/* * A V4L2 driver for IMX214 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("lwj"); MODULE_DESCRIPTION("A low-level driver for IMX214 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 1 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[IMX214]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[IMX214]"x,##arg) #define vfe_dev_print(x,arg...) printk("[IMX214]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0214 #define DGAIN_R 0x100 #define DGAIN_G 0x100 #define DGAIN_B 0x100 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The IMX214 sits on i2c with ID 0x6c */ #define I2C_ADDR 0x20 #define SENSOR_NAME "imx214" int imx214_sensor_vts; //static struct delayed_work sensor_s_ae_ratio_work; static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { {0x0101,0x03}, {0x0105,0x01}, {0x0106,0x01}, {0x4550,0x02}, {0x4601,0x04}, {0x4642,0x01}, {0x6227,0x11}, {0x6276,0x00}, {0x900E,0x06}, {0xA802,0x90}, {0xA803,0x11}, {0xA804,0x62}, {0xA805,0x77}, {0xA806,0xAE}, {0xA807,0x34}, {0xA808,0xAE}, {0xA809,0x35}, {0xA80A,0x62}, {0xA80B,0x83}, {0xAE33,0x00}, {0x4174,0x00}, {0x4175,0x11}, {0x4612,0x29}, {0x461B,0x2C}, {0x461F,0x06}, {0x4635,0x07}, {0x4637,0x30}, {0x463F,0x18}, {0x4641,0x0D}, {0x465B,0x2C}, {0x465F,0x2B}, {0x4663,0x2B}, {0x4667,0x24}, {0x466F,0x24}, {0x470E,0x09}, {0x4909,0xAB}, {0x490B,0x95}, {0x4915,0x5D}, {0x4A5F,0xFF}, {0x4A61,0xFF}, {0x4A73,0x62}, {0x4A85,0x00}, {0x4A87,0xFF}, {0x583C,0x04}, {0x620E,0x04}, {0x6EB2,0x01}, {0x6EB3,0x00}, {0x9300,0x02}, {0x080b,119 }, {0x080d,55 }, {0x080f,103 }, {0x0811,55 }, {0x0813,55 }, {0x0815,55 }, {0x0817,223 }, {0x0819,47 }, {0x4601,0x04}, {0x4642,0x01}, {0x461B,0x2C}, {0x465B,0x2C}, {0x465F,0x2B}, {0x4663,0x2B}, {0x4667,0x24}, {0x466F,0x24}, }; //for capture static struct regval_list sensor_13mega_regs[] = { {0x0114, 0x03}, {0x0220, 0x00}, {0x0221, 0x11}, {0x0222, 0x01}, {0x0340, 0x0C}, {0x0341, 0x7A}, {0x0342, 0x13}, {0x0343, 0x90}, {0x0344, 0x00}, {0x0345, 0x00}, {0x0346, 0x00}, {0x0347, 0x00}, {0x0348, 0x10}, {0x0349, 0x6F}, {0x034A, 0x0C}, {0x034B, 0x2F}, {0x0381, 0x01}, {0x0383, 0x01}, {0x0385, 0x01}, {0x0387, 0x01}, {0x0900, 0x00}, {0x0901, 0x00}, {0x0902, 0x00}, {0x3000, 0x35}, {0x3054, 0x01}, {0x305C, 0x11}, {0x0112, 0x0A}, {0x0113, 0x0A}, {0x034C, 0x10}, {0x034D, 0x70}, {0x034E, 0x0C}, {0x034F, 0x30}, {0x0401, 0x00}, {0x0404, 0x00}, {0x0405, 0x10}, {0x0408, 0x00}, {0x0409, 0x00}, {0x040A, 0x00}, {0x040B, 0x00}, {0x040C, 0x10}, {0x040D, 0x70}, {0x040E, 0x0C}, {0x040F, 0x30}, {0x0301, 0x05}, {0x0303, 0x02}, {0x0305, 0x03}, {0x0306, 0x00}, {0x0307, 0x64}, {0x0309, 0x0A}, {0x030B, 0x01}, {0x0310, 0x00}, {0x0820, 0x0C}, {0x0821, 0x80}, {0x0822, 0x00}, {0x0823, 0x00}, {0x3A03, 0x08}, {0x3A04, 0xD0}, {0x3A05, 0x02}, {0x0B06, 0x01}, {0x30A2, 0x00}, {0x30B4, 0x00}, {0x3A02, 0xFF}, {0x3011, 0x00}, {0x3013, 0x01}, {0x0202, 0x0C}, {0x0203, 0x70}, {0x0224, 0x01}, {0x0225, 0xF4}, {0x0204, 0x00}, {0x0205, 0x00}, {0x020E, 0x01}, {0x020F, 0x00}, {0x0210, 0x01}, {0x0211, 0x00}, {0x0212, 0x01}, {0x0213, 0x00}, {0x0214, 0x01}, {0x0215, 0x00}, {0x0216, 0x00}, {0x0217, 0x00}, {0x4170, 0x00}, {0x4171, 0x10}, {0x4176, 0x00}, {0x4177, 0x3C}, {0xAE20, 0x04}, {0xAE21, 0x5C}, {0x0138, 0x01}, {0x0100, 0x01}, }; //for video static struct regval_list sensor_4k_videos[]= { {0x0114, 0x03}, {0x0220, 0x00}, {0x0221, 0x11}, {0x0222, 0x01}, {0x0340, 0x09}, {0x0341, 0x3C}, {0x0342, 0x13}, {0x0343, 0x90}, {0x0344, 0x00}, {0x0345, 0xB8}, {0x0346, 0x01}, {0x0347, 0xE0}, {0x0348, 0x0F}, {0x0349, 0xB7}, {0x034A, 0x0A}, {0x034B, 0x4F}, {0x0381, 0x01}, {0x0383, 0x01}, {0x0385, 0x01}, {0x0387, 0x01}, {0x0900, 0x00}, {0x0901, 0x00}, {0x0902, 0x00}, {0x3000, 0x35}, {0x3054, 0x01}, {0x305C, 0x11}, {0x0112, 0x0A}, {0x0113, 0x0A}, {0x034C, 0x0F}, {0x034D, 0x00}, {0x034E, 0x08}, {0x034F, 0x70}, {0x0401, 0x00}, {0x0404, 0x00}, {0x0405, 0x10}, {0x0408, 0x00}, {0x0409, 0x00}, {0x040A, 0x00}, {0x040B, 0x00}, {0x040C, 0x0F}, {0x040D, 0x00}, {0x040E, 0x08}, {0x040F, 0x70}, {0x0301, 0x05}, {0x0303, 0x02}, {0x0305, 0x01}, {0x0306, 0x00}, {0x0307, 0x25}, {0x0309, 0x0A}, {0x030B, 0x01}, {0x0310, 0x00}, {0x0820, 0x0D}, {0x0821, 0xE0}, {0x0822, 0x00}, {0x0823, 0x00}, {0x3A03, 0x09}, {0x3A04, 0xA0}, {0x3A05, 0x04}, {0x0B06, 0x01}, {0x30A2, 0x00}, {0x30B4, 0x00}, {0x3A02, 0xFF}, {0x3011, 0x00}, {0x3013, 0x01}, {0x0202, 0x09}, {0x0203, 0x32}, {0x0224, 0x01}, {0x0225, 0xF4}, {0x0204, 0x00}, {0x0205, 0x00}, {0x020E, 0x01}, {0x020F, 0x00}, {0x0210, 0x01}, {0x0211, 0x00}, {0x0212, 0x01}, {0x0213, 0x00}, {0x0214, 0x01}, {0x0215, 0x00}, {0x0216, 0x00}, {0x0217, 0x00}, {0x4170, 0x00}, {0x4171, 0x10}, {0x4176, 0x00}, {0x4177, 0x3C}, {0xAE20, 0x04}, {0xAE21, 0x5C}, }; static struct regval_list sensor_1080p_regs[] = { {0x0114,0x03}, {0x0220,0x00}, {0x0221,0x11}, {0x0222,0x01}, {0x0340,0x08}, {0x0341,0x50}, {0x0342,0x13}, {0x0343,0x90}, {0x0344,0x00}, {0x0345,0xB8}, {0x0346,0x01}, {0x0347,0xE0}, {0x0348,0x0F}, {0x0349,0xB7}, {0x034A,0x0A}, {0x034B,0x4F}, {0x0381,0x01}, {0x0383,0x01}, {0x0385,0x01}, {0x0387,0x01}, {0x0900,0x01}, {0x0901,0x22}, {0x0902,0x02}, {0x3000,0x35}, {0x3054,0x01}, {0x305C,0x11}, {0x0112,0x0A}, {0x0113,0x0A}, {0x034C,0x07}, {0x034D,0x80}, {0x034E,0x04}, {0x034F,0x38}, {0x0401,0x00}, {0x0404,0x00}, {0x0405,0x10}, {0x0408,0x00}, {0x0409,0x00}, {0x040A,0x00}, {0x040B,0x00}, {0x040C,0x07}, {0x040D,0x80}, {0x040E,0x04}, {0x040F,0x38}, {0x0301,0x05}, {0x0303,0x02}, {0x0305,0x03}, {0x0306,0x00}, {0x0307,0x64}, {0x0309,0x0A}, {0x030B,0x01}, {0x0310,0x00}, {0x0820,0x0C}, {0x0821,0x80}, {0x0822,0x00}, {0x0823,0x00}, {0x3A03,0x06}, {0x3A04,0x28}, {0x3A05,0x04}, {0x0B06,0x01}, {0x30A2,0x00}, {0x30B4,0x00}, {0x3A02,0xFF}, {0x3011,0x00}, {0x3013,0x01}, {0x0202,0x08}, {0x0203,0x46}, {0x0224,0x01}, {0x0225,0xF4}, {0x0204,0x00}, {0x0205,0x00}, {0x020E,0x01}, {0x020F,0x00}, {0x0210,0x01}, {0x0211,0x00}, {0x0212,0x01}, {0x0213,0x00}, {0x0214,0x01}, {0x0215,0x00}, {0x0216,0x00}, {0x0217,0x00}, {0x4170,0x00}, {0x4171,0x10}, {0x4176,0x00}, {0x4177,0x3C}, {0xAE20,0x04}, {0xAE21,0x5C}, {0x0138, 0x01}, {0x0100, 0x01}, }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { }; static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char explow,exphigh; struct sensor_info *info = to_state(sd); if(exp_val>0xffffff) exp_val=0xfffff0; if(exp_val<16) exp_val=16; exp_val=(exp_val+8)>>4;//rounding to 1 exphigh = (unsigned char) ( (0xff00&exp_val)>>8); explow = (unsigned char) ( (0x00ff&exp_val) ); sensor_write(sd, 0x0203, explow);//coarse integration time sensor_write(sd, 0x0202, exphigh); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); unsigned char gainlow = 0; unsigned char gainhigh = 0; int gainana = 512 - 8192/gain_val; gainlow=(unsigned char)(gainana&0xff); gainhigh=(unsigned char)((gainana>>8)&0xff); sensor_write(sd, 0x0205, gainlow); sensor_write(sd, 0x0204, gainhigh); info->gain = gain_val; return 0; } static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val,shutter,frame_length; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; if(exp_val>0xfffff) exp_val=0xfffff; shutter = exp_val/16; if(shutter > imx214_sensor_vts) frame_length = shutter; else frame_length = imx214_sensor_vts; // sensor_write(sd, 0x0341, (frame_length & 0xff)); // sensor_write(sd, 0x0340, (frame_length >> 8)); sensor_write(sd,0x0104,0x01); sensor_s_exp(sd,exp_val); sensor_s_gain(sd,gain_val); sensor_write(sd,0x0104,0x00); if (gain_val > 64) { sensor_write(sd,0x30a2, 0x03); //enable LNR CNR sensor_write(sd,0x9706, (gain_val-64)/12); //LNR 0x00~0x10 sensor_write(sd,0x9e25, (gain_val-64)); //CNR 0x00~0x8c } else { sensor_write(sd,0x30a2,0x00); } info->exp = exp_val; info->gain = gain_val; return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); cci_lock(sd); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); msleep(20); cci_unlock(sd); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0x0000, &rdval)) // if((rdval&0x0f) != 0x02) // return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0x0001, &rdval)) // if(rdval != 0x14) // return -ENODEV; printk("find the sony IMX214 ***********\n"); return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = 4208; info->height = 3120; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR10_10X1, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { #if 1 /* Fullsize: 4208*3120 */ { .width = 4208, .height = 3120, .hoffset = 0, .voffset = 0, .hts = 5008, .vts = 3194, .pclk = 320*1000*1000, .mipi_bps = 800*1000*1000, .fps_fixed = 2, .bin_factor = 1, .intg_min = 16, .intg_max = (3194-10)<<4, .gain_min = 16, .gain_max = (16<<4), .regs = sensor_13mega_regs, .regs_size = ARRAY_SIZE(sensor_13mega_regs), .set_size = NULL, }, #endif #if 1 /*4k video*/ { .width = 3840, .height = 2160, .hoffset = 0,//(4096-3840)>>1, .voffset = 0, .hts = 5008, .vts = 2362,//2200, .pclk = 355*1000*1000,//320 .mipi_bps = 888*1000*1000,//800 .fps_fixed = 2, .bin_factor = 1, .intg_min = 16, .intg_max = (2362-10)<<4, .gain_min = 16, .gain_max = (16<<4), .regs = sensor_4k_videos, .regs_size = ARRAY_SIZE(sensor_4k_videos), .set_size = NULL, }, /* 1080p */ { .width = 1920, .height = 1080, .hoffset = 0, .voffset = 0, .hts = 5008, .vts = 2128, .pclk = 320*1000*1000, .mipi_bps = 800*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 16, .intg_max = (2128-10)<<4, .gain_min = 16, .gain_max = (16<<4), .regs = sensor_1080p_regs, .regs_size = ARRAY_SIZE(sensor_1080p_regs), .set_size = NULL, }, #endif }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0|V4L2_MBUS_CSI2_4_LANE|V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; imx214_sensor_vts = wsize->vts; vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } vfe_dev_print("s_fmt end\n"); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 64*16-1, 1, 1*16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 0); case V4L2_CID_FRAME_RATE: return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);