/* * A V4L2 driver for GalaxyCore gc2235 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("Chomoly"); MODULE_DESCRIPTION("A low-level driver for GalaxyCore gc2235 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[GC2235]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[GC2235]"x,##arg) #define vfe_dev_print(x,arg...) printk("[GC2235]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x2235 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 19 //25//19//15//12//10 #define I2C_ADDR (0x78) #define SENSOR_NAME "gc2235" static struct v4l2_subdev *glb_sd; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain * exp_gain); /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { ////////////////////////////////////////////////// /////////////////// SYS ////////////////////// ////////////////////////////////////////////////// {0xfe,0x80}, {0xfe,0x80}, {0xfe,0x80}, {0xf2,0x00}, //sync_pad_io_ebi {0xf6,0x00}, //up down {0xfc,0x06}, {0xf7,0x15}, //pll enable {0xf8,0x83}, //Pll mode 2 #if SENSOR_FRAME_RATE == 25 {0xf8,0x85}, #endif {0xf9,0xfe}, //[0] pll enable {0xfa,0x00}, //div {0xfe,0x00}, ////////////////////////////////////////////////// ///////////// ANALOG & CISCTL //////////////// ////////////////////////////////////////////////// /*NEW SETTINGS*/ {0x03,0x0a}, {0x04,0xec}, {0x05,0x00}, #if SENSOR_FRAME_RATE == 25 {0x03,0x05}, {0x04,0x08}, {0x05,0x01}, #endif {0x17,0x15},//14 //[0]mirror [1]flip {0x18,0x12},//1e {0x19,0x06}, {0x1a,0x01}, {0x1b,0x48}, {0x1e,0x88}, {0x1f,0x48}, {0x20,0x03}, {0x21,0x6f}, {0x22,0x80}, {0x23,0xc1}, {0x24,0x2f}, {0x26,0x01}, {0x27,0x30}, {0x3f,0x00}, ////////////////////////////////////////////////// /////////////////// ISP ////////////////////// ////////////////////////////////////////////////// {0x8b,0xa0}, {0x8c,0xc7}, //hsync polarity ////////////////////////////////////////////////// /////////////////// BLK ////////////////////// ////////////////////////////////////////////////// /****NEW SETTINGS***/ {0x40,0x72}, {0x41,0x04}, {0x5e,0x00}, {0x5f,0x00}, {0x60,0x00}, {0x61,0x00}, {0x62,0x00}, {0x63,0x00}, {0x64,0x00}, {0x65,0x00}, {0x66,0x20}, {0x67,0x20}, {0x68,0x20}, {0x69,0x20}, ////////////////////////////////////////////////// /////////////////// GAIN ///////////////////// ////////////////////////////////////////////////// {0xb2,0x00}, {0xb3,0x40}, {0xb4,0x40}, {0xb5,0x40}, ////////////////////////////////////////////////// ///////////////// DARK SUN /////////////////// ////////////////////////////////////////////////// //{0xbc ,0x00}, //dark sun_en /*****NEW SETTINGS*****/ {0xb8,0x0f}, {0xb9,0x23}, {0xba,0xff}, {0xbc,0x00}, {0xbd,0x00}, {0xbe,0xff}, {0xbf,0x09}, ////////////////////////////////////////////////// /////////////////// MIPI ///////////////////// ////////////////////////////////////////////////// {0xfe,0x03}, {0x01,0x00}, {0x02,0x00}, {0x03,0x00}, {0x06,0x00}, {0x10,0x00}, {0x15,0x00}, {0xfe,0x00}, {0xf2,0x0f}, }; static struct regval_list sensor_uxga_regs[] = { //UXGA: 1600*1200 {0x06,0xd0}, #if SENSOR_FRAME_RATE == 19 {0x07,0x00}, {0x08,0x1a},//for 19fps #endif #if SENSOR_FRAME_RATE == 15 //{0x07,0x01}, //{0x08,0x70},//for 15fps #endif #if SENSOR_FRAME_RATE == 12 //{0x07,0x02}, //{0x08,0xfa},//for 12fps when PCLK=48MHz {0x07,0x05}, {0x08,0xbf},//for 12fps when PCLK = 72MHz #endif #if SENSOR_FRAME_RATE == 10 {0x07,0x04}, {0x08,0x84},//for 10fps #endif #if SENSOR_FRAME_RATE == 25 {0x06,0x28}, {0x07,0x00}, {0x08,0x38}, #endif {0x0a,0x02}, {0x0c,0x00}, {0x0d,0x04}, {0x0e,0xd0}, {0x0f,0x06}, {0x10,0x50}, {0x90,0x01}, {0x92,0x02}, //00/crop win y {0x94,0x06}, //04/crop win x {0x95,0x04}, //crop win height {0x96,0xb0}, {0x97,0x06}, //crop win width {0x98,0x40}, {0x03,0x01}, {0x04,0x24}, }; static struct regval_list sensor_720p_regs[] = { //1280*720 //{0x06,0x28}, {0x06,0xd0}, {0x07,0x00}, {0x08,0x1a}, //{0x0a,0xe0}, //{0x0c,0xa0}, {0x0a,0x00}, {0x0c,0x00}, //{0x0d,0x02}, //{0x0e,0xf0}, {0x0d,0x04}, {0x0e,0xb0}, {0x0f,0x06}, {0x10,0x50}, {0x90,0x01}, {0x92,0xa0}, //00/crop win y {0x94,0xf0}, //04/crop win x {0x95,0x02}, //crop win height {0x96,0xd0}, {0x97,0x05}, //crop win width {0x98,0x00}, {0x03,0x02}, {0x04,0xbe}, }; static struct regval_list sensor_sxga_regs[] = { //SXGA: 1280*960 //{0x06,0x28}, {0x06,0xd0}, {0x07,0x00}, {0x08,0x1a}, //{0x0a,0xe0}, //{0x0c,0xa0}, {0x0a,0x00}, {0x0c,0x00}, //{0x0d,0x02}, //{0x0e,0xf0}, {0x0d,0x04}, {0x0e,0xd0}, {0x0f,0x06}, {0x10,0x50}, {0x90,0x01}, {0x92,0x78}, //00/crop win y {0x94,0xa8}, //04/crop win x {0x95,0x03}, //crop win height {0x96,0xc0}, {0x97,0x05}, //crop win width {0x98,0x00}, {0x03,0x02}, {0x04,0xbe}, }; static struct regval_list sensor_fmt_raw[] = { }; static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { struct sensor_info *info = to_state(sd); exp_val = exp_val >> 4; if (exp_val < 1) exp_val = 1; if (exp_val > 8192) exp_val = 8192; sensor_write(sd,0x04,(data_type)(exp_val & 0xff)); sensor_write(sd,0x03,(data_type)((exp_val >> 8)&0x1f)); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { unsigned char tmp; struct sensor_info *info = to_state(sd); gain_val = gain_val * 4; if(gain_val < 256) { sensor_write(sd,0xb0,0x40); sensor_write(sd,0xb1,gain_val); } else { tmp = 64 * gain_val / 256; sensor_write(sd,0xb0,tmp); sensor_write(sd,0xb1,0xff); } info->gain = gain_val; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret; data_type rdval; ret=sensor_read(sd, 0xfc, &rdval); if(ret!=0) return ret; if(on_off==CSI_GPIO_HIGH)//sw stby on { ret=sensor_write(sd, 0xfc, rdval | 0x01); sensor_write(sd, 0xf2, 0x00); } else//sw stby off { sensor_write(sd, 0xfc, rdval & 0xfe); ret=sensor_write(sd, 0xf2, 0xff); } return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH); if(ret < 0) vfe_dev_err("soft stby falied!\n"); usleep_range(10000,12000); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); cci_unlock(sd); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); usleep_range(10000,12000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,0);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0xf0, &rdval)) if(rdval != 0x22) return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0xf1, &rdval)) if(rdval != 0x35) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = UXGA_WIDTH; info->height = UXGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SGRBG10_1X10, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* UXGA */ { .width = UXGA_WIDTH, .height = UXGA_HEIGHT, .hoffset = 0, .voffset = 0, #if SENSOR_FRAME_RATE == 25 .hts = 2236, .vts = 1288,//1073, .pclk = 72*1000*1000, #endif #if SENSOR_FRAME_RATE == 19 .hts = 2047, .vts = 1234, .pclk = 48*1000*1000, #endif #if SENSOR_FRAME_RATE == 15 .hts = 2030, .vts = 1576, .pclk = 48*1000*1000, #endif #if SENSOR_FRAME_RATE == 12 .hts = 4658, .vts = 2683, .pclk = 72*1000*1000, #endif #if SENSOR_FRAME_RATE == 10 .hts = 2030, .vts = 2364, .pclk = 48*1000*1000, #endif .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = 1234<<4, .gain_min = 1<<4, .gain_max = (8<<4), .regs = sensor_uxga_regs, .regs_size = ARRAY_SIZE(sensor_uxga_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain * exp_gain) { int exp_val, gain_val; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>8*16-1) gain_val=8*16-1; if(exp_val>0xfffff) exp_val=0xfffff; sensor_write(sd,0xb2,0x1); sensor_s_exp(sd,exp_val); sensor_s_gain(sd,gain_val); info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } usleep_range(500000,600000); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 32*16, 1, 1*16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 0, 8192*16, 1, 0); case V4L2_CID_FRAME_RATE: return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);