1U << 1, DEBUG_INT_INFO = 1U << 2, DEBUG_X_Y_INFO = 1U << 3, DEBUG_KEY_INFO = 1U << 4, DEBUG_WAKEUP_INFO = 1U << 5, DEBUG_OTHERS_INFO = 1U << 6, }; #define dprintk(level_mask,fmt,arg...) if(unlikely(debug_mask & level_mask)) \ printk("***CTP***"fmt, ## arg) /* Addresses to scan */ static const unsigned short normal_i2c[2] = {GSLX680_I2C_ADDR, I2C_CLIENT_END}; static void glsX680_init_events(struct work_struct *work); static void glsX680_resume_events(struct work_struct *work); struct workqueue_struct *gslX680_wq; struct workqueue_struct *gslX680_resume_wq; static DECLARE_WORK(glsX680_init_work, glsX680_init_events); static DECLARE_WORK(glsX680_resume_work, glsX680_resume_events); struct i2c_client *glsX680_i2c; struct gsl_ts *ts_init; int ctp_i2c_write_bytes(struct i2c_client *client, uint8_t *data, uint16_t len) { struct i2c_msg msg; int ret=-1; msg.flags = !I2C_M_RD; msg.addr = client->addr; msg.len = len; msg.buf = data; ret=i2c_transfer(client->adapter, &msg,1); return ret; } bool ctp_i2c_test(struct i2c_client * client) { int ret,retry; uint8_t test_data[1] = { 0 }; //only write a data address. for(retry=0; retry < 12; retry++) { ret =ctp_i2c_write_bytes(client, test_data, 1); //Test i2c. if (ret == 1) break; msleep(50); } return ret==1 ? true : false; } static int ctp_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; if(twi_id == adapter->nr){ pr_info("%s: addr= %x\n",__func__,client->addr); ret = ctp_i2c_test(client); if(!ret){ pr_info("%s:I2C connection might be something wrong \n",__func__); return -ENODEV; }else{ pr_info("I2C connection sucess!\n"); strlcpy(info->type, CTP_NAME, I2C_NAME_SIZE); pr_info("%s", GSLX680_USED); return 0; } }else{ return -ENODEV; } } /** * ctp_print_info - sysconfig print function * return value: * */ void ctp_print_info(struct ctp_config_info info,int debug_level) { if(debug_level == DEBUG_INIT) { dprintk(DEBUG_INIT,"info.ctp_used:%d\n",info.ctp_used); dprintk(DEBUG_INIT,"info.ctp_name:%s\n",info.name); dprintk(DEBUG_INIT,"info.twi_id:%d\n",info.twi_id); dprintk(DEBUG_INIT,"info.screen_max_x:%d\n",info.screen_max_x); dprintk(DEBUG_INIT,"info.screen_max_y:%d\n",info.screen_max_y); dprintk(DEBUG_INIT,"info.revert_x_flag:%d\n",info.revert_x_flag); dprintk(DEBUG_INIT,"info.revert_y_flag:%d\n",info.revert_y_flag); dprintk(DEBUG_INIT,"info.exchange_x_y_flag:%d\n",info.exchange_x_y_flag); dprintk(DEBUG_INIT,"info.irq_gpio_number:%d\n",info.irq_gpio.gpio); dprintk(DEBUG_INIT,"info.wakeup_gpio_number:%d\n",info.wakeup_gpio.gpio); } } /** * ctp_wakeup - function * */ int ctp_wakeup(int status,int ms) { dprintk(DEBUG_INIT,"***CTP*** %s:status:%d,ms = %d\n",__func__,status,ms); if (status == 0) { if(ms == 0) { __gpio_set_value(config_info.wakeup_gpio.gpio, 0); }else { __gpio_set_value(config_info.wakeup_gpio.gpio, 0); msleep(ms); __gpio_set_value(config_info.wakeup_gpio.gpio, 1); } } if (status == 1) { if(ms == 0) { __gpio_set_value(config_info.wakeup_gpio.gpio, 1); }else { __gpio_set_value(config_info.wakeup_gpio.gpio, 1); msleep(ms); __gpio_set_value(config_info.wakeup_gpio.gpio, 0); } } msleep(5); return 0; } static int gslX680_chip_init(void) { ctp_wakeup(1,0); msleep(20); return 0; } static int gslX680_shutdown_low(void) { ctp_wakeup(0,0); return 0; } static int gslX680_shutdown_high(void) { ctp_wakeup(1,0); return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } #if 0 static u32 gsl_read_interface(struct i2c_client *client, u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[2]; xfer_msg[0].addr = client->addr; xfer_msg[0].len = 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = ® xfer_msg[1].addr = client->addr; xfer_msg[1].len = num; xfer_msg[1].flags |= I2C_M_RD; xfer_msg[1].buf = buf; if (reg < 0x80) { i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)); msleep(5); } return i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)) == ARRAY_SIZE(xfer_msg) ? 0 : -EFAULT; } #endif static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125){ printk("%s too big datalen = %d!\n", __func__, datalen); return -1; } tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL){ memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; if (datalen > 126){ printk("%s too big datalen = %d!\n", __func__, datalen); return -1; } ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0){ printk("%s set data address fail!\n", __func__); return ret; } return i2c_master_recv(client, pdata, datalen); } static ssize_t gslX680_reg_show( struct device *dev, struct device_attribute *attr, char *buf) { u8 mem_buf[4] = {0}; u8 int_buf[4] = {0}; u8 power_buf[4] = {0}; u8 point_buf = 0; gsl_ts_read(ts_init->client,0xb0, mem_buf, sizeof(mem_buf)); printk("check mem read 0xb0 = %x %x %x %x \n", mem_buf[3], mem_buf[2], mem_buf[1], mem_buf[0]); gsl_ts_read(ts_init->client,0xb4, int_buf, sizeof(int_buf)); printk("int num read 0xb4 = %d \n", (int_buf[3]<<24) |( int_buf[2]<<16 ) |(int_buf[1]<<8) |int_buf[0]); gsl_ts_read(ts_init->client,0xbc, power_buf, sizeof(power_buf)); printk("power check read 0xbc = %4x \n", (power_buf[3]<<24) |( power_buf[2]<<16 ) |(power_buf[1]<<8) |power_buf[0]); gsl_ts_read(ts_init->client,0x80, &point_buf, 1); printk("point count read 0x80 = %d \n",point_buf); return sprintf(buf, "[check mem read = 0x%4x ] [int num read = %d ] [power check read = 0x%4x ] [point count read = %d ] \n", (mem_buf[3]<<24) |( mem_buf[2]<<16 ) |(mem_buf[1]<<8) |mem_buf[0] , (int_buf[3]<<24) |( int_buf[2]<<16 ) |(int_buf[1]<<8) |int_buf[0], (power_buf[3]<<24) |( power_buf[2]<<16 ) |(power_buf[1]<<8) |power_buf[0],point_buf); } static DEVICE_ATTR(debug_reg, 0444, gslX680_reg_show, NULL); static __inline__ void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static int gsl_find_fw_idx(const char* name) { int i = 0; if (NULL != name) { for (i=0; iis_suspended != false || ts_init->is_runtime_suspend != false) msleep(30); gsl_ts_read(client,0xb0, read_buf, sizeof(read_buf)); printk("#########check mem read 0xb0 = %x %x %x %x #########\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) { init_chip(client); } } } #ifdef STRETCH_FRAME static void stretch_frame(u16 *x, u16 *y) { u16 temp_x = *x; u16 temp_y = *y; u16 temp_0, temp_1, temp_2; if(temp_x < X_STRETCH_MAX + X_STRETCH_CUST) { temp_0 = temp_1 = temp_2 = 0; temp_0 = X_STRETCH_MAX + X_STRETCH_CUST - temp_x; temp_0 = temp_0 > X_STRETCH_CUST ? X_STRETCH_CUST : temp_0; temp_0 = temp_0*(100 + X_RATIO_CUST)/100; if(temp_x < X_STRETCH_MAX) { temp_1 = X_STRETCH_MAX - temp_x; temp_1 = temp_1 > X_STRETCH_MAX/4 ? X_STRETCH_MAX/4 : temp_1; temp_1 = temp_1*(100 + 2*XL_RATIO_1)/100; } if(temp_x < 3*X_STRETCH_MAX/4) { temp_2 = 3*X_STRETCH_MAX/4 - temp_x; temp_2 = temp_2*(100 + 2*XL_RATIO_2)/100; } *x = (temp_0 + temp_1 +temp_2) < (X_STRETCH_MAX + X_STRETCH_CUST) ? ((X_STRETCH_MAX + X_STRETCH_CUST) - (temp_0 + temp_1 +temp_2)) : 1; } else if(temp_x > (CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST)) { temp_0 = temp_1 = temp_2 = 0; temp_0 = temp_x - (CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST); temp_0 = temp_0 > X_STRETCH_CUST ? X_STRETCH_CUST : temp_0; temp_0 = temp_0*(100 + X_RATIO_CUST)/100; if(temp_x > (CTP_MAX_X -X_STRETCH_MAX)) { temp_1 = temp_x - (CTP_MAX_X -X_STRETCH_MAX); temp_1 = temp_1 > X_STRETCH_MAX/4 ? X_STRETCH_MAX/4 : temp_1; temp_1 = temp_1*(100 + 2*XR_RATIO_1)/100; } if(temp_x > (CTP_MAX_X -3*X_STRETCH_MAX/4)) { temp_2 = temp_x - (CTP_MAX_X -3*X_STRETCH_MAX/4); temp_2 = temp_2*(100 + 2*XR_RATIO_2)/100; } *x = (temp_0 + temp_1 +temp_2) < (X_STRETCH_MAX + X_STRETCH_CUST) ? ((CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST) + (temp_0 + temp_1 +temp_2)) : (CTP_MAX_X - 1); } if(temp_y < Y_STRETCH_MAX + Y_STRETCH_CUST) { temp_0 = temp_1 = temp_2 = 0; temp_0 = Y_STRETCH_MAX + Y_STRETCH_CUST - temp_y; temp_0 = temp_0 > Y_STRETCH_CUST ? Y_STRETCH_CUST : temp_0; temp_0 = temp_0*(100 + Y_RATIO_CUST)/100; if(temp_y < Y_STRETCH_MAX) { temp_1 = Y_STRETCH_MAX - temp_y; temp_1 = temp_1 > Y_STRETCH_MAX/4 ? Y_STRETCH_MAX/4 : temp_1; temp_1 = temp_1*(100 + 2*YL_RATIO_1)/100; } if(temp_y < 3*Y_STRETCH_MAX/4) { temp_2 = 3*Y_STRETCH_MAX/4 - temp_y; temp_2 = temp_2*(100 + 2*YL_RATIO_2)/100; } *y = (temp_0 + temp_1 +temp_2) < (Y_STRETCH_MAX + Y_STRETCH_CUST) ? ((Y_STRETCH_MAX + Y_STRETCH_CUST) - (temp_0 + temp_1 +temp_2)) : 1; } else if(temp_y > (CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST)) { temp_0 = temp_1 = temp_2 = 0; temp_0 = temp_y - (CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST); temp_0 = temp_0 > Y_STRETCH_CUST ? Y_STRETCH_CUST : temp_0; temp_0 = temp_0*(100 + Y_RATIO_CUST)/100; if(temp_y > (CTP_MAX_Y -Y_STRETCH_MAX)) { temp_1 = temp_y - (CTP_MAX_Y -Y_STRETCH_MAX); temp_1 = temp_1 > Y_STRETCH_MAX/4 ? Y_STRETCH_MAX/4 : temp_1; temp_1 = temp_1*(100 + 2*YR_RATIO_1)/100; } if(temp_y > (CTP_MAX_Y -3*Y_STRETCH_MAX/4)) { temp_2 = temp_y - (CTP_MAX_Y -3*Y_STRETCH_MAX/4); temp_2 = temp_2*(100 + 2*YR_RATIO_2)/100; } *y = (temp_0 + temp_1 +temp_2) < (Y_STRETCH_MAX + Y_STRETCH_CUST) ? ((CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST) + (temp_0 + temp_1 +temp_2)) : (CTP_MAX_Y - 1); } } #endif #ifdef FILTER_POINT static void filter_point(u16 x, u16 y , u8 id) { u16 x_err =0; u16 y_err =0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if(id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x -x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y -y_old[id]) : (y_old[id] - y); if( (x_err > FILTER_MAX && y_err > FILTER_MAX/3) || (x_err > FILTER_MAX/3 && y_err > FILTER_MAX) ) { filter_step_x = x_err; filter_step_y = y_err; } else { if(x_err > FILTER_MAX) filter_step_x = x_err; if(y_err> FILTER_MAX) filter_step_y = y_err; } if(x_err <= 2*FILTER_MAX && y_err <= 2*FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if(x_err <= 3*FILTER_MAX && y_err <= 3*FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if(x_err <= 4*FILTER_MAX && y_err <= 4*FILTER_MAX) { filter_step_x = filter_step_x*3/4; filter_step_y = filter_step_y*3/4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y , u8 id) { u16 x_err =0; u16 y_err =0; id_sign[id]=id_sign[id]+1; if(id_sign[id]==1){ x_old[id]=x; y_old[id]=y; } x = (x_old[id] + x)/2; y = (y_old[id] + y)/2; if(x>x_old[id]){ x_err=x -x_old[id]; } else{ x_err=x_old[id]-x; } if(y>y_old[id]){ y_err=y -y_old[id]; } else{ y_err=y_old[id]-y; } if( (x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3) ){ x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else{ if(x_err > 3){ x_new = x; x_old[id] = x; } else x_new = x_old[id]; if(y_err> 3){ y_new = y; y_old[id] = y; } else y_new = y_old[id]; } if(id_sign[id]==1){ x_new= x_old[id]; y_new= y_old[id]; } } #endif #ifdef TPD_PROC_DEBUG static int char_to_int(char ch) { if(ch>='0' && ch<='9') return (ch-'0'); else return (ch-'a'+10); } //static int gsl_config_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) static int gsl_config_read_proc(struct seq_file *m,void *v) { //char *ptr = page; char temp_data[5] = {0}; unsigned int tmp=0; unsigned int *ptr_fw; if('v'==gsl_read[0]&&'s'==gsl_read[1]) { #ifdef GSL_NOID_VERSION tmp=gsl_version_id(); #else tmp=0x20121215; #endif //ptr += sprintf(ptr,"version:%x\n",tmp); seq_printf(m,"version:%x\n",tmp); } else if('r'==gsl_read[0]&&'e'==gsl_read[1]) { if('i'==gsl_read[3]) { #ifdef GSL_NOID_VERSION tmp=(gsl_data_proc[5]<<8) | gsl_data_proc[4]; //ptr +=sprintf(ptr,"gsl_config_data_id[%u] = ",tmp); seq_printf(m,"gsl_config_data_id[%u] = ",tmp); if(tmp>=0&&tmp<512) //gslX680_config_data[fw_index] //ptr +=sprintf(ptr,"%d\n",gsl_config_data_id[tmp]); seq_printf(m,"%d\n",gsl_config_data_id[tmp]); #endif } else { gsl_ts_write(glsX680_i2c,0xf0,&gsl_data_proc[4],4); gsl_read_interface(glsX680_i2c,gsl_data_proc[0],temp_data,4); //ptr +=sprintf(ptr,"offset : {0x%02x,0x",gsl_data_proc[0]); //ptr +=sprintf(ptr,"%02x",temp_data[3]); //ptr +=sprintf(ptr,"%02x",temp_data[2]); //ptr +=sprintf(ptr,"%02x",temp_data[1]); //ptr +=sprintf(ptr,"%02x};\n",temp_data[0]); seq_printf(m,"offset : {0x%02x,0x",gsl_data_proc[0]); seq_printf(m,"%02x",temp_data[3]); seq_printf(m,"%02x",temp_data[2]); seq_printf(m,"%02x",temp_data[1]); seq_printf(m,"%02x};\n",temp_data[0]); } } //*eof = 1; //return (ptr - page); return 0; } static int gsl_config_write_proc(struct file *file, const char *buffer, unsigned long count, void *data) { u8 buf[8] = {0}; int tmp = 0; int tmp1 = 0; if(count > CONFIG_LEN) { printk("size not match [%d:%ld]\n", CONFIG_LEN, count); return -EFAULT; } if(copy_from_user(gsl_read, buffer, (count=0 && tmp1<512) { gslX680_config_data[fw_index][tmp1] = tmp; } } #endif return count; } static int gsl_server_list_open(struct inode *inode,struct file *file) { return single_open(file,gsl_config_read_proc,NULL); } static const struct file_operations gsl_seq_fops = { .open = gsl_server_list_open, .read = seq_read, .release = single_release, .write = gsl_config_write_proc, .owner = THIS_MODULE, }; #endif #ifdef HAVE_TOUCH_KEY static void report_key(struct gsl_ts *ts, u16 x, u16 y) { u16 i = 0; for(i = 0; i < MAX_KEY_NUM; i++) { if((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max)&&(gsl_key_data[i].y_min < y) &&\ (y < gsl_key_data[i].y_max)){ key = gsl_key_data[i].key; dprintk(DEBUG_KEY_INFO,"key=%d\n",key); input_report_key(ts->input, key, 1); input_sync(ts->input); key_state_flag = 1; break; } } } #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { dprintk(DEBUG_X_Y_INFO,"source data:ID:%d, X:%d, Y:%d, W:%d\n", id, x, y,pressure); if(1 == exchange_x_y_flag){ swap(x, y); } if(1 == revert_x_flag){ x = SCREEN_MAX_X - x; } if(1 == revert_y_flag){ y = SCREEN_MAX_Y - y; } dprintk(DEBUG_X_Y_INFO,"report data:ID:%d, X:%d, Y:%d, W:%d\n", id, x, y, pressure); if(x>SCREEN_MAX_X||y>SCREEN_MAX_Y) { #ifdef HAVE_TOUCH_KEY report_key(ts,x,y); #endif return; } #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, id); input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); #else input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X,x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); input_mt_sync(ts->input); #endif } static void process_gslX680_data(struct gsl_ts *ts) { u8 id, touches; u16 x, y; int i = 0; //int tmp1 = 0; //u8 buf[4]={0}; #ifdef GSL_NOID_VERSION struct gsl_touch_info cinfo; #endif touches = ts->touch_data[ts->dd->touch_index]; #ifdef GSL_NOID_VERSION cinfo.finger_num = touches; dprintk(DEBUG_OTHERS_INFO,"tp-gsl finger_num = %d\n",cinfo.finger_num); for(i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i ++) { cinfo.x[i] = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); } cinfo.finger_num = ts->touch_data[0] | (ts->touch_data[1]<<8)|(ts->touch_data[2]<<16)| (ts->touch_data[3]<<24); gsl_alg_id_main(&cinfo); dprintk(DEBUG_OTHERS_INFO,"tp-gsl finger_num = %d\n",cinfo.finger_num); #if 0 tmp1=gsl_mask_tiaoping(); if(tmp1>0&&tmp1<0xffffffff) { buf[0]=0xa; buf[1]=0; buf[2]=0; buf[3]=0; gsl_ts_write(ts->client,0xf0,buf,4); buf[0]=(u8)(tmp1 & 0xff); buf[1]=(u8)((tmp1>>8) & 0xff); buf[2]=(u8)((tmp1>>16) & 0xff); buf[3]=(u8)((tmp1>>24) & 0xff); printk("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02x\n", tmp1,buf[0],buf[1],buf[2],buf[3]); gsl_write_interface(ts->client,0x8,buf,4); } #endif touches = cinfo.finger_num; #endif for(i=1;i<=MAX_CONTACTS;i++){ if(touches == 0) id_sign[i] = 0; id_state_flag[i] = 0; } for(i= 0;i < (touches > MAX_FINGERS ? MAX_FINGERS : touches);i++) { #ifdef GSL_NOID_VERSION id = cinfo.id[i]; x = cinfo.x[i]; y = cinfo.y[i]; #else x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i ]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; #endif if(1 <=id && id <= MAX_CONTACTS) { #ifdef STRETCH_FRAME stretch_frame(&x, &y); #endif #ifdef FILTER_POINT filter_point(x, y ,id); #else record_point(x, y , id); #endif report_data(ts, x_new, y_new, 10, id); id_state_flag[id] = 1; } } for(i = 1;i <= MAX_CONTACTS ; i++) { if( (0 == touches) || ((0 != id_state_old_flag[i]) && (0 == id_state_flag[i])) ){ #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); #endif id_sign[i]=0; } id_state_old_flag[i] = id_state_flag[i]; } #ifndef REPORT_DATA_ANDROID_4_0 if(0 == touches){ input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 0); input_mt_sync(ts->input); #ifdef HAVE_TOUCH_KEY if(key_state_flag){ input_report_key(ts->input, key, 0); input_sync(ts->input); key_state_flag = 0; } #endif } #endif input_sync(ts->input); ts->prev_touches = touches; } static void gsl_ts_xy_worker(struct work_struct *work) { int rc; u8 read_buf[4] = {0}; struct gsl_ts *ts = container_of(work, struct gsl_ts,work); #ifndef GSL_TIMER int ret; input_set_int_enable(&(config_info.input_type), 0); #endif dprintk(DEBUG_X_Y_INFO,"---gsl_ts_xy_worker---\n"); #ifdef TPD_PROC_DEBUG if(gsl_proc_flag == 1){ goto schedule; } #endif /* read data from DATA_REG */ rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size); dprintk(DEBUG_X_Y_INFO,"---touches: %d ---\n",ts->touch_data[0]); if (rc < 0) { dev_err(&ts->client->dev, "read failed\n"); goto schedule; } if (ts->touch_data[ts->dd->touch_index] == 0xff) { goto schedule; } rc = gsl_ts_read( ts->client, 0xbc, read_buf, sizeof(read_buf)); if (rc < 0) { dev_err(&ts->client->dev, "read 0xbc failed\n"); goto schedule; } dprintk(DEBUG_X_Y_INFO,"reg %x : %x %x %x %x\n",0xbc, read_buf[3], read_buf[2], read_buf[1], read_buf[0]); if (read_buf[3] == 0 && read_buf[2] == 0 && read_buf[1] == 0 && read_buf[0] == 0){ process_gslX680_data(ts); } else { reset_chip(ts->client); startup_chip(ts->client); } schedule: #ifndef GSL_TIMER ret = input_set_int_enable(&(config_info.input_type), 1); if (ret < 0) dprintk(DEBUG_SUSPEND,"%s irq enable failed\n", __func__); #endif } #ifdef GSL_MONITOR static void gsl_monitor_worker(struct work_struct *work) { char read_buf[4] = {0}; dprintk(DEBUG_OTHERS_INFO,"---------------gsl_monitor_worker-----------------\n"); gsl_ts_read(glsX680_i2c, 0xb4, read_buf, 4); int_2nd[3] = int_1st[3]; int_2nd[2] = int_1st[2]; int_2nd[1] = int_1st[1]; int_2nd[0] = int_1st[0]; int_1st[3] = read_buf[3]; int_1st[2] = read_buf[2]; int_1st[1] = read_buf[1]; int_1st[0] = read_buf[0]; if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] &&int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) { printk("======int_1st: %x %x %x %x , int_2nd: %x %x %x %x ======\n",int_1st[3], int_1st[2], int_1st[1], int_1st[0], int_2nd[3], int_2nd[2],int_2nd[1],int_2nd[0]); init_chip(glsX680_i2c); } queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 300); } #endif irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = (struct gsl_ts *)dev_id; dprintk(DEBUG_INT_INFO,"==========GSLX680 Interrupt============\n"); queue_work(ts->wq, &ts->work); #ifdef GSL_TIMER mod_timer(&ts->gsl_timer, jiffies + msecs_to_jiffies(30)); #endif return IRQ_HANDLED; } #ifdef GSL_TIMER static void gsl_timer_handle(unsigned long data) { struct gsl_ts *ts = (struct gsl_ts *)data; #ifdef GSL_DEBUG printk("----------------gsl_timer_handle-----------------\n"); #endif ret = input_set_int_enable(&(config_info.input_type), 1); if (ret < 0) dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__); check_mem_data(ts->client); ts->gsl_timer.expires = jiffies + 3 * HZ; add_timer(&ts->gsl_timer); //enable_irq(ts->irq); } #endif static int gsl_ts_init_ts(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; #ifdef HAVE_TOUCH_KEY int i= 0; #endif printk("[GSLX680] Enter %s\n", __func__); ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = kzalloc(ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } ts->prev_touches = 0; input_device = input_allocate_device(); if (!input_device) { rc = -ENOMEM; goto error_alloc_dev; } ts->input = input_device; input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); #ifdef REPORT_DATA_ANDROID_4_0 __set_bit(EV_ABS, input_device->evbit); __set_bit(EV_KEY, input_device->evbit); __set_bit(EV_REP, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_mt_init_slots(input_device, (MAX_CONTACTS+1)); #else input_set_abs_params(input_device,ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS+1), 0, 0); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif #ifdef HAVE_TOUCH_KEY //input_device->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < MAX_KEY_NUM; i++) set_bit(key_array[i] & KEY_MAX, input_device->keybit); #endif set_bit(ABS_MT_POSITION_X, input_device->absbit); set_bit(ABS_MT_POSITION_Y, input_device->absbit); set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit); set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit); input_set_abs_params(input_device,ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0); input_set_abs_params(input_device,ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0); input_set_abs_params(input_device,ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device,ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0); ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "Could not create workqueue\n"); goto error_wq_create; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gsl_ts_xy_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); error_wq_create: input_free_device(input_device); error_alloc_dev: kfree(ts->touch_data); return rc; } static void glsX680_resume_events (struct work_struct *work) { #ifndef GSL_TIMER int ret; #endif gslX680_shutdown_high(); msleep(10); reset_chip(glsX680_i2c); startup_chip(glsX680_i2c); check_mem_data(glsX680_i2c); #ifndef GSL_TIMER ret = input_set_int_enable(&(config_info.input_type), 1); if (ret < 0) dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__); #endif } #ifdef CONFIG_PM static int gsl_ts_suspend(struct device *dev) { #ifndef GSL_TIMER int ret; #endif struct gsl_ts *ts = dev_get_drvdata(dev); dprintk(DEBUG_SUSPEND,"%s,start\n",__func__); cancel_work_sync(&glsX680_resume_work); flush_workqueue(gslX680_resume_wq); //if already do runtime suspend,and try to do suspend,then return if(pm_runtime_suspended(dev)){ dprintk(DEBUG_SUSPEND,"do suspend\n"); ts->is_suspended = true; return 0; } #ifdef GSL_TIMER dprintk(DEBUG_SUSPEND,"gsl_ts_suspend () : delete gsl_timer\n"); del_timer(&ts->gsl_timer); #endif #ifndef GSL_TIMER ret = input_set_int_enable(&(config_info.input_type), 0); if (ret < 0) dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__); #endif flush_workqueue(gslX680_resume_wq); cancel_work_sync(&ts->work); flush_workqueue(ts->wq); gslX680_shutdown_low(); if(ts->try_to_runtime_suspend){ dprintk(DEBUG_SUSPEND,"do runtime_suspend\n"); ts->is_runtime_suspend = true; } else{ dprintk(DEBUG_SUSPEND,"do suspend\n"); ts->is_suspended = true; } //on three times,so do off input_set_power_enable(&(config_info.input_type), 0); input_set_power_enable(&(config_info.input_type), 0); input_set_power_enable(&(config_info.input_type), 0); return 0; } static int gsl_ts_resume(struct device *dev) { struct gsl_ts *ts = dev_get_drvdata(dev); input_set_power_enable(&(config_info.input_type), 1); if(ts->is_runtime_suspend && ts->is_suspended){ dprintk(DEBUG_SUSPEND,"do resume\n"); ts->is_suspended = false; return 0; } dprintk(DEBUG_SUSPEND,"I'am in gsl_ts_resume() start\n"); cancel_work_sync(&ts->work); flush_workqueue(ts->wq); queue_work(gslX680_resume_wq, &glsX680_resume_work); if(ts->try_to_runtime_suspend && ts->is_runtime_suspend && !ts->is_suspended){ dprintk(DEBUG_SUSPEND,"do runtime_resume\n"); ts->try_to_runtime_suspend = false; ts->is_runtime_suspend = false; }else if(ts->is_suspended){ dprintk(DEBUG_SUSPEND,"do resume\n"); ts->is_suspended = false; } #ifdef GSL_TIMER dprintk(DEBUG_SUSPEND, "gsl_ts_resume () : add gsl_timer\n"); init_timer(&ts->gsl_timer); ts->gsl_timer.expires = jiffies + 3 * HZ; ts->gsl_timer.function = &gsl_timer_handle; ts->gsl_timer.data = (unsigned long)ts; add_timer(&ts->gsl_timer); #endif return 0; } #endif static void glsX680_init_events (struct work_struct *work) { int ret = 0; gslX680_chip_init(); init_chip(glsX680_i2c); check_mem_data(glsX680_i2c); #ifndef GSL_TIMER config_info.dev = &(ts_init->input->dev); ret = input_request_int(&(config_info.input_type), gsl_ts_irq, CTP_IRQ_MODE, ts_init); if (ret) { printk( "glsX680_init_events: request irq failed\n"); } #else printk( "add gsl_timer\n"); init_timer(&ts_init->gsl_timer); ts_init->gsl_timer.expires = jiffies + msecs_to_jiffies(500); ts_init->gsl_timer.function = &gsl_ts_irq; ts_init->gsl_timer.data = (unsigned long)ts_init; add_timer(&ts_init->gsl_timer); #endif return; } static unsigned long data_save; static ssize_t gsl_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { //struct input_dev *input = to_input_dev(dev); //struct i2c_client *client = input_get_drvdata(input); return sprintf(buf, "%d\n", (int)data_save); } static ssize_t gsl_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int error; struct input_dev *input = to_input_dev(dev); struct i2c_client *client = input_get_drvdata(input); error = strict_strtoul(buf, 10, &data_save); if (error) return error; //dprintk(DEBUG_SUSPEND,"data_save = %ld, ts_init->is_runtime_suspend = %d\n", data_save,ts_init->is_runtime_suspend); if (data_save == 0 && !ts_init->is_runtime_suspend) { //dprintk(DEBUG_SUSPEND,"[fish] go to runtime_suspend\n"); ts_init->try_to_runtime_suspend = true; pm_runtime_put(&client->dev); }else if (data_save == 1 && ts_init->is_runtime_suspend){ //dprintk(DEBUG_SUSPEND,"[fish] go to runtime_resume\n"); pm_runtime_get_sync(&client->dev); } return count; } static DEVICE_ATTR(runtime_suspend, S_IRUGO | S_IWUSR, gsl_enable_show, gsl_enable_store); static struct attribute *gsl_attributes[] = { &dev_attr_runtime_suspend.attr, NULL }; static struct attribute_group gsl_attr_group = { .attrs = gsl_attributes, }; static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct gsl_ts *ts; int rc = 0; int ret=0; input_set_power_enable(&(config_info.input_type), 1); printk("GSLX680 Enter %s\n", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C functionality not supported\n"); return -ENODEV; } ts = kzalloc(sizeof(*ts), GFP_KERNEL); if (!ts){ printk("allocate data fail!\n"); return -ENOMEM; } gslX680_wq = create_singlethread_workqueue("gslX680_init"); if (gslX680_wq == NULL) { printk("create gslX680_wq fail!\n"); return -ENOMEM; } gslX680_resume_wq = create_singlethread_workqueue("gslX680_resume"); if (gslX680_resume_wq == NULL) { printk("create gslX680_resume_wq fail!\n"); return -ENOMEM; } glsX680_i2c = client; ts->client = client; i2c_set_clientdata(client, ts); ts->device_id = id->driver_data; ts->is_suspended = false; ts->is_runtime_suspend = false; ts->int_pending = false; mutex_init(&ts->sus_lock); rc = gsl_ts_init_ts(client, ts); if (rc < 0) { dev_err(&client->dev, "GSLX680 init failed\n"); goto error_mutex_destroy; } ts_init = ts; queue_work(gslX680_wq, &glsX680_init_work); device_create_file(&ts->input->dev, &dev_attr_debug_reg); device_enable_async_suspend(&client->dev); input_set_drvdata(ts->input, client); ret = sysfs_create_group(&ts->input->dev.kobj,&gsl_attr_group); if (ret < 0) { dev_err(&client->dev,"gsl: sysfs_create_group err\n"); goto error_mutex_destroy; } pm_runtime_set_active(&client->dev); pm_runtime_get(&client->dev); pm_runtime_enable(&client->dev); #ifdef TPD_PROC_DEBUG #if 0 gsl_config_proc = create_proc_entry(GSL_CONFIG_PROC_FILE, 0666, NULL); if (gsl_config_proc == NULL) { printk("create_proc_entry %s failed\n", GSL_CONFIG_PROC_FILE); } else { gsl_config_proc->read_proc = gsl_config_read_proc; gsl_config_proc->write_proc = gsl_config_write_proc; } #else proc_create(GSL_CONFIG_PROC_FILE,0666,NULL,&gsl_seq_fops); #endif gsl_proc_flag = 0; #endif #ifdef GSL_MONITOR printk( "gsl_ts_probe () : queue gsl_monitor_workqueue\n"); INIT_DELAYED_WORK(&gsl_monitor_work, gsl_monitor_worker); gsl_monitor_workqueue = create_singlethread_workqueue("gsl_monitor_workqueue"); queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 1000); #endif input_set_power_enable(&(config_info.input_type), 1); dprintk(DEBUG_INIT,"[GSLX680] End %s\n", __func__); return 0; error_mutex_destroy: mutex_destroy(&ts->sus_lock); input_free_device(ts->input); kfree(ts); return rc; } static int gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); printk("==gsl_ts_remove=\n"); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); sysfs_remove_group(&ts->input->dev.kobj, &gsl_attr_group); device_remove_file(&ts->input->dev, &dev_attr_debug_reg); #ifdef GSL_MONITOR cancel_delayed_work_sync(&gsl_monitor_work); destroy_workqueue(gsl_monitor_workqueue); #endif device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); cancel_work_sync(&glsX680_init_work); cancel_work_sync(&glsX680_resume_work); #ifndef GSL_TIMER input_free_int(&(config_info.input_type), ts); #else del_timer(&ts->gsl_timer); #endif destroy_workqueue(ts->wq); destroy_workqueue(gslX680_wq); destroy_workqueue(gslX680_resume_wq); input_unregister_device(ts->input); mutex_destroy(&ts->sus_lock); kfree(ts->touch_data); kfree(ts); return 0; } static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); static UNIVERSAL_DEV_PM_OPS(gsl_pm_ops, gsl_ts_suspend, gsl_ts_resume, NULL); #define GSL_PM_OPS (&gsl_pm_ops) static struct i2c_driver gsl_ts_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, .pm = GSL_PM_OPS, }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, .address_list = normal_i2c, .detect = ctp_detect, }; static int ctp_get_system_config(void) { ctp_print_info(config_info,DEBUG_INIT); fwname = config_info.name; dprintk(DEBUG_INIT,"%s:fwname:%s\n",__func__,fwname); fw_index = gsl_find_fw_idx(fwname); if (fw_index == -1) { printk("gslx680: no matched TP firmware(%s)!\n", fwname); return 0; } dprintk(DEBUG_INIT,"fw_index = %d\n",fw_index); twi_id = config_info.twi_id; screen_max_x = config_info.screen_max_x; screen_max_y = config_info.screen_max_y; revert_x_flag = config_info.revert_x_flag; revert_y_flag = config_info.revert_y_flag; exchange_x_y_flag = config_info.exchange_x_y_flag; if((screen_max_x == 0) || (screen_max_y == 0)){ printk("%s:read config error!\n",__func__); return 0; } return 1; } static int __init gsl_ts_init(void) { int ret = -1; //input_set_power_enable(&(config_info.input_type), 1); dprintk(DEBUG_INIT,"****************************************************************\n"); if (input_fetch_sysconfig_para(&(config_info.input_type))) { printk("%s: ctp_fetch_sysconfig_para err.\n", __func__); return 0; } else { ret = input_init_platform_resource(&(config_info.input_type)); if (0 != ret) { printk("%s:ctp_ops.init_platform_resource err. \n", __func__); } } if (config_info.ctp_used == 0) { printk("*** ctp_used set to 0 !\n"); printk("*** if use ctp,please put the sys_config.fex ctp_used set to 1. \n"); return 0; } if (!ctp_get_system_config()) { printk("%s:read config fail!\n",__func__); return ret; } input_set_power_enable(&(config_info.input_type), 1); msleep(20); ctp_wakeup(1,0); ret = i2c_add_driver(&gsl_ts_driver); printk("****************************************************************\n"); return ret; } static void __exit gsl_ts_exit(void) { printk("==gsl_ts_exit==\n"); i2c_del_driver(&gsl_ts_driver); input_free_platform_resource(&(config_info.input_type)); return; } module_init(gsl_ts_init); module_exit(gsl_ts_exit); module_param_named(debug_mask,debug_mask,int,S_IRUGO | S_IWUSR | S_IWGRP); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver"); MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com"); MODULE_ALIAS("platform:gsl_ts");