/* * A V4L2 driver for ar0330_mipi Raw cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("Chomoly"); MODULE_DESCRIPTION("A low-level driver for Aptina ar0330_mipi Raw sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[ar0330_mipi Raw]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[ar0330_mipi Raw]"x,##arg) #define vfe_dev_print(x,arg...) printk("[ar0330_mipi Raw]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0330 /* *Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The ar0330_mipi i2c address */ #define I2C_ADDR 0x20 #define SENSOR_NAME "ar0330_mipi" //static struct delayed_work sensor_s_ae_ratio_work; static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { {0x301a,0x0059}, //Reset Sensor {REG_DLY,0x0064}, {0x31AE,0x0202}, //Output Interface Configured to 2lane MIPI {0x301A,0x0058},//Disable Streaming {REG_DLY,0x0032}, {0x3064,0x1802}, {0x3078,0x0001}, //Marker to say that 'Defaults' have been run {0x31e0,0x0003}, //Toggle Flash on Each Frame {0x3046,0x4038}, // Enable Flash Pin {0x3048,0x8480}, // Flash Pulse Length {0x31E0,0x0203}, //OTPM V5 {0x3ED2,0x0146}, {0x3EDA,0x88BC}, {0x3EDC,0xAA63}, {0x305E,0x00A0}, //PLL_settings 588Mbps 98Mhz //STATE = Master Clock,98000000 {0x302A,0x0006}, //VT_PIX_CLK_DIV = 6 {0x302C,0x0002}, //VT_SYS_CLK_DIV = 2 {0x302E,0x0002}, //PRE_PLL_CLK_DIV = 2 {0x3030,0x0031}, //PLL_MULTIPLIER = 49 {0x3036,0x000C}, //OP_PIX_CLK_DIV = 12 {0x3038,0x0001}, //OP_SYS_CLK_DIV = 1 {0x31AC,0x0C0C}, //DATA_FORMAT_BITS //MIPI Port Timing continuous mode {0x31B0,0x002d}, {0x31B2,0x0012}, {0x31B4,0x3b44}, {0x31B6,0x314d}, {0x31B8,0x2089}, {0x31BA,0x0206}, {0x31BC,0x8005}, {0x31BE,0x2003}, //Timing_settings {0x3002, 0x0078}, //Y_ADDR_START = 120 {0x3004, 0x0006}, //X_ADDR_START = 6 {0x3006, 0x0587}, //Y_ADDR_END = 1415 {0x3008, 0x0905}, //X_ADDR_END = 2309 {0x300A, 0x051c}, //FRAME_LENGTH_LINES = 1308 {0x300C, 0x04E0}, //LINE_LENGTH_PCK = 1248 {0x3012, 0x051b}, //COARSE_INTEGRATION_TIME = 1307 {0x3014, 0x0000}, //FINE_INTEGRATION_TIME = 0 {0x30A2, 0x0001}, //X_ODD_INC = 1 {0x30A6, 0x0001}, //Y_ODD_INC = 1 {0x3040,0x0000}, //READ_MODE = 0 {0x3042,0x0000}, //EXTRA_DELAY = 0 {0x30BA,0x002C}, //DIGITAL_CTRL = 44 {0x3070,0x0000}, {0x301A,0x025C}, //Enable Streaming }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { //{REG_TERM,VAL_TERM}, }; /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val); if(exp_val>0xffffff) exp_val=0xfffff0; if(exp_val<16) exp_val=16; exp_val=(exp_val)>>4;//rounding to 1 sensor_write(sd, 0x3012,exp_val);//coarse integration time info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); unsigned short dig_gain = 0x80; // 1 times digital gain if (gain_val < 16) gain_val = 16; if (16<= gain_val*100 && gain_val*100 < (103*16) ) sensor_write(sd,0x3060,0x0000); else if ((103*16) <= gain_val*100 && gain_val*100 < (107*16)) sensor_write(sd,0x3060,0x0001); else if ((107*16) <= gain_val*100 && gain_val*100 < (110*16)) sensor_write(sd,0x3060,0x0002); else if ((110*16) <= gain_val*100 && gain_val*100 < (114*16)) sensor_write(sd,0x3060,0x0003); else if ((114*16) <= gain_val*100 && gain_val*100 < (119*16)) sensor_write(sd,0x3060,0x0004); else if ((119*16) <= gain_val*100 && gain_val*100 < (123*16)) sensor_write(sd,0x3060,0x0005); else if ((123*16) <= gain_val*100 && gain_val*100 < (128*16)) sensor_write(sd,0x3060,0x0006); else if ((128*16) <= gain_val*100 && gain_val*100 < (133*16)) sensor_write(sd,0x3060,0x0007); else if ((133*16) <= gain_val*100 && gain_val*100 < (139*16)) sensor_write(sd,0x3060,0x0008); else if ((139*16) <= gain_val*100 && gain_val*100 < (145*16)) sensor_write(sd,0x3060,0x0009); else if ((145*16) <= gain_val*100 && gain_val*100 < (152*16)) sensor_write(sd,0x3060,0x000a); else if ((152*16) <= gain_val*100 && gain_val*100 < (160*16)) sensor_write(sd,0x3060,0x000b); else if ((160*16) <= gain_val*100 && gain_val*100 < (168*16)) sensor_write(sd,0x3060,0x000c); else if ((168*16) <= gain_val*100 && gain_val*100 < (178*16)) sensor_write(sd,0x3060,0x000d); else if ((178*16) <= gain_val*100 && gain_val*100 < (188*16)) sensor_write(sd,0x3060,0x000e); else if ((188*16) <= gain_val*100 && gain_val*100 < (200*16)) sensor_write(sd,0x3060,0x000f); else if ((200*16) <= gain_val*100 && gain_val*100 < (213*16)) { sensor_write(sd,0x3060,0x0010); dig_gain = gain_val*12800/(200*16); } else if ((213*16) <= gain_val*100 && gain_val*100 < (229*16)) { sensor_write(sd,0x3060,0x0012); dig_gain = gain_val*12800/(213*16); } else if ((229*16) <= gain_val*100 && gain_val*100 < (246*16)) { sensor_write(sd,0x3060,0x0014); dig_gain = gain_val*12800/(229*16); } else if ((246*16) <= gain_val*100 && gain_val*100 < (267*16)) { sensor_write(sd,0x3060,0x0016); dig_gain = gain_val*12800/(246*16); } else if ((267*16) <= gain_val*100 && gain_val*100 < (291*16)) { sensor_write(sd,0x3060,0x0018); dig_gain = gain_val*12800/(267*16); } else if ((291*16) <= gain_val*100 && gain_val*100 < (320*16)) { sensor_write(sd,0x3060,0x001a); dig_gain = gain_val*12800/(291*16); } else if ((320*16) <= gain_val*100 && gain_val*100 < (356*16)) { sensor_write(sd,0x3060,0x001c); dig_gain = gain_val*12800/(320*16); } else if ((356*16) <= gain_val*100 && gain_val*100 < (400*16)) { sensor_write(sd,0x3060,0x001e); dig_gain = gain_val*12800/(356*16); } else if ((400*16) <= gain_val*100 && gain_val*100 < (457*16)) { sensor_write(sd,0x3060,0x0020); dig_gain = gain_val*12800/(400*16); } else if ((457*16) <= gain_val*100 && gain_val*100 < (533*16)) { sensor_write(sd,0x3060,0x0024); dig_gain = gain_val*12800/(457*16); } else if ((533*16) <= gain_val*100 && gain_val*100 < (640*16)) { sensor_write(sd,0x3060,0x0028); dig_gain = gain_val*12800/(533*16); } else if ((640*16) <= gain_val*100 && gain_val*100 < (800*16)) { sensor_write(sd,0x3060,0x002c); dig_gain = gain_val*12800/(640*16); } else if ((800*16) <= gain_val*100 ) { sensor_write(sd,0x3060,0x0030); dig_gain = gain_val*12800/(800*16); } sensor_write(sd, 0x305e, dig_gain); info->gain = gain_val; return 0; } static int ar0330_sensor_vts; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val,shutter,frame_length; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; if(exp_val>0xfffff) exp_val=0xfffff; shutter = exp_val/16; if(shutter > ar0330_sensor_vts - 4) frame_length = shutter + 4; else frame_length = ar0330_sensor_vts; printk("norm exp_val = %d,gain_val = %d\n",exp_val,gain_val); sensor_s_exp(sd,exp_val); sensor_s_gain(sd,gain_val); info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret ; data_type rdtmp; ret = sensor_read(sd,0x301a,&rdtmp); if (ret!=0) return ret; if (on_off == 1) sensor_write(sd,0x301a,(rdtmp & 0xfff8)); else sensor_write(sd,0x301a,rdtmp ); return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH); if(ret < 0) vfe_dev_err("soft stby falied!\n"); usleep_range(10000,12000); cci_lock(sd); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); cci_unlock(sd); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_set_status(sd,POWER_EN,1);//set the gpio to output vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_set_pmu_channel(sd,AVDD,ON); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); usleep_range(1000,1200); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(20000,22000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_set_mclk(sd,OFF); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input vfe_gpio_set_status(sd,POWER_EN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { unsigned short rdval = 0; LOG_ERR_RET(sensor_read(sd, 0x3000, &rdval)) if(rdval != 0x2604) { printk(KERN_DEBUG"*********sensor error,read id is %x.\n",rdval); return -ENODEV; } else { printk(KERN_DEBUG"*********find ar0330_mipi raw data camera sensor now.\n"); return 0; } } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = HD1080_WIDTH; info->height = HD1080_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SGRBG12_12X1, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* qsxga: 2304*1296 */ { .width = 2304, .height = 1296, .hoffset = 0, .voffset = 0, .hts = 1248, .vts = 1308, .pclk = 49*1000*1000, .mipi_bps = (588*1000*1000), .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = 1308<<4,// .gain_min = 1<<4, .gain_max = 64<<4, .regs = sensor_default_regs, .regs_size = ARRAY_SIZE(sensor_default_regs), .set_size = NULL, }, /* 1080P */ { .width = HD1080_WIDTH, .height = HD1080_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 1248, .vts = 1308, .pclk = 49*1000*1000, .mipi_bps = (588*1000*1000)/1, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = 1308<<4,// .gain_min = 1<<4, .gain_max = 64<<4, .width_input = 2304, .height_input = 1296, .regs = sensor_default_regs, .regs_size = ARRAY_SIZE(sensor_default_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size)) ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; ar0330_sensor_vts = wsize->vts; // show_regs_array(sd,sensor_1080p_regs); vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } //sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs)); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 16*9-1, 1, 16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1); case V4L2_CID_FRAME_RATE: return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_16, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);