/* * A V4L2 driver for IT6604 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("zw"); MODULE_DESCRIPTION("A low-level driver for IT6604 sensors"); MODULE_LICENSE("GPL"); #define DEV_DBG_EN 1 #if (DEV_DBG_EN == 1) #define vfe_dev_dbg(x, arg...) printk("[IT6604]"x, ##arg) #else #define vfe_dev_dbg(x, arg...) #endif #define vfe_dev_err(x, arg...) printk("[IT6604]"x, ##arg) #define vfe_dev_print(x, arg...) printk("[IT6604]"x, ##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if (ret < 0) {\ vfe_dev_err("error at %s\n", __func__); \ return ret; \ } \ } #define MCLK (24*1000*1000) #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x6023 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The IT6604 sits on i2c with ID 0x1e */ #define I2C_ADDR 0x90 #define SENSOR_NAME "it6604" static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } static int default_reg_init(struct v4l2_subdev *sd) { sensor_write(sd, 0x20, 0x1a); sensor_write(sd, 0x21, 0x00); sensor_write(sd, 0x22, 0x80); sensor_write(sd, 0x23, 0x00); sensor_write(sd, 0x24, 0xb8); /*0xb8 for 709 0xb2 for 601*/ sensor_write(sd, 0x25, 0x05); /*0x05 for 709 0x04 for 601*/ sensor_write(sd, 0x26, 0xb4); /*0xb4 for 709 0x64 for 601*/ sensor_write(sd, 0x27, 0x01); /*0x01 for 709 0x02 for 601*/ sensor_write(sd, 0x28, 0x93); /*0x93 for 709 0xe9 for 601*/ sensor_write(sd, 0x29, 0x00); sensor_write(sd, 0x2a, 0x49); /*0x49 for 709 0x93 for 601*/ sensor_write(sd, 0x2b, 0x3c); sensor_write(sd, 0x2c, 0x18); sensor_write(sd, 0x2d, 0x04); sensor_write(sd, 0x2e, 0x9f); /*0x9f for 709 0x56 for 601*/ sensor_write(sd, 0x2f, 0x3f); sensor_write(sd, 0x30, 0xd9); /*0xd9 for 709 0x49 for 601*/ sensor_write(sd, 0x31, 0x3c); /*0x3c for 709 0x3d for 601*/ sensor_write(sd, 0x32, 0x10); /*0x10 for 709 0x9f for 601*/ sensor_write(sd, 0x33, 0x3f); /*0x3f for 709 0x3e for 601*/ sensor_write(sd, 0x34, 0x18); sensor_write(sd, 0x35, 0x04); sensor_write(sd, 0x3d, 0x40); sensor_write(sd, 0x1b, 0x20); sensor_write(sd, 0x1c, 0xf0); /*embedded*/ msleep(2000); vfe_dev_print("default_reg_init delay 20ms!!!!!!!!!!!!\n"); return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* *********************************************begin of ******************************************** */ static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { if (on_off) vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); else vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { switch (on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); sensor_s_sw_stby(sd, ON); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); sensor_s_sw_stby(sd, OFF); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd, PWDN, 1); vfe_gpio_set_status(sd, RESET, 1); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(1000, 1200); vfe_set_mclk_freq(sd, MCLK); vfe_set_mclk(sd, ON); usleep_range(10000, 12000); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH); vfe_set_pmu_channel(sd, IOVDD, ON); vfe_set_pmu_channel(sd, AVDD, ON); vfe_set_pmu_channel(sd, DVDD, ON); vfe_set_pmu_channel(sd, AFVDD, ON); vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW); usleep_range(10000, 12000); vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(30000, 31000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd, OFF); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW); vfe_set_pmu_channel(sd, AFVDD, OFF); vfe_set_pmu_channel(sd, DVDD, OFF); vfe_set_pmu_channel(sd, AVDD, OFF); vfe_set_pmu_channel(sd, IOVDD, OFF); usleep_range(10000, 12000); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); vfe_gpio_set_status(sd, RESET, 0); vfe_gpio_set_status(sd, PWDN, 0); cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(5000, 6000); vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(5000, 6000); return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; rdval = 0; LOG_ERR_RET(sensor_read(sd, 0x03, &rdval)) vfe_dev_print("reg 0x03 rdval = 0x%x\n", rdval); LOG_ERR_RET(sensor_read(sd, 0x02, &rdval)) vfe_dev_print("reg 0x02 rdval = 0x%x\n", rdval); return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor */ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd, &info->stby_mode); if ((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = VGA_WIDTH; info->height = VGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ if (info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret = 0; struct sensor_info *info = to_state(sd); switch (cmd) { case GET_CURRENT_WIN_CFG: if (info->current_wins != NULL) { memcpy(arg, info->current_wins, sizeof(struct sensor_win_size)); ret = 0; } else { vfe_dev_err("empty wins!\n"); ret = -1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "BT1220", .mbus_code = V4L2_MBUS_FMT_UYVY8_1X16, .regs = NULL, .regs_size = 0, .bpp = 2, }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* 1080p */ { .width = 1920, .height = 1080, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = default_reg_init, }, /* 720p */ { .width = 1280, .height = 720, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = default_reg_init, }, /* 480p */ { .width = 640, .height = 480, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = default_reg_init, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if (fsize->index > N_WIN_SIZES - 1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize, *wsize_last_ok = NULL; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) { if (fmt->width >= wsize->width && fmt->height >= wsize->height) { wsize_last_ok = wsize; break; } wsize_last_ok = wsize; } if (wsize >= sensor_win_sizes + N_WIN_SIZES) { if (NULL != wsize_last_ok) { wsize = wsize_last_ok; } else { wsize--; /* Take the smallest one */ } } if (ret_wsize != NULL) *ret_wsize = wsize; info->current_wins = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_BT656; cfg->flags = CLK_POL; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if (wsize->set_size) ret = wsize->set_size(sd); if (ret < 0) { vfe_dev_err("write default_reg_init error\n"); return ret; } info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; vfe_dev_print("s_fmt = %x, width = %d, height = %d\n", sensor_fmt->mbus_code, wsize->width, wsize->height); vfe_dev_print("s_fmt end\n"); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 0, 10000 * 10000, 1, 16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 0, 10000 * 10000, 1, 16); } return 0; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { return 0; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { return 0; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);