/* * A V4L2 driver for Novatek nt99252 cameras. * Novatek 2013-02-01 * monitor reloation = 1280x800 */ #include #include #include #include #include #include #include #include #include #include //linux-3.0 #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("raymonxiu"); MODULE_DESCRIPTION("A low-level driver for Novatek nt99252 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk(KERN_INFO"[CSI_DEBUG][nt99252]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk(KERN_INFO"[CSI_ERR][nt99252]"x,##arg) #define vfe_dev_print(x,arg...) printk(KERN_INFO"[CSI][nt99252]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define IO_CFG 0 //0:csi back 1:csi front #define V4L2_IDENT_SENSOR 0x2520 #define REG_ADDR_STEP 2 #define REG_DATA_STEP 1 #define REG_STEP (REG_ADDR_STEP+REG_DATA_STEP) /* * Basic window sizes. These probably belong somewhere more globally * useful. */ #define UXGA_WIDTH 1600 #define UXGA_HEIGHT 1200 #define SXGA_WIDTH 1280 #define SXGA_HEIGHT 960 #define HD720_WIDTH 1280 #define HD720_HEIGHT 720 #define SVGA_WIDTH 800 #define SVGA_HEIGHT 600 #define VGA_WIDTH 640 #define VGA_HEIGHT 480 #define QVGA_WIDTH 320 #define QVGA_HEIGHT 240 #define CIF_WIDTH 352 #define CIF_HEIGHT 288 #define QCIF_WIDTH 176 #define QCIF_HEIGHT 144 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 8 /* * The nt99252 sits on i2c with ID 0x6C */ #define I2C_ADDR 0x6C #define nt99252_SENSOR_ID 0x2520 #define SENSOR_NAME "nt99252" /* Registers */ #define PCLK_68M //#define NTK_TEST #define NT99252_AE_TARGET 0x3C //0x3A #if (NT99252_AE_TARGET == 0x30) //[AE_Target : 0x30] #define NT99252_REG_0X32B8 0x36 #define NT99252_REG_0X32B9 0x2A #define NT99252_REG_0X32BC 0x30 #define NT99252_REG_0X32BD 0x33 #define NT99252_REG_0X32BE 0x2D #elif (NT99252_AE_TARGET == 0x38) //[AE_Target : 0x38] #define NT99252_REG_0X32B8 0x3F #define NT99252_REG_0X32B9 0x31 #define NT99252_REG_0X32BC 0x38 #define NT99252_REG_0X32BD 0x3C #define NT99252_REG_0X32BE 0x34 #elif(NT99252_AE_TARGET == 0x3A) //[AE_Target : 0x3A] #define NT99252_REG_0X32B8 0x42 #define NT99252_REG_0X32B9 0x32 #define NT99252_REG_0X32BC 0x3A #define NT99252_REG_0X32BD 0x3E #define NT99252_REG_0X32BE 0x36 #elif(NT99252_AE_TARGET == 0x3B) //[AE_Target : 0x3B] #define NT99252_REG_0X32B8 0x43 #define NT99252_REG_0X32B9 0x33 #define NT99252_REG_0X32BC 0x3B #define NT99252_REG_0X32BD 0x3F #define NT99252_REG_0X32BE 0x37 #elif(NT99252_AE_TARGET == 0x3C) //[AE_Target : 0x3C] #define NT99252_REG_0X32B8 0x44 #define NT99252_REG_0X32B9 0x34 #define NT99252_REG_0X32BC 0x3C #define NT99252_REG_0X32BD 0x40 #define NT99252_REG_0X32BE 0x38 #elif(NT99252_AE_TARGET == 0x3D) //[AE_Target : 0x3D] #define NT99252_REG_0X32B8 0x45 #define NT99252_REG_0X32B9 0x35 #define NT99252_REG_0X32BC 0x3D #define NT99252_REG_0X32BD 0x41 #define NT99252_REG_0X32BE 0x39 #elif(NT99252_AE_TARGET == 0x3E) //[AE_Target : 0x3E] #define NT99252_REG_0X32B8 0x46 #define NT99252_REG_0X32B9 0x36 #define NT99252_REG_0X32BC 0x3E #define NT99252_REG_0X32BD 0x42 #define NT99252_REG_0X32BE 0x3A #elif(NT99252_AE_TARGET == 0x3F) //[AE_Target : 0x3F] #define NT99252_REG_0X32B8 0x47 #define NT99252_REG_0X32B9 0x37 #define NT99252_REG_0X32BC 0x3F #define NT99252_REG_0X32BD 0x43 #define NT99252_REG_0X32BE 0x3B #elif(NT99252_AE_TARGET == 0x40) //[AE_Target : 0x40] #define NT99252_REG_0X32B8 0x48 #define NT99252_REG_0X32B9 0x38 #define NT99252_REG_0X32BC 0x40 #define NT99252_REG_0X32BD 0x44 #define NT99252_REG_0X32BE 0x3C #endif /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ #if 0 struct snesor_colorfx_struct; /* coming later */ __csi_subdev_info_t ccm_info_con = { .mclk = MCLK, .vref = VREF_POL, .href = HREF_POL, .clock = CLK_POL, .iocfg = IO_CFG, }; struct sensor_info { struct v4l2_subdev sd; struct sensor_format_struct *fmt; /* Current format */ __csi_subdev_info_t *ccm_info; int width; int height; int brightness; int contrast; int saturation; int hue; int hflip; int vflip; int gain; int autogain; int exp; enum v4l2_exposure_auto_type autoexp; int autowb; enum v4l2_whiteblance wb; enum v4l2_colorfx clrfx; enum v4l2_flash_mode flash_mode; u8 clkrc; /* Clock divider value */ }; #endif struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { #if 1 //For 10" {0x3069, 0x00}, {0x306A, 0x00}, #else //For 9.7" {0x306A, 0x02}, #endif //NTK 2013-01-24 {0x302A, 0x00}, {0x302c, 0x09}, {0x302d, 0x01}, {0x301F, 0x80}, {0x303f, 0x0e}, {0x3051,0xE8}, {0x320A, 0x00}, {0x302E, 0x01}, {0x3100, 0x01}, {0x3101, 0x80}, {0x3104, 0x03}, {0x3105, 0x03}, {0x3106, 0x0D}, {0x310A, 0x62}, {0x310D, 0x60}, {0x3111, 0x5B}, {0x3131, 0x58}, {0x3127, 0x01}, {0x3210, 0x2E},//3A {0x3211, 0x2E},//3A {0x3212, 0x2E},//3A {0x3213, 0x2E},//3A {0x3214, 0x21}, {0x3215, 0x21}, {0x3216, 0x21}, {0x3217, 0x21}, {0x3218, 0x21}, {0x3219, 0x21}, {0x321A, 0x21}, {0x321B, 0x21}, {0x321C, 0x1F},//22 {0x321D, 0x1F},//22 {0x321E, 0x1F},//22 {0x321F, 0x1F},//22 {0x3220, 0x01}, {0x3221, 0x98}, {0x3222, 0x01}, {0x3223, 0x90}, {0x3224, 0x01}, {0x3225, 0x90}, {0x3226, 0x01}, {0x3227, 0x90}, {0x3228, 0x00}, {0x3229, 0xF0}, {0x322A, 0x00}, {0x322B, 0xF0}, {0x322C, 0x00}, {0x322D, 0xF0}, {0x322E, 0x01}, {0x322F, 0x04}, {0x3230, 0x08},//0F {0x3231, 0x00}, {0x3232, 0x00}, {0x3233, 0x08},//0F {0x3234, 0x00}, {0x3235, 0x00}, {0x3236, 0x00}, {0x3237, 0x00}, {0x3238, 0x28}, {0x3239, 0x28}, {0x323A, 0x2E}, {0x3241, 0x81}, {0x3243, 0xC3}, {0x3244, 0x00}, {0x3245, 0x00}, {0x3302,0x00}, //[CC_R1] {0x3303,0x5b}, {0x3304,0x00}, {0x3305,0x6c}, {0x3306,0x00}, {0x3307,0x3A}, {0x3308,0x07}, {0x3309,0xbf}, {0x330A,0x06}, {0x330B,0xf9}, {0x330C,0x01}, {0x330D,0x48}, {0x330E,0x01}, {0x330F,0x0b}, {0x3310,0x06}, {0x3311,0xfd}, {0x3312,0x07}, {0x3313,0xFb}, {0x3270,0x00}, //GammaT1 {0x3271,0x10}, {0x3272,0x1c}, {0x3273,0x31}, {0x3274,0x44}, {0x3275,0x54}, {0x3276,0x6d}, {0x3277,0x83}, {0x3278,0x96}, {0x3279,0xa7}, {0x327A,0xc5}, {0x327B,0xdd}, {0x327C,0xef}, {0x327D,0xf8}, {0x327E,0xF8}, {0x3250, 0x03}, //WB {0x3251, 0xFF}, {0x3252, 0x00}, //83 {0x3253, 0x03}, {0x3254, 0xFF}, {0x3255, 0x00}, {0x3256, 0x80}, {0x3257, 0x10}, {0x329B, 0x00}, //WB limit {0x32a1, 0x00}, {0x32a2, 0xed}, {0x32a3, 0x01}, {0x32a4, 0x67}, {0x32a5, 0x01}, {0x32a6, 0x54}, {0x32a7, 0x01}, {0x32a8, 0xf8}, {0x32b0, 0x55}, //AE window {0x32b1, 0xaa}, {0x32b2, 0x14}, {0x3327,0x00}, // EEXT Sel {0x3326,0x0c}, {0x3360,0x08}, // IQ Sel {0x3361,0x0E}, {0x3362,0x14}, {0x3363,0xB3}, // Auto Control {0x3331,0x0C}, // EMap {0x3332,0x60}, {0x3365,0x10}, {0x3366,0x10}, {0x3368,0x20}, // Edge Enhance {0x3369,0x1c}, {0x336A,0x18}, {0x336B,0x14}, {0x336d,0x14}, // DPC {0x336e,0x12}, {0x336f,0x0c}, {0x3370,0x08}, {0x3379,0x0A}, // NR_Comp_Max {0x337A,0x10}, {0x337B,0x14}, {0x337C,0x18}, {0x3371,0x38}, // NR_Weight {0x3372,0x38}, {0x3373,0x3F}, {0x3374,0x3F}, {0x33A0,0xb0}, // AS {0x33A1,0x10}, {0x33A2,0x18}, {0x33A3,0x40}, {0x33A4,0x02}, {0x33c0,0x03}, //Chroma {0x33c9,0xCF}, {0x33ca,0x24}, {0x3012,0x02}, {0x3013,0x00}, {0x32B8, NT99252_REG_0X32B8}, // AE Target {0x32B9, NT99252_REG_0X32B9}, {0x32BC, NT99252_REG_0X32BC}, {0x32BD, NT99252_REG_0X32BD}, {0x32BE, NT99252_REG_0X32BE}, {0x334A, 0x00}, //[GF_Previous] {0x334B, 0x7F}, {0x334C, 0x1F}, {0x3201, 0x7F}, // {0x32AC, 0x02}, // {0x32AD, 0xB8}, {0x3060, 0x01}, }; /* 1600X1200 UXGA*/ static struct regval_list sensor_uxga_regs[] ={ {0x334A, 0x34}, {0x334B, 0x14}, {0x334C, 0x10}, {0x303E, 0x01}, {0x32F1, 0x00}, {0x32FC, 0x00}, {0x32F8, 0x01}, //[YUYV_1600x1200_8.33_14.01_Fps_50Hz] PCLK 68M {0x32BF, 0x60}, {0x32C0, 0x7A}, {0x32C1, 0x7A}, {0x32C2, 0x7A}, {0x32C3, 0x06}, {0x32C4, 0x20}, {0x32C5, 0x20}, {0x32C6, 0x20}, {0x32C7, 0x00}, {0x32C8, 0x91}, {0x32C9, 0x7A}, {0x32CA, 0x9A}, {0x32CB, 0x9A}, {0x32CC, 0x9A}, {0x32CD, 0x9A}, {0x32DB, 0x72}, {0x3241, 0x86}, {0x32E0, 0x06}, {0x32E1, 0x40}, {0x32E2, 0x04}, {0x32E3, 0xB0}, {0x32E4, 0x00}, {0x32E5, 0x00}, {0x32E6, 0x00}, {0x32E7, 0x00}, {0x3200, 0x3E}, {0x302A, 0x00}, {0x302C, 0x0C}, {0x302C, 0x1B}, {0x302D, 0x21}, {0x3022, 0x24}, {0x3023, 0x24}, {0x3002, 0x00}, {0x3003, 0x04}, {0x3004, 0x00}, {0x3005, 0x04}, {0x3006, 0x06}, {0x3007, 0x43}, {0x3008, 0x04}, {0x3009, 0xCC}, {0x300A, 0x07}, {0x300B, 0x85}, {0x300C, 0x04}, {0x300D, 0xBC}, {0x300E, 0x06}, {0x300F, 0x40}, {0x3010, 0x04}, {0x3011, 0xB0}, {0x32BB, 0x87}, {0x325C, 0x03}, {0x320A, 0x00}, {0x3021, 0x06}, {0x3060, 0x01}, }; /* 1280X960 SXGA */ static struct regval_list sensor_sxga_regs[] = { //[YUYV_1280x960_8.33_14.28_Fps_50Hz] 68Mhz {0x32fc, 0xf0}, {0x32f8, 0x01}, {0x32BF, 0x60}, {0x32C0, 0x7A}, {0x32C1, 0x7A}, {0x32C2, 0x7A}, {0x32C3, 0x06}, {0x32C4, 0x20}, {0x32C5, 0x20}, {0x32C6, 0x20}, {0x32C7, 0x00}, {0x32C8, 0x91}, {0x32C9, 0x7A}, {0x32CA, 0x9A}, {0x32CB, 0x9A}, {0x32CC, 0x9A}, {0x32CD, 0x9A}, {0x32DB, 0x72}, {0x3241, 0x86}, {0x32E0, 0x05}, {0x32E1, 0x00}, {0x32E2, 0x03}, {0x32E3, 0xC0}, {0x32E4, 0x00}, {0x32E5, 0x40}, {0x32E6, 0x00}, {0x32E7, 0x40}, {0x3200, 0x3E}, {0x302A, 0x00}, {0x302C, 0x0C}, {0x302C, 0x1B}, {0x302D, 0x21}, {0x3022, 0x24}, {0x3023, 0x24}, {0x3002, 0x00}, {0x3003, 0x04}, {0x3004, 0x00}, {0x3005, 0x04}, {0x3006, 0x06}, {0x3007, 0x43}, {0x3008, 0x04}, {0x3009, 0xCC}, {0x300A, 0x07}, {0x300B, 0x85}, {0x300C, 0x04}, {0x300D, 0xBC}, {0x300E, 0x06}, {0x300F, 0x40}, {0x3010, 0x04}, {0x3011, 0xB0}, {0x32BB, 0x87}, {0x325C, 0x03}, {0x320A, 0x48}, {0x3021, 0x06}, {0x3060, 0x01}, }; /* 1280X720 */ static struct regval_list sensor_720p_regs[] = {//YUYV_1280x720_1600*1200 scaler_10.00_14.28_Fps_50Hz PCLK 68Mhz {0x32BF, 0x60}, {0x32C0, 0x7A}, {0x32C1, 0x7A}, {0x32C2, 0x7A}, {0x32C3, 0x06}, {0x32C4, 0x20}, {0x32C5, 0x20}, {0x32C6, 0x20}, {0x32C7, 0x00}, {0x32C8, 0x91}, {0x32C9, 0x7A}, {0x32CA, 0x9A}, {0x32CB, 0x9A}, {0x32CC, 0x9A}, {0x32CD, 0x9A}, {0x32DB, 0x72}, {0x3241, 0x86}, {0x32E0, 0x05}, {0x32E1, 0x00}, {0x32E2, 0x02}, {0x32E3, 0xD0}, {0x32E4, 0x00}, {0x32E5, 0x40}, {0x32E6, 0x00}, {0x32E7, 0xAB}, {0x3200, 0x3E}, {0x302A, 0x00}, {0x302C, 0x0C}, {0x302C, 0x1B}, {0x302D, 0x21}, {0x3022, 0x24}, {0x3023, 0x24}, {0x3002, 0x00}, {0x3003, 0x04}, {0x3004, 0x00}, {0x3005, 0x04}, {0x3006, 0x06}, {0x3007, 0x43}, {0x3008, 0x04}, {0x3009, 0xCC}, {0x300A, 0x07}, {0x300B, 0x85}, {0x300C, 0x04}, {0x300D, 0xBC}, {0x300E, 0x06}, {0x300F, 0x40}, {0x3010, 0x04}, {0x3011, 0xB0}, {0x32BB, 0x87}, {0x325C, 0x03}, {0x320A, 0x48}, {0x3021, 0x06}, {0x3060, 0x01}, }; /*1024*768*/ //static struct regval_list sensor_xga_regs[] = //{}; /* 800X600 SVGA*/ static struct regval_list sensor_svga_regs[] ={ //800*600_1600*1200 scaler_8.33~14.28fps PCLK 68Mhz {0x334A, 0x00}, {0x334B, 0x7F}, {0x334C, 0x1F}, {0x303e, 0x01}, //08 {0x3080, 0x00}, {0x3081, 0x00}, {0x3082, 0x03}, //{0x3052, 0x0f}, {0x32fc, 0xf8}, {0x32f8, 0x01}, {0x32BF, 0x60}, {0x32C0, 0x7A}, {0x32C1, 0x7A}, {0x32C2, 0x7A}, {0x32C3, 0x06}, {0x32C4, 0x20}, {0x32C5, 0x20}, {0x32C6, 0x20}, {0x32C7, 0x00}, {0x32C8, 0x91}, {0x32C9, 0x7A}, {0x32CA, 0x9A}, {0x32CB, 0x9A}, {0x32CC, 0x9A}, {0x32CD, 0x9A}, {0x32DB, 0x72}, {0x3241, 0x86}, {0x32E0, 0x03}, {0x32E1, 0x20}, {0x32E2, 0x02}, {0x32E3, 0x58}, {0x32E4, 0x01}, {0x32E5, 0x00}, {0x32E6, 0x01}, {0x32E7, 0x00}, {0x3200, 0x3E}, //{0x3201, 0x7F}, {0x302A, 0x00}, {0x302C, 0x0C}, {0x302C, 0x1B}, {0x302D, 0x21}, {0x3022, 0x24}, {0x3023, 0x24}, {0x3002, 0x00}, {0x3003, 0x04}, {0x3004, 0x00}, {0x3005, 0x04}, {0x3006, 0x06}, {0x3007, 0x43}, {0x3008, 0x04}, {0x3009, 0xCC}, {0x300A, 0x07}, {0x300B, 0x85}, {0x300C, 0x04}, {0x300D, 0xBC}, {0x300E, 0x06}, {0x300F, 0x40}, {0x3010, 0x04}, {0x3011, 0xB0}, {0x32BB, 0x87}, {0x325C, 0x03}, {0x320A, 0x6C}, {0x3021, 0x06}, {0x3060, 0x01}, }; /* 640X480 VGA */ static struct regval_list sensor_vga_regs[] = { //640*480_1600*1200 scaler_8.33~14.28fps PCLK 68Mhz {0x334A, 0x00}, {0x334B, 0x7F}, {0x334C, 0x1F}, {0x303e, 0x01}, {0x3080, 0x00}, {0x3081, 0x00}, {0x3082, 0x03}, //{0x3052, 0x0f}, {0x32fc, 0xf8}, {0x32f8, 0x01}, {0x32BF, 0x60}, {0x32C0, 0x7A}, {0x32C1, 0x7A}, {0x32C2, 0x7A}, {0x32C3, 0x06}, {0x32C4, 0x20}, {0x32C5, 0x20}, {0x32C6, 0x20}, {0x32C7, 0x00}, {0x32C8, 0x91}, {0x32C9, 0x7A}, {0x32CA, 0x9A}, {0x32CB, 0x9A}, {0x32CC, 0x9A}, {0x32CD, 0x9A}, {0x32DB, 0x72}, {0x3241, 0x86}, {0x32E0, 0x02}, {0x32E1, 0x80}, {0x32E2, 0x01}, {0x32E3, 0xE0}, {0x32E4, 0x01}, {0x32E5, 0x81}, {0x32E6, 0x01}, {0x32E7, 0x81}, {0x3200, 0x3E}, {0x302A, 0x00}, {0x302C, 0x0C}, {0x302C, 0x1B}, {0x302D, 0x21}, {0x3022, 0x24}, {0x3023, 0x24}, {0x3002, 0x00}, {0x3003, 0x04}, {0x3004, 0x00}, {0x3005, 0x04}, {0x3006, 0x06}, {0x3007, 0x43}, {0x3008, 0x04}, {0x3009, 0xCC}, {0x300A, 0x07}, {0x300B, 0x85}, {0x300C, 0x04}, {0x300D, 0xBC}, {0x300E, 0x06}, {0x300F, 0x40}, {0x3010, 0x04}, {0x3011, 0xB0}, {0x32BB, 0x87}, {0x325C, 0x03}, {0x320A, 0x68}, //{0x3025, 0x02}, {0x3021, 0x06}, {0x3060, 0x01}, }; /* * The white balance settings * Here only tune the R G B channel gain. * The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb */ static struct regval_list sensor_wb_manual[] = { //null }; static struct regval_list sensor_wb_auto_regs[] = { {0x3201, 0x7F}, }; static struct regval_list sensor_wb_incandescence_regs[] = { {0x3201, 0x6F}, {0x3290, 0x01}, {0x3291, 0x30}, {0x3296, 0x01}, {0x3297, 0xCB}, }; static struct regval_list sensor_wb_fluorescent_regs[] = { {0x3201, 0x6F}, {0x3290, 0x01}, {0x3291, 0x70}, {0x3296, 0x01}, {0x3297, 0xFF}, }; static struct regval_list sensor_wb_tungsten_regs[] = { {0x3201, 0x6F}, {0x3290, 0x01}, {0x3291, 0x00}, {0x3296, 0x02}, {0x3297, 0x30}, }; static struct regval_list sensor_wb_horizon[] = { //null }; static struct regval_list sensor_wb_daylight_regs[] = { {0x3201, 0x6F}, {0x3290, 0x01}, {0x3291, 0x38}, {0x3296, 0x01}, {0x3297, 0x68}, }; static struct regval_list sensor_wb_flash[] = { //null }; static struct regval_list sensor_wb_cloud_regs[] = { {0x3201, 0x6F}, {0x3290, 0x01}, {0x3291, 0x51}, {0x3296, 0x01}, {0x3297, 0x00}, }; static struct regval_list sensor_wb_shade[] = { //null }; static struct cfg_array sensor_wb[] = { { .regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL .size = ARRAY_SIZE(sensor_wb_manual), }, { .regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO .size = ARRAY_SIZE(sensor_wb_auto_regs), }, { .regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT .size = ARRAY_SIZE(sensor_wb_incandescence_regs), }, { .regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT .size = ARRAY_SIZE(sensor_wb_fluorescent_regs), }, { .regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H .size = ARRAY_SIZE(sensor_wb_tungsten_regs), }, { .regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON .size = ARRAY_SIZE(sensor_wb_horizon), }, { .regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT .size = ARRAY_SIZE(sensor_wb_daylight_regs), }, { .regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH .size = ARRAY_SIZE(sensor_wb_flash), }, { .regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY .size = ARRAY_SIZE(sensor_wb_cloud_regs), }, { .regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE .size = ARRAY_SIZE(sensor_wb_shade), }, }; /* * The color effect settings */ static struct regval_list sensor_colorfx_none_regs[] = { {0x32f1, 0x00}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_bw_regs[] = { {0x32F1, 0x01}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_sepia_regs[] = { {0x32f1, 0x02}, {0x32f6, 0x20}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_negative_regs[] = { {0x32f1, 0x03}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_emboss_regs[] = { //NULL }; static struct regval_list sensor_colorfx_sketch_regs[] = { //NULL }; static struct regval_list sensor_colorfx_sky_blue_regs[] = { {0x32f1, 0x05}, {0x32f4, 0xF0}, {0x32f5, 0x80}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_grass_green_regs[] = { {0x32f1, 0x05}, {0x32f4, 0x60}, {0x32f5, 0x20}, {0x32F8, 0x01}, }; static struct regval_list sensor_colorfx_skin_whiten_regs[] = { //NULL }; static struct regval_list sensor_colorfx_vivid_regs[] = { //NULL }; static struct regval_list sensor_colorfx_aqua_regs[] = { //null }; static struct regval_list sensor_colorfx_art_freeze_regs[] = { //null }; static struct regval_list sensor_colorfx_silhouette_regs[] = { //null }; static struct regval_list sensor_colorfx_solarization_regs[] = { //null }; static struct regval_list sensor_colorfx_antique_regs[] = { //null }; static struct regval_list sensor_colorfx_set_cbcr_regs[] = { //null }; static struct cfg_array sensor_colorfx[] = { { .regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0, .size = ARRAY_SIZE(sensor_colorfx_none_regs), }, { .regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1, .size = ARRAY_SIZE(sensor_colorfx_bw_regs), }, { .regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2, .size = ARRAY_SIZE(sensor_colorfx_sepia_regs), }, { .regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3, .size = ARRAY_SIZE(sensor_colorfx_negative_regs), }, { .regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4, .size = ARRAY_SIZE(sensor_colorfx_emboss_regs), }, { .regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5, .size = ARRAY_SIZE(sensor_colorfx_sketch_regs), }, { .regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6, .size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs), }, { .regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7, .size = ARRAY_SIZE(sensor_colorfx_grass_green_regs), }, { .regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8, .size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs), }, { .regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9, .size = ARRAY_SIZE(sensor_colorfx_vivid_regs), }, { .regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10, .size = ARRAY_SIZE(sensor_colorfx_aqua_regs), }, { .regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11, .size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs), }, { .regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12, .size = ARRAY_SIZE(sensor_colorfx_silhouette_regs), }, { .regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13, .size = ARRAY_SIZE(sensor_colorfx_solarization_regs), }, { .regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14, .size = ARRAY_SIZE(sensor_colorfx_antique_regs), }, { .regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15, .size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs), }, }; /* * The brightness setttings */ static struct regval_list sensor_brightness_neg4_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg3_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg2_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg1_regs[] = { //NULL }; static struct regval_list sensor_brightness_zero_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos1_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos2_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos3_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos4_regs[] = { //NULL }; static struct cfg_array sensor_brightness[] = { { .regs = sensor_brightness_neg4_regs, .size = ARRAY_SIZE(sensor_brightness_neg4_regs), }, { .regs = sensor_brightness_neg3_regs, .size = ARRAY_SIZE(sensor_brightness_neg3_regs), }, { .regs = sensor_brightness_neg2_regs, .size = ARRAY_SIZE(sensor_brightness_neg2_regs), }, { .regs = sensor_brightness_neg1_regs, .size = ARRAY_SIZE(sensor_brightness_neg1_regs), }, { .regs = sensor_brightness_zero_regs, .size = ARRAY_SIZE(sensor_brightness_zero_regs), }, { .regs = sensor_brightness_pos1_regs, .size = ARRAY_SIZE(sensor_brightness_pos1_regs), }, { .regs = sensor_brightness_pos2_regs, .size = ARRAY_SIZE(sensor_brightness_pos2_regs), }, { .regs = sensor_brightness_pos3_regs, .size = ARRAY_SIZE(sensor_brightness_pos3_regs), }, { .regs = sensor_brightness_pos4_regs, .size = ARRAY_SIZE(sensor_brightness_pos4_regs), }, }; /* * The contrast setttings */ static struct regval_list sensor_contrast_neg4_regs[] = { {0x32FC, 0x40}, {0x32F2, 0x40}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_neg3_regs[] = { {0x32FC, 0x30}, {0x32F2, 0x50}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_neg2_regs[] = { {0x32FC, 0x20}, {0x32F2, 0x60}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_neg1_regs[] = { {0x32FC, 0x10}, {0x32F2, 0x70}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_zero_regs[] = { {0x32FC, 0xf8}, {0x32F2, 0x80}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_pos1_regs[] = { {0x32FC, 0xF0}, {0x32F2, 0x90}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_pos2_regs[] = { {0x32FC, 0xE0}, {0x32F2, 0xA0}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_pos3_regs[] = { {0x32FC, 0xD0}, {0x32F2, 0xB0}, {0x32F8, 0x01}, }; static struct regval_list sensor_contrast_pos4_regs[] = { {0x32FC, 0xC0}, {0x32F2, 0xC0}, {0x32F8, 0x01}, }; static struct cfg_array sensor_contrast[] = { { .regs = sensor_contrast_neg4_regs, .size = ARRAY_SIZE(sensor_contrast_neg4_regs), }, { .regs = sensor_contrast_neg3_regs, .size = ARRAY_SIZE(sensor_contrast_neg3_regs), }, { .regs = sensor_contrast_neg2_regs, .size = ARRAY_SIZE(sensor_contrast_neg2_regs), }, { .regs = sensor_contrast_neg1_regs, .size = ARRAY_SIZE(sensor_contrast_neg1_regs), }, { .regs = sensor_contrast_zero_regs, .size = ARRAY_SIZE(sensor_contrast_zero_regs), }, { .regs = sensor_contrast_pos1_regs, .size = ARRAY_SIZE(sensor_contrast_pos1_regs), }, { .regs = sensor_contrast_pos2_regs, .size = ARRAY_SIZE(sensor_contrast_pos2_regs), }, { .regs = sensor_contrast_pos3_regs, .size = ARRAY_SIZE(sensor_contrast_pos3_regs), }, { .regs = sensor_contrast_pos4_regs, .size = ARRAY_SIZE(sensor_contrast_pos4_regs), }, }; /* * The saturation setttings */ static struct regval_list sensor_saturation_neg4_regs[] = { {0x32F3, 0x40}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_neg3_regs[] = { {0x32F3, 0x50}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_neg2_regs[] = { {0x32F3, 0x60}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_neg1_regs[] = { {0x32F3, 0x70}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_zero_regs[] = { {0x32F3, 0x80}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_pos1_regs[] = { {0x32F3, 0x90}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_pos2_regs[] = { {0x32F3, 0xa0}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_pos3_regs[] = { {0x32F3, 0xb0}, {0x32F8, 0x01}, }; static struct regval_list sensor_saturation_pos4_regs[] = { {0x32F3, 0xc0}, {0x32F8, 0x01}, }; static struct cfg_array sensor_saturation[] = { { .regs = sensor_saturation_neg4_regs, .size = ARRAY_SIZE(sensor_saturation_neg4_regs), }, { .regs = sensor_saturation_neg3_regs, .size = ARRAY_SIZE(sensor_saturation_neg3_regs), }, { .regs = sensor_saturation_neg2_regs, .size = ARRAY_SIZE(sensor_saturation_neg2_regs), }, { .regs = sensor_saturation_neg1_regs, .size = ARRAY_SIZE(sensor_saturation_neg1_regs), }, { .regs = sensor_saturation_zero_regs, .size = ARRAY_SIZE(sensor_saturation_zero_regs), }, { .regs = sensor_saturation_pos1_regs, .size = ARRAY_SIZE(sensor_saturation_pos1_regs), }, { .regs = sensor_saturation_pos2_regs, .size = ARRAY_SIZE(sensor_saturation_pos2_regs), }, { .regs = sensor_saturation_pos3_regs, .size = ARRAY_SIZE(sensor_saturation_pos3_regs), }, { .regs = sensor_saturation_pos4_regs, .size = ARRAY_SIZE(sensor_saturation_pos4_regs), }, }; /* * The exposure target setttings */ static struct regval_list sensor_ev_neg4_regs[] = { {0x32F2, 0x30}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_neg3_regs[] = { {0x32F2, 0x40}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_neg2_regs[] = { {0x32F2, 0x50}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_neg1_regs[] = { {0x32F2, 0x60}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_zero_regs[] = { {0x32F2, 0x70}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_pos1_regs[] = { {0x32F2, 0x80}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_pos2_regs[] = { {0x32F2, 0x90}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_pos3_regs[] = { {0x32F2, 0xa0}, {0x32F8, 0x01}, }; static struct regval_list sensor_ev_pos4_regs[] = { {0x32F2, 0xb0}, {0x32F8, 0x01}, }; static struct cfg_array sensor_ev[] = { { .regs = sensor_ev_neg4_regs, .size = ARRAY_SIZE(sensor_ev_neg4_regs), }, { .regs = sensor_ev_neg3_regs, .size = ARRAY_SIZE(sensor_ev_neg3_regs), }, { .regs = sensor_ev_neg2_regs, .size = ARRAY_SIZE(sensor_ev_neg2_regs), }, { .regs = sensor_ev_neg1_regs, .size = ARRAY_SIZE(sensor_ev_neg1_regs), }, { .regs = sensor_ev_zero_regs, .size = ARRAY_SIZE(sensor_ev_zero_regs), }, { .regs = sensor_ev_pos1_regs, .size = ARRAY_SIZE(sensor_ev_pos1_regs), }, { .regs = sensor_ev_pos2_regs, .size = ARRAY_SIZE(sensor_ev_pos2_regs), }, { .regs = sensor_ev_pos3_regs, .size = ARRAY_SIZE(sensor_ev_pos3_regs), }, { .regs = sensor_ev_pos4_regs, .size = ARRAY_SIZE(sensor_ev_pos4_regs), }, }; static struct regval_list sensor_oe_disable_regs[] = { }; static struct regval_list sensor_oe_enable_regs[] = { }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_yuv422_yuyv[] = { //{0x32F0, 0x01}, }; static struct regval_list sensor_fmt_yuv422_yvyu[] = { //{0x32F0, 0x03}, }; static struct regval_list sensor_fmt_yuv422_vyuy[] = { //{0x32F0, 0x02}, }; static struct regval_list sensor_fmt_yuv422_uyvy[] = { //{0x32F0, 0x00}, }; static struct regval_list sensor_fmt_raw[] = { //{0x32F0, 0x70}, }; static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3022, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_hflip!\n"); return ret; } val = (val & 0x02); *value = val; info->hflip = *value; return 0; } static int sensor_s_hflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3022, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_hflip!\n"); return ret; } switch (value) { case 0: val &= 0xFD; break; case 1: val |= 0x02; break; default: return -EINVAL; } ret = sensor_write(sd, 0x3022, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } mdelay(20); info->hflip = value; return 0; } static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3022, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_vflip!\n"); return ret; } val = (val & 0x01); *value = val; info->vflip = *value; return 0; } static int sensor_s_vflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3022, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_vflip!\n"); return ret; } switch (value) { case 0: val &= 0xFE; break; case 1: val |= 0x01; break; default: return -EINVAL; } ret = sensor_write(sd, 0x3022, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } mdelay(20); info->vflip = value; return 0; } static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_autogain(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3201, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autoexp!\n"); return ret; } val = ((val& 0x20) >> 5); if (val == 0x01) { *value = V4L2_EXPOSURE_AUTO; } else { *value = V4L2_EXPOSURE_MANUAL; } info->autoexp = *value; return 0; } static int sensor_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3201, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autoexp!\n"); return ret; } switch (value) { case V4L2_EXPOSURE_AUTO: val |= 0x20; break; case V4L2_EXPOSURE_MANUAL: val &= 0xDF; break; case V4L2_EXPOSURE_SHUTTER_PRIORITY: return -EINVAL; case V4L2_EXPOSURE_APERTURE_PRIORITY: return -EINVAL; default: return -EINVAL; } ret = sensor_write(sd, 0x3201, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } mdelay(10); info->autoexp = value; return 0; } static int sensor_g_autowb(struct v4l2_subdev *sd, int *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x3201, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autowb!\n"); return ret; } val = ((val & 0x10) >> 4); *value = val; info->autowb = *value; return 0; } static int sensor_s_autowb(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs)); if (ret < 0) { vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n"); return ret; } ret = sensor_read(sd, 0x3201, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autowb!\n"); return ret; } switch(value) { case 0: val &= 0xEF; break; case 1: val |= 0x10; break; default: break; } ret = sensor_write(sd, 0x3201, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } mdelay(10); info->autowb = value; return 0; } static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_hue(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_gain(struct v4l2_subdev *sd, int value) { return -EINVAL; } /* *********************************************end of ******************************************** */ static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->brightness; return 0; } static int sensor_s_brightness(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->brightness == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size)) info->brightness = value; return 0; } static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->contrast; return 0; } static int sensor_s_contrast(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->contrast == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size)) info->contrast = value; return 0; } static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->saturation; return 0; } static int sensor_s_saturation(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->saturation == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size)) info->saturation = value; return 0; } static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp_bias; return 0; } static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->exp_bias == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size)) mdelay(10); info->exp_bias = value; return 0; } static int sensor_g_wb(struct v4l2_subdev *sd, int *value) { struct sensor_info *info = to_state(sd); enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value; *wb_type = info->wb; return 0; } static int sensor_s_wb(struct v4l2_subdev *sd, enum v4l2_auto_n_preset_white_balance value) { struct sensor_info *info = to_state(sd); if(info->capture_mode == V4L2_MODE_IMAGE) return 0; if(info->wb == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs ,sensor_wb[value].size) ) if (value == V4L2_WHITE_BALANCE_AUTO) info->autowb = 1; else info->autowb = 0; info->wb = value; return 0; } static int sensor_g_colorfx(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value; *clrfx_type = info->clrfx; return 0; } static int sensor_s_colorfx(struct v4l2_subdev *sd, enum v4l2_colorfx value) { struct sensor_info *info = to_state(sd); if(info->clrfx == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size)) info->clrfx = value; return 0; } static int sensor_g_flash_mode(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value; *flash_mode = info->flash_mode; return 0; } static int sensor_s_flash_mode(struct v4l2_subdev *sd, enum v4l2_flash_led_mode value) { struct sensor_info *info = to_state(sd); info->flash_mode = value; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret=0; return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; cci_lock(sd); switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n"); vfe_dev_print("disalbe oe!\n"); ret = sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs)); if(ret < 0) vfe_dev_err("disalbe oe falied!\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH); if(ret < 0) vfe_dev_err("soft stby falied!\n"); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); mdelay(10); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); mdelay(10); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); mdelay(10); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); mdelay(10); vfe_dev_print("enable oe!\n"); ret = sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs)); if(ret < 0) vfe_dev_err("enable oe falied!\n"); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n"); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(1); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); mdelay(10); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); mdelay(10); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(30); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(30); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(30); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n"); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(10); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); mdelay(10); vfe_set_mclk(sd,OFF); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input break; default: return -EINVAL; } cci_unlock(sd); return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: break; case 1: break; case 2: break; case 3: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(10); break; case 4: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(10); break; case 5: vfe_dev_dbg("CSI_SUBDEV_RST_PUL\n"); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(10); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(30); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(10); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { int ret; unsigned int SENSOR_ID=0; unsigned int version=0; data_type val; ret = sensor_read(sd, 0x3000, &val); SENSOR_ID|= (val<< 8); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } ret = sensor_read(sd, 0x3001, &val); SENSOR_ID|= (val); printk("nt99252_SENSOR_ID=%x",SENSOR_ID); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } if(SENSOR_ID != nt99252_SENSOR_ID) return -ENODEV; #if 1 // Test ret = sensor_read(sd, 0x307E, &val); version = (val<< 8); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } vfe_dev_dbg("0x307E: %X\n", version); ret = sensor_read(sd, 0x307F, &val); version= (val<< 8); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } vfe_dev_dbg("0x307E: %X\n", version); #endif return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } return sensor_write_array(sd, sensor_default_regs , ARRAY_SIZE(sensor_default_regs)); } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code;//linux-3.0 struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "YUYV 4:2:2", .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_yuyv, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv), .bpp = 2, }, { .desc = "YVYU 4:2:2", .mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_yvyu, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu), .bpp = 2, }, { .desc = "UYVY 4:2:2", .mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_uyvy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy), .bpp = 2, }, { .desc = "VYUY 4:2:2", .mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,//linux-3.0 .regs = sensor_fmt_yuv422_vyuy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy), .bpp = 2, }, { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,//linux-3.0 .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* UXGA */ { .width = UXGA_WIDTH, .height = UXGA_HEIGHT, .regs = sensor_uxga_regs, .regs_size = ARRAY_SIZE(sensor_uxga_regs), .set_size = NULL, }, /* SXGA */ { .width = SXGA_WIDTH, .height = SXGA_HEIGHT, .regs = sensor_sxga_regs, .regs_size = ARRAY_SIZE(sensor_sxga_regs), .set_size = NULL, }, /* 720p */ { .width = HD720_WIDTH, .height = HD720_HEIGHT, .regs = sensor_720p_regs, .regs_size = ARRAY_SIZE(sensor_720p_regs), .set_size = NULL, }, /* SVGA */ { .width = SVGA_WIDTH, .height = SVGA_HEIGHT, .regs = sensor_svga_regs, .regs_size = ARRAY_SIZE(sensor_svga_regs), .set_size = NULL, }, /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .regs = sensor_vga_regs, .regs_size = ARRAY_SIZE(sensor_vga_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code)//linux-3.0 { if (index >= N_FMTS)//linux-3.0 return -EINVAL; *code = sensor_formats[index].mbus_code;//linux-3.0 return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, //struct v4l2_format *fmt, struct v4l2_mbus_framefmt *fmt,//linux-3.0 struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; vfe_dev_dbg("sensor_try_fmt_internal\n"); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code)//linux-3.0 break; if (index >= N_FMTS) { /* default to first format */ index = 0; fmt->code = sensor_formats[0].mbus_code;//linux-3.0 } if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE;//linux-3.0 /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height)//linux-3.0 break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width;//linux-3.0 fmt->height = wsize->height;//linux-3.0 return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)//linux-3.0 { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)//linux-3.0 { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size); ret = 0; if (wsize->regs) { ret = sensor_write_array(sd, wsize->regs , wsize->regs_size); if (ret < 0) return ret; } if (wsize->set_size) { ret = wsize->set_size(sd); if (ret < 0) return ret; } mdelay(500); info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->timeperframe.numerator = 1; if (info->width > SVGA_WIDTH && info->height > SVGA_HEIGHT) { cp->timeperframe.denominator = SENSOR_FRAME_RATE/2; } else { cp->timeperframe.denominator = SENSOR_FRAME_RATE; } return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* *********************************************begin of ******************************************** */ static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ /* see sensor_s_parm and sensor_g_parm for the meaning of value */ switch (qc->id) { // case V4L2_CID_BRIGHTNESS: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_CONTRAST: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_SATURATION: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_HUE: // return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0); case V4L2_CID_VFLIP: case V4L2_CID_HFLIP: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); // case V4L2_CID_GAIN: // return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128); // case V4L2_CID_AUTOGAIN: // return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0); case V4L2_CID_EXPOSURE_AUTO: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 5, 1, 0); case V4L2_CID_AUTO_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_COLORFX: return v4l2_ctrl_query_fill(qc, 0, 9, 1, 0); case V4L2_CID_FLASH_LED_MODE: return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_g_brightness(sd, &ctrl->value); case V4L2_CID_CONTRAST: return sensor_g_contrast(sd, &ctrl->value); case V4L2_CID_SATURATION: return sensor_g_saturation(sd, &ctrl->value); case V4L2_CID_HUE: return sensor_g_hue(sd, &ctrl->value); case V4L2_CID_VFLIP: return sensor_g_vflip(sd, &ctrl->value); case V4L2_CID_HFLIP: return sensor_g_hflip(sd, &ctrl->value); case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_g_autogain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_g_exp_bias(sd, &ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_g_autoexp(sd, &ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_g_wb(sd, &ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_g_autowb(sd, &ctrl->value); case V4L2_CID_COLORFX: return sensor_g_colorfx(sd, &ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_g_flash_mode(sd, &ctrl->value); // case V4L2_CID_POWER_LINE_FREQUENCY: // return sensor_g_band_filter(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; //vfe_dev_dbg("sensor_s_ctrl ctrl->id=0x%8x\n", ctrl->id); qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (qc.type == V4L2_CTRL_TYPE_MENU || qc.type == V4L2_CTRL_TYPE_INTEGER || qc.type == V4L2_CTRL_TYPE_BOOLEAN) { if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { return -ERANGE; } } switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_s_brightness(sd, ctrl->value); case V4L2_CID_CONTRAST: return sensor_s_contrast(sd, ctrl->value); case V4L2_CID_SATURATION: return sensor_s_saturation(sd, ctrl->value); case V4L2_CID_HUE: return sensor_s_hue(sd, ctrl->value); case V4L2_CID_VFLIP: return sensor_s_vflip(sd, ctrl->value); case V4L2_CID_HFLIP: return sensor_s_hflip(sd, ctrl->value); case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_s_autogain(sd, ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_s_exp_bias(sd, ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_s_autoexp(sd,(enum v4l2_exposure_auto_type) ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_s_wb(sd,(enum v4l2_auto_n_preset_white_balance) ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_s_autowb(sd, ctrl->value); case V4L2_CID_COLORFX: return sensor_s_colorfx(sd,(enum v4l2_colorfx) ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_s_flash_mode(sd,(enum v4l2_flash_led_mode) ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->brightness = 0; info->contrast = 0; info->saturation = 0; info->hue = 0; info->hflip = 0; info->vflip = 0; info->gain = 0; info->autogain = 1; info->exp = 0; info->autoexp = 0; info->autowb = 1; info->wb = 0; info->clrfx = 0; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { { SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);