/* * A V4L2 driver for ov2640 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("raymonxiu"); MODULE_DESCRIPTION("A low-level driver for ov5640 sensors"); MODULE_LICENSE("GPL"); #define AF_WIN_NEW_COORD //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[OV2640]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[OV2640]"x,##arg) #define vfe_dev_print(x,arg...) printk("[OV2640]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x2640 //#define AUTO_FPS #define SHARPNESS 0x10 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The ov2640 sits on i2c with ID 0x60 */ #define I2C_ADDR 0x60 #define SENSOR_NAME "ov2640" //static struct delayed_work sensor_s_ae_ratio_work; static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { {0xff,0x01}, {0x12,0x80}, {0xff,0x00}, {0x2c,0xff}, {0x2e,0xdf}, {0xff,0x01}, {0x03,0x0f},// 0x8f peak //4f //Bit[7:6]: Dummy frame control {0x0f,0x4b}, {0x3c,0x32}, {0x11,0x00}, {0x09,0x01},//03}, //Bit[1:0]: Output drive select {0x04,0xa8},//b7,b6 directs {0x13,0xe5}, {0x14,0x28}, //0x48 peak {0x2c,0x0c}, {0x33,0x78}, {0x3a,0x33}, {0x3b,0xfB}, {0x3e,0x00}, {0x43,0x11}, {0x16,0x10}, {0x39,0x02}, {0x35,0x88}, {0x22,0x09}, {0x37,0x40}, {0x23,0x00}, {0x34,0xa0}, {0x36,0x1a}, {0x06,0x02}, {0x07,0xc0}, {0x0d,0xb7}, {0x0e,0x01}, {0x4c,0x00}, {0x4a,0x81}, {0x21,0x99}, //aec //{{0x24},{0x58}}, //{{0x25},{0x50}}, //{{0x26},{0x92}}, //{{0x24, 0x70}}, //{{0x25, 0x60}}, //{{0x26, 0xa4}}, {0x24,0x48}, {0x25,0x38},//40 {0x26,0x82},//82 {0x5c,0x00}, {0x63,0x00}, {0x46,0x3f}, {0x0c,0x3c}, {0x61,0x70}, {0x62,0x80}, {0x7c,0x05}, {0x20,0x80}, {0x28,0x30}, {0x6c,0x00}, {0x6d,0x80}, {0x6e,0x00}, {0x70,0x02}, {0x71,0x94}, {0x73,0xc1}, {0x3d,0x34}, {0x5a,0x57}, {0x4f,0xbb}, {0x50,0x9c}, {0xff,0x00}, {0xe5,0x7f}, {0xf9,0xc0}, {0x41,0x24}, {0xe0,0x14}, {0x76,0xff}, {0x33,0xa0}, {0x42,0x20}, {0x43,0x18}, {0x4c,0x00}, {0x87,0xd0}, {0x88,0x3f}, {0xd7,0x03}, {0xd9,0x10}, {0xd3,0x82}, {0xc8,0x08}, {0xc9,0x80}, // //{{0xff},{0x00}}, //added by peak on 20120409 {0x7c,0x00}, {0x7d,0x02},//0x00 peak//0x07 {0x7c,0x03}, {0x7d,0x28},//0x48//0x40 {0x7d,0x28},//0x48 peak//0x40 // removed by peak on 20120409 {0x7c,0x08}, {0x7d,0x20}, {0x7d,0x10},//0x10 {0x7d,0x0e},//0x0e //contrast added by peak on 20120409 {0x7c,0x00}, {0x7d,0x04},//0x48//0x40 {0x7c,0x07},//0x48 peak//0x40 {0x7d,0x20}, {0x7d,0x1c}, {0x7d,0x2a},//0x10 {0x7d,0x06},//0x0e {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x00},//brightness value {0x7d,0x00},//sign {0xff,0x00}, {0x7c,0x00}, {0x7d,0x00}, {0x7c,0x05}, {0x7d,0x80}, {0x7d,0x80}, {0x90,0x00}, {0x91,0x0e}, {0x91,0x1a},//e3 {0x91,0x31}, {0x91,0x5a}, {0x91,0x69}, {0x91,0x75}, {0x91,0x7e}, {0x91,0x88}, {0x91,0x8f}, {0x91,0x96}, {0x91,0xa3}, {0x91,0xaf}, {0x91,0xc4}, {0x91,0xd7}, {0x91,0xe8}, {0x91,0x20}, {0x90,0x00}, {0x91,0x04}, {0x91,0x0c}, {0x91,0x20}, {0x91,0x4c}, {0x91,0x60}, {0x91,0x74}, {0x91,0x82}, {0x91,0x8e}, {0x91,0x97}, {0x91,0x9f}, {0x91,0xaa}, {0x91,0xb4}, {0x91,0xc8}, {0x91,0xd9}, {0x91,0xe8}, {0x91,0x20}, {0x92,0x00}, {0x93,0x06}, {0x93,0xc8},//e3 {0x93,0x05}, {0x93,0x05}, {0x93,0x00}, {0x93,0x04}, {0x93,0x00}, {0x93,0x00}, {0x93,0x00}, {0x93,0x00}, {0x93,0x00}, {0x93,0x00}, {0x93,0x00}, {0x96,0x00}, {0x97,0x08}, {0x97,0x19}, {0x97,0x02}, {0x97,0x0c}, {0x97,0x24}, {0x97,0x30}, {0x97,0x28}, {0x97,0x26}, {0x97,0x02}, {0x97,0x98}, {0x97,0x80}, {0x97,0x00}, {0x97,0x00}, {0xc3,0xef},//ed {0xa4,0x00}, {0xa8,0x00}, {0xbf,0x00}, {0xba,0xdc}, {0xbb,0x08}, {0xb6,0x20}, {0xb8,0x30}, {0xb7,0x20}, {0xb9,0x30}, {0xb3,0xb4}, {0xb4,0xca}, {0xb5,0x34}, {0xb0,0x46}, {0xb1,0x46}, {0xb2,0x06}, {0xc7,0x00}, {0xc6,0x51}, {0xc5,0x11}, {0xc4,0x9c}, /// {0xc0,0xc8}, {0xc1,0x96}, {0x86,0x3d}, {0x50,0x92}, {0x51,0x90}, {0x52,0x2c}, {0x53,0x00}, {0x54,0x00}, {0x55,0x88}, {0x57,0x00}, {0x5a,0x50}, {0x5b,0x3c}, {0x5c,0x00}, {0xc3,0xed}, {0x7f,0x00}, {0xda,0x01}, {0xe5,0x1f}, {0xe1,0x67}, {0xe0,0x00}, {0xdd,0x7f}, {0x05,0x00}, {0xff,0x01}, {0x5d,0x55},//0x00 //{{0x5e, 0x7d}},//0x3c //{{0x5f, 0x7d}},//0x28 //{{0x60, 0x55}},//0x55 {0x5e,0x55},//0x3c {0x5f,0x55},//0x28 {0x60,0x55},//0x55 {0xff,0x00}, {0xc3,0xef}, {0xa6,0x00}, {0xa7,0x0f}, {0xa7,0x4e}, {0xa7,0x7a}, {0xa7,0x33}, {0xa7,0x00}, {0xa7,0x23}, {0xa7,0x27}, {0xa7,0x3a}, {0xa7,0x70}, {0xa7,0x33}, {0xa7,0x00},//L {0xa7,0x23}, {0xa7,0x20}, {0xa7,0x0c}, {0xa7,0x66}, {0xa7,0x33}, {0xa7,0x00}, {0xa7,0x23}, {0xc3,0xef}, {0xa6,0x00}, {0xa7,0x20}, {0xa7,0x00}, {0xa7,0x20},//red //18 {0xa7,0x31}, {0xa7,0x10}, {0xa7,0x28}, {0xa7,0x00}, {0xa7,0x20}, {0xa7,0x1a},//green {0xa7,0x31}, {0xa7,0x10}, {0xa7,0x28}, {0xa7,0x00}, {0xa7,0x20}, {0xa7,0x19},//blue {0xa7,0x31}, {0xa7,0x10}, {0xa7,0x28}, {0xff,0x00}, {0x92,0x00}, {0x93,0x06}, //0x06 peak {0x93,0xe3},//e {0x93,0x05}, {0x93,0x03}, {0x93,0x00}, {0x93,0x04}, //{{0x03, 0x0f}}, {0xe0, 0x04}, {0xc0, 0xc8}, {0xc1, 0x96}, {0x86, 0x3d}, {0x50, 0x89}, {0x51, 0x90}, {0x52, 0x2c}, {0x53, 0x00}, {0x54, 0x00}, {0x55, 0x88}, {0x57, 0x00}, {0x5a, 0xa0}, {0x5b, 0x78}, {0x5c, 0x00}, {0xd3, 0x82}, {0xe0, 0x00}, }; static struct regval_list sensor_uxga_regs[] = { //1600*1200 {0xff,0x00}, {0xe0,0x04}, {0xc0,0xc8}, {0xc1,0x96}, {0x86,0x3d}, {0x50,0x00}, {0x51,0x90}, {0x52,0x2c}, {0x53,0x00}, {0x54,0x00}, {0x55,0x88}, {0x57,0x00}, {0x5a,0x90}, {0x5b,0x2c}, {0x5c,0x05}, {0xd3,0x82}, {0xe0,0x00}, }; static struct regval_list sensor_sxga_regs[] = { //1280*960 }; static struct regval_list sensor_xga_regs[] = { //XGA: 1024*768 {0xff,0x00}, {0xe0,0x04}, {0xc0,0xc8}, {0xc1,0x96}, {0x86,0x3d}, {0x50,0x00}, {0x51,0x90}, {0x52,0x2c}, {0x53,0x00}, {0x54,0x00}, {0x55,0x88}, {0x57,0x00}, {0x5a,0x90}, {0x5b,0x2c}, {0x5c,0x05}, {0xd3,0x82}, {0xe0,0x00}, }; static struct regval_list sensor_720p_regs[] = { //1280*720 {0xff,0x00}, {0xe0,0x04}, {0xc0,0xc8}, {0xc1,0x96}, {0x86,0x3d}, {0x50,0x00}, {0x51,0x90}, {0x52,0x2c}, {0x53,0x00}, {0x54,0x00}, {0x55,0x88}, {0x57,0x00}, {0x5a,0x40}, {0x5b,0xb4}, {0x5c,0x01}, {0xd3,0x82}, {0xe0,0x00}, }; static struct regval_list sensor_svga_regs[] = { //SVGA: 800*600 {0xff,0x00}, {0xe0,0x04}, {0xc0,0xc8}, {0xc1,0x96}, {0x86,0x35}, {0x50,0x89}, {0x51,0x90}, {0x52,0x2c}, {0x53,0x00}, {0x54,0x00}, {0x55,0x88}, {0x57,0x00}, {0x5a,0xc8}, {0x5b,0x96}, {0x5c,0x00}, {0xd3,0x82}, {0xe0,0x00}, }; static struct regval_list sensor_vga_regs[] = { //VGA: 640*480 {0xe0, 0x04}, {0xc0, 0xc8}, {0xc1, 0x96}, {0x86, 0x3d}, {0x50, 0x89}, {0x51, 0x90}, {0x52, 0x2c}, {0x53, 0x00}, {0x54, 0x00}, {0x55, 0x88}, {0x57, 0x00}, {0x5a, 0xa0}, {0x5b, 0x78}, {0x5c, 0x00}, {0xd3, 0x82}, {0xe0, 0x00}, }; //misc static struct regval_list sensor_oe_disable_regs[] = { {0xc3,0x00}, {0xc4,0x00}, }; static struct regval_list sensor_oe_enable_regs[] = { }; static struct regval_list sensor_sw_stby_on_regs[] = { }; static struct regval_list sensor_sw_stby_off_regs[] = { }; /* * The white balance settings * Here only tune the R G B channel gain. * The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb */ /* static struct regval_list sensor_wb_manual[] = { }; */ static struct regval_list sensor_wb_auto_regs[] = { {0xff, 0x00}, //AWB auto, bit[1]:0,auto {0xc7, 0x00}, }; static struct regval_list sensor_wb_incandescence_regs[] = { {0xff, 0x00}, {0xc7, 0x40}, {0xcc, 0x42}, {0xcd, 0x3f}, {0xce, 0x71}, }; static struct regval_list sensor_wb_fluorescent_regs[] = { {0xff, 0x00}, {0xc7, 0x40}, {0xcc, 0x52}, {0xcd, 0x41}, {0xce, 0x66}, }; static struct regval_list sensor_wb_tungsten_regs[] = { {0xff, 0x00}, {0xc7, 0x40}, {0xcc, 0x52}, {0xcd, 0x41}, {0xce, 0x66}, }; /* static struct regval_list sensor_wb_horizon[] = { //null }; */ static struct regval_list sensor_wb_daylight_regs[] = { {0xff, 0x00}, {0xc7, 0x40}, {0xcc, 0x5e}, {0xcd, 0x41}, {0xce, 0x54}, }; /* static struct regval_list sensor_wb_flash[] = { //null }; */ static struct regval_list sensor_wb_cloud_regs[] = { {0xff, 0x00}, {0xc7, 0x40}, {0xcc, 0x65}, {0xcd, 0x41}, {0xce, 0x4f}, }; /*static struct regval_list sensor_wb_shade[] = { //null }; static struct cfg_array sensor_wb[] = { { .regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL .size = ARRAY_SIZE(sensor_wb_manual), }, { .regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO .size = ARRAY_SIZE(sensor_wb_auto_regs), }, { .regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT .size = ARRAY_SIZE(sensor_wb_incandescence_regs), }, { .regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT .size = ARRAY_SIZE(sensor_wb_fluorescent_regs), }, { .regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H .size = ARRAY_SIZE(sensor_wb_tungsten_regs), }, { .regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON .size = ARRAY_SIZE(sensor_wb_horizon), }, { .regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT .size = ARRAY_SIZE(sensor_wb_daylight_regs), }, { .regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH .size = ARRAY_SIZE(sensor_wb_flash), }, { .regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY .size = ARRAY_SIZE(sensor_wb_cloud_regs), }, { .regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE .size = ARRAY_SIZE(sensor_wb_shade), }, }; */ /* * The color effect settings */ static struct regval_list sensor_colorfx_none_regs[] = { {0x7c,0x00}, {0x7d,0x06}, }; static struct regval_list sensor_colorfx_bw_regs[] = { {0x7c,0x00}, {0x7d,0x20}, }; static struct regval_list sensor_colorfx_sepia_regs[] = { {0x7c,0x00}, {0x7d,0x18}, {0x7c,0x05}, {0x7d,0x40}, {0x7d,0xA0}, }; static struct regval_list sensor_colorfx_negative_regs[] = { {0x7c,0x00}, {0x7d,0x40}, }; static struct regval_list sensor_colorfx_emboss_regs[] = { }; static struct regval_list sensor_colorfx_sketch_regs[] = { }; static struct regval_list sensor_colorfx_sky_blue_regs[] = { {0x7c,0x00}, {0x7d,0x18}, {0x7c,0x05}, {0x7d,0xa0}, {0x7d,0x40}, }; static struct regval_list sensor_colorfx_grass_green_regs[] = { {0x7c,0x00}, {0x7d,0x18}, {0x7c,0x05}, {0x7d,0x40}, {0x7d,0x40}, }; static struct regval_list sensor_colorfx_skin_whiten_regs[] = { //NULL }; static struct regval_list sensor_colorfx_vivid_regs[] = { //NULL }; static struct regval_list sensor_colorfx_aqua_regs[] = { //null }; static struct regval_list sensor_colorfx_art_freeze_regs[] = { //null }; static struct regval_list sensor_colorfx_silhouette_regs[] = { //null }; static struct regval_list sensor_colorfx_solarization_regs[] = { //null }; static struct regval_list sensor_colorfx_antique_regs[] = { //null }; static struct regval_list sensor_colorfx_set_cbcr_regs[] = { //null }; static struct cfg_array sensor_colorfx[] = { { .regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0, .size = ARRAY_SIZE(sensor_colorfx_none_regs), }, { .regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1, .size = ARRAY_SIZE(sensor_colorfx_bw_regs), }, { .regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2, .size = ARRAY_SIZE(sensor_colorfx_sepia_regs), }, { .regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3, .size = ARRAY_SIZE(sensor_colorfx_negative_regs), }, { .regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4, .size = ARRAY_SIZE(sensor_colorfx_emboss_regs), }, { .regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5, .size = ARRAY_SIZE(sensor_colorfx_sketch_regs), }, { .regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6, .size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs), }, { .regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7, .size = ARRAY_SIZE(sensor_colorfx_grass_green_regs), }, { .regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8, .size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs), }, { .regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9, .size = ARRAY_SIZE(sensor_colorfx_vivid_regs), }, { .regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10, .size = ARRAY_SIZE(sensor_colorfx_aqua_regs), }, { .regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11, .size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs), }, { .regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12, .size = ARRAY_SIZE(sensor_colorfx_silhouette_regs), }, { .regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13, .size = ARRAY_SIZE(sensor_colorfx_solarization_regs), }, { .regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14, .size = ARRAY_SIZE(sensor_colorfx_antique_regs), }, { .regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15, .size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs), }, }; /* * The brightness setttings */ static struct regval_list sensor_brightness_neg4_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg3_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg2_regs[] = { //NULL }; static struct regval_list sensor_brightness_neg1_regs[] = { //NULL }; static struct regval_list sensor_brightness_zero_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos1_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos2_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos3_regs[] = { //NULL }; static struct regval_list sensor_brightness_pos4_regs[] = { //NULL }; static struct cfg_array sensor_brightness[] = { { .regs = sensor_brightness_neg4_regs, .size = ARRAY_SIZE(sensor_brightness_neg4_regs), }, { .regs = sensor_brightness_neg3_regs, .size = ARRAY_SIZE(sensor_brightness_neg3_regs), }, { .regs = sensor_brightness_neg2_regs, .size = ARRAY_SIZE(sensor_brightness_neg2_regs), }, { .regs = sensor_brightness_neg1_regs, .size = ARRAY_SIZE(sensor_brightness_neg1_regs), }, { .regs = sensor_brightness_zero_regs, .size = ARRAY_SIZE(sensor_brightness_zero_regs), }, { .regs = sensor_brightness_pos1_regs, .size = ARRAY_SIZE(sensor_brightness_pos1_regs), }, { .regs = sensor_brightness_pos2_regs, .size = ARRAY_SIZE(sensor_brightness_pos2_regs), }, { .regs = sensor_brightness_pos3_regs, .size = ARRAY_SIZE(sensor_brightness_pos3_regs), }, { .regs = sensor_brightness_pos4_regs, .size = ARRAY_SIZE(sensor_brightness_pos4_regs), }, }; /* * The contrast setttings */ static struct regval_list sensor_contrast_neg4_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg3_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg2_regs[] = { //NULL }; static struct regval_list sensor_contrast_neg1_regs[] = { //NULL }; static struct regval_list sensor_contrast_zero_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos1_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos2_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos3_regs[] = { //NULL }; static struct regval_list sensor_contrast_pos4_regs[] = { //NULL }; static struct cfg_array sensor_contrast[] = { { .regs = sensor_contrast_neg4_regs, .size = ARRAY_SIZE(sensor_contrast_neg4_regs), }, { .regs = sensor_contrast_neg3_regs, .size = ARRAY_SIZE(sensor_contrast_neg3_regs), }, { .regs = sensor_contrast_neg2_regs, .size = ARRAY_SIZE(sensor_contrast_neg2_regs), }, { .regs = sensor_contrast_neg1_regs, .size = ARRAY_SIZE(sensor_contrast_neg1_regs), }, { .regs = sensor_contrast_zero_regs, .size = ARRAY_SIZE(sensor_contrast_zero_regs), }, { .regs = sensor_contrast_pos1_regs, .size = ARRAY_SIZE(sensor_contrast_pos1_regs), }, { .regs = sensor_contrast_pos2_regs, .size = ARRAY_SIZE(sensor_contrast_pos2_regs), }, { .regs = sensor_contrast_pos3_regs, .size = ARRAY_SIZE(sensor_contrast_pos3_regs), }, { .regs = sensor_contrast_pos4_regs, .size = ARRAY_SIZE(sensor_contrast_pos4_regs), }, }; /* * The saturation setttings */ static struct regval_list sensor_saturation_neg4_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg3_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg2_regs[] = { //NULL }; static struct regval_list sensor_saturation_neg1_regs[] = { //NULL }; static struct regval_list sensor_saturation_zero_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos1_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos2_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos3_regs[] = { //NULL }; static struct regval_list sensor_saturation_pos4_regs[] = { //NULL }; static struct cfg_array sensor_saturation[] = { { .regs = sensor_saturation_neg4_regs, .size = ARRAY_SIZE(sensor_saturation_neg4_regs), }, { .regs = sensor_saturation_neg3_regs, .size = ARRAY_SIZE(sensor_saturation_neg3_regs), }, { .regs = sensor_saturation_neg2_regs, .size = ARRAY_SIZE(sensor_saturation_neg2_regs), }, { .regs = sensor_saturation_neg1_regs, .size = ARRAY_SIZE(sensor_saturation_neg1_regs), }, { .regs = sensor_saturation_zero_regs, .size = ARRAY_SIZE(sensor_saturation_zero_regs), }, { .regs = sensor_saturation_pos1_regs, .size = ARRAY_SIZE(sensor_saturation_pos1_regs), }, { .regs = sensor_saturation_pos2_regs, .size = ARRAY_SIZE(sensor_saturation_pos2_regs), }, { .regs = sensor_saturation_pos3_regs, .size = ARRAY_SIZE(sensor_saturation_pos3_regs), }, { .regs = sensor_saturation_pos4_regs, .size = ARRAY_SIZE(sensor_saturation_pos4_regs), }, }; /* * The exposure target setttings */ static struct regval_list sensor_ev_neg4_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x28},//brightness value {0x7d,0x0e},//sign }; static struct regval_list sensor_ev_neg3_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x20},//brightness value {0x7d,0x0e},//sign }; static struct regval_list sensor_ev_neg2_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x18},//brightness value {0x7d,0x0e},//sign }; static struct regval_list sensor_ev_neg1_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x10},//brightness value {0x7d,0x0e},//sign }; static struct regval_list sensor_ev_zero_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x00},//brightness value {0x7d,0x00},//sign }; static struct regval_list sensor_ev_pos1_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x00},//brightness value {0x7d,0x00},//sign }; static struct regval_list sensor_ev_pos2_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x10},//brightness value {0x7d,0x00},//sign }; static struct regval_list sensor_ev_pos3_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x20},//brightness value {0x7d,0x00},//sign }; static struct regval_list sensor_ev_pos4_regs[] = { {0xff,0x00},//register page {0x7c,0x00}, {0x7d,0x04}, {0x7c,0x09}, {0x7d,0x30},//brightness value {0x7d,0x00},//sign }; static struct cfg_array sensor_ev[] = { { .regs = sensor_ev_neg4_regs, .size = ARRAY_SIZE(sensor_ev_neg4_regs), }, { .regs = sensor_ev_neg3_regs, .size = ARRAY_SIZE(sensor_ev_neg3_regs), }, { .regs = sensor_ev_neg2_regs, .size = ARRAY_SIZE(sensor_ev_neg2_regs), }, { .regs = sensor_ev_neg1_regs, .size = ARRAY_SIZE(sensor_ev_neg1_regs), }, { .regs = sensor_ev_zero_regs, .size = ARRAY_SIZE(sensor_ev_zero_regs), }, { .regs = sensor_ev_pos1_regs, .size = ARRAY_SIZE(sensor_ev_pos1_regs), }, { .regs = sensor_ev_pos2_regs, .size = ARRAY_SIZE(sensor_ev_pos2_regs), }, { .regs = sensor_ev_pos3_regs, .size = ARRAY_SIZE(sensor_ev_pos3_regs), }, { .regs = sensor_ev_pos4_regs, .size = ARRAY_SIZE(sensor_ev_pos4_regs), }, }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_yuv422_yuyv[] = { {0xff,0x00}, {0xda,0x01}, }; static struct regval_list sensor_fmt_yuv422_yvyu[] = { {0xff,0x00}, {0xda,0x01}, }; static struct regval_list sensor_fmt_yuv422_vyuy[] = { {0xff,0x00}, {0xda,0x01}, }; static struct regval_list sensor_fmt_yuv422_uyvy[] = { {0xff,0x00}, {0xda,0x01}, }; /* stuff about exposure when capturing image and video*/ //static int sensor_s_denoise_value(struct v4l2_subdev *sd, unsigned char value); //unsigned char ogain,oexposurelow,oexposuremid,oexposurehigh; //unsigned int preview_exp_line,preview_fps; //unsigned long preview_pclk; /* *********************************************begin of ******************************************** */ static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xFF, 0x01); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x04, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_hflip!\n"); return ret; } val &= (1<<7); val = val>>5; //0x12 bit5 is mirror *value = val; info->hflip = *value; return 0; } static int sensor_s_hflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xFF, 0x01); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x04, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_hflip!\n"); return ret; } val&= ~0x80; switch (value) { case 0: val |= 0x00; break; case 1: val |= 0x80; break; default: return -EINVAL; } ret = sensor_write(sd, 0x04, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } msleep(50); info->hflip = value; return 0; } static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xFF, 0x01); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x04, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_vflip!\n"); return ret; } val &= (1<<4); val = val>>4; //0x12 bit4 is upsidedown *value = val; info->vflip = *value; return 0; } static int sensor_s_vflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; vfe_dev_dbg("%s,------------------%d\n",__func__,value); ret = sensor_write(sd, 0xFF, 0x01); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x04, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_vflip!\n"); return ret; } val&= ~0x50; switch (value) { case 0: val |= 0x00; break; case 1: val |= 0x50; break; default: return -EINVAL; } ret = sensor_write(sd, 0x04, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } msleep(50); info->vflip = value; return 0; } static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_autogain(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x13, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autoexp!\n"); return ret; } val &= 0x01; if (val == 0x01) { *value = V4L2_EXPOSURE_AUTO; } else { *value = V4L2_EXPOSURE_MANUAL; } info->autoexp = *value; return 0; } static int sensor_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x13, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autoexp!\n"); return ret; } switch (value) { case V4L2_EXPOSURE_AUTO: val |= 0x01; break; case V4L2_EXPOSURE_MANUAL: val &= 0xfe; break; case V4L2_EXPOSURE_SHUTTER_PRIORITY: return -EINVAL; case V4L2_EXPOSURE_APERTURE_PRIORITY: return -EINVAL; default: return -EINVAL; } ret = sensor_write(sd, 0x13, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } msleep(50); info->autoexp = value; return 0; } static int sensor_g_autowb(struct v4l2_subdev *sd, int *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_read(sd, 0x13, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autowb!\n"); return ret; } val &= (1<<2); val = val>>2; //0x13 bit2 is awb enable *value = val; info->autowb = *value; return 0; } static int sensor_s_autowb(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs)); if (ret < 0) { vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n"); return ret; } ret = sensor_read(sd, 0xc7, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autowb!\n"); return ret; } switch(value) { case 0: val |= 0x40; break; case 1: val &=~0x40; break; default: break; } ret = sensor_write(sd, 0xc7, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } msleep(50); info->autowb = value; return 0; } static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_hue(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_gain(struct v4l2_subdev *sd, int value) { return -EINVAL; } /* *********************************************end of ******************************************** */ static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->brightness; return 0; } static int sensor_s_brightness(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->brightness == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size)) info->brightness = value; return 0; } static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->contrast; return 0; } static int sensor_s_contrast(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->contrast == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size)) info->contrast = value; return 0; } static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->saturation; return 0; } static int sensor_s_saturation(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->saturation == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size)) info->saturation = value; return 0; } static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp_bias; return 0; } static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->exp_bias == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size)) info->exp_bias = value; return 0; } static int sensor_g_wb(struct v4l2_subdev *sd, int *value) { struct sensor_info *info = to_state(sd); enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value; *wb_type = info->wb; return 0; } static int sensor_s_wb(struct v4l2_subdev *sd, enum v4l2_auto_n_preset_white_balance value) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("func=%s,value=%d\n",__func__,value); if (value == V4L2_WHITE_BALANCE_AUTO) { ret = sensor_s_autowb(sd, 1); return ret; } else { ret = sensor_s_autowb(sd, 0); if(ret < 0) { vfe_dev_err("sensor_s_autowb error, return %x!\n",ret); return ret; } switch (value) { case V4L2_WHITE_BALANCE_CLOUDY: ret = sensor_write_array(sd, sensor_wb_cloud_regs, ARRAY_SIZE(sensor_wb_cloud_regs)); break; case V4L2_WHITE_BALANCE_DAYLIGHT: ret = sensor_write_array(sd, sensor_wb_daylight_regs, ARRAY_SIZE(sensor_wb_daylight_regs)); break; case V4L2_WHITE_BALANCE_INCANDESCENT: ret = sensor_write_array(sd, sensor_wb_incandescence_regs, ARRAY_SIZE(sensor_wb_incandescence_regs)); break; case V4L2_WHITE_BALANCE_FLUORESCENT: ret = sensor_write_array(sd, sensor_wb_fluorescent_regs, ARRAY_SIZE(sensor_wb_fluorescent_regs)); break; case V4L2_WHITE_BALANCE_FLUORESCENT_H: ret = sensor_write_array(sd, sensor_wb_tungsten_regs, ARRAY_SIZE(sensor_wb_tungsten_regs)); break; default: return -EINVAL; } } if (ret < 0) { vfe_dev_err("sensor_s_wb error, return %x!\n",ret); return ret; } msleep(50); info->wb = value; return 0; } static int sensor_g_colorfx(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value; *clrfx_type = info->clrfx; return 0; } static int sensor_s_colorfx(struct v4l2_subdev *sd, enum v4l2_colorfx value) { struct sensor_info *info = to_state(sd); if(info->clrfx == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size)) info->clrfx = value; return 0; } static int sensor_g_flash_mode(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value; *flash_mode = info->flash_mode; return 0; } static int sensor_s_flash_mode(struct v4l2_subdev *sd, enum v4l2_flash_led_mode value) { struct sensor_info *info = to_state(sd); info->flash_mode = value; return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_write_array(sd, sensor_sw_stby_on_regs ,ARRAY_SIZE(sensor_sw_stby_on_regs)); if(ret < 0) vfe_dev_err("soft stby falied!\n"); msleep(10); vfe_dev_print("disalbe oe!\n"); ret = sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs)); if(ret < 0) vfe_dev_err("disalbe oe falied!\n"); cci_lock(sd); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); msleep(10); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); msleep(10); cci_unlock(sd); vfe_dev_print("enable oe!\n"); ret = sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs)); if(ret < 0) vfe_dev_err("enable oe falied!\n"); ret = sensor_write_array(sd, sensor_sw_stby_off_regs, ARRAY_SIZE(sensor_sw_stby_off_regs)); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); msleep(10); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); msleep(1); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); msleep(10); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); msleep(10); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); msleep(30); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); msleep(10); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_write(sd, 0xff, 0x01)) LOG_ERR_RET(sensor_read(sd, 0x0a, &rdval)) if(rdval != 0x26) return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0x0b, &rdval)) printk("%s,%d:rdval = 0x%x\n",__func__,__LINE__,rdval); if(rdval != 0x42) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init 0x%x\n",val); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = 0; info->height = 0; info->brightness = 0; info->contrast = 0; info->saturation = 0; info->hue = 0; info->hflip = 0; info->vflip = 0; info->gain = 0; info->autogain = 1; info->exp_bias = 0; info->autoexp = 1; info->autowb = 1; info->wb = V4L2_WHITE_BALANCE_AUTO; info->clrfx = V4L2_COLORFX_NONE; info->band_filter = V4L2_CID_POWER_LINE_FREQUENCY_50HZ; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "YUYV 4:2:2", .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8, .regs = sensor_fmt_yuv422_yuyv, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv), .bpp = 2, }, { .desc = "YVYU 4:2:2", .mbus_code = V4L2_MBUS_FMT_YVYU8_2X8, .regs = sensor_fmt_yuv422_yvyu, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu), .bpp = 2, }, { .desc = "UYVY 4:2:2", .mbus_code = V4L2_MBUS_FMT_UYVY8_2X8, .regs = sensor_fmt_yuv422_uyvy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy), .bpp = 2, }, { .desc = "VYUY 4:2:2", .mbus_code = V4L2_MBUS_FMT_VYUY8_2X8, .regs = sensor_fmt_yuv422_vyuy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy), .bpp = 2, }, // { // .desc = "Raw RGB Bayer", // .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8, // .regs = sensor_fmt_raw, // .regs_size = ARRAY_SIZE(sensor_fmt_raw), // .bpp = 1 // }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* UXGA */ { .width = UXGA_WIDTH, .height = UXGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_uxga_regs, .regs_size = ARRAY_SIZE(sensor_uxga_regs), .set_size = NULL, }, /* SXGA */ { .width = SXGA_WIDTH, .height = SXGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_sxga_regs, .regs_size = ARRAY_SIZE(sensor_sxga_regs), .set_size = NULL, }, /* 720p */ { .width = HD720_WIDTH, .height = HD720_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_720p_regs, .regs_size = ARRAY_SIZE(sensor_720p_regs), .set_size = NULL, }, /* XGA */ { .width = XGA_WIDTH, .height = XGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_xga_regs, .regs_size = ARRAY_SIZE(sensor_xga_regs), .set_size = NULL, }, /* SVGA */ { .width = SVGA_WIDTH, .height = SVGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_svga_regs, .regs_size = ARRAY_SIZE(sensor_svga_regs), .set_size = NULL, }, /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = sensor_vga_regs, .regs_size = ARRAY_SIZE(sensor_vga_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code)//linux-3.0 break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE;//linux-3.0 /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width;//linux-3.0 fmt->height = wsize->height;//linux-3.0 return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; vfe_dev_dbg("sensor_s_fmt_mbus_code=%x\n",sensor_fmt->mbus_code); sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size); ret = 0; vfe_dev_dbg("wsize->width=%d,wsize->height=%d\n" ,wsize->width,wsize->height); if (wsize->regs) { ret = sensor_write_array(sd, wsize->regs , wsize->regs_size); if (ret < 0) return ret; } if (wsize->set_size) { ret = wsize->set_size(sd); if (ret < 0) return ret; } info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; //struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->timeperframe.numerator = 1; cp->timeperframe.denominator = SENSOR_FRAME_RATE; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* *********************************************begin of ******************************************** */ static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ /* see sensor_s_parm and sensor_g_parm for the meaning of value */ // vfe_dev_dbg("%s,%d:qc->id = %d\n",__func__,__LINE__,qc->id); switch (qc->id) { // case V4L2_CID_BRIGHTNESS: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_CONTRAST: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_SATURATION: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_HUE: // return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0); case V4L2_CID_VFLIP: case V4L2_CID_HFLIP: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); // case V4L2_CID_GAIN: // return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128); // case V4L2_CID_AUTOGAIN: // return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0); case V4L2_CID_EXPOSURE_AUTO: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); case V4L2_CID_DO_WHITE_BALANCE: case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 9, 1, 0); case V4L2_CID_AUTO_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_COLORFX: return v4l2_ctrl_query_fill(qc, 0, 9, 1, 0); case V4L2_CID_FLASH_LED_MODE: return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_g_brightness(sd, &ctrl->value); case V4L2_CID_CONTRAST: return sensor_g_contrast(sd, &ctrl->value); case V4L2_CID_SATURATION: return sensor_g_saturation(sd, &ctrl->value); case V4L2_CID_HUE: return sensor_g_hue(sd, &ctrl->value); case V4L2_CID_VFLIP: return sensor_g_vflip(sd, &ctrl->value); case V4L2_CID_HFLIP: return sensor_g_hflip(sd, &ctrl->value); case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_g_autogain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_g_exp_bias(sd, &ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_g_autoexp(sd, &ctrl->value); case V4L2_CID_DO_WHITE_BALANCE: case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_g_wb(sd, &ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_g_autowb(sd, &ctrl->value); case V4L2_CID_COLORFX: return sensor_g_colorfx(sd, &ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_g_flash_mode(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (qc.type == V4L2_CTRL_TYPE_MENU || qc.type == V4L2_CTRL_TYPE_INTEGER || qc.type == V4L2_CTRL_TYPE_BOOLEAN) { if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { return -ERANGE; } } switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_s_brightness(sd, ctrl->value); case V4L2_CID_CONTRAST: return sensor_s_contrast(sd, ctrl->value); case V4L2_CID_SATURATION: return sensor_s_saturation(sd, ctrl->value); case V4L2_CID_HUE: return sensor_s_hue(sd, ctrl->value); case V4L2_CID_VFLIP: return sensor_s_vflip(sd, ctrl->value); case V4L2_CID_HFLIP: return sensor_s_hflip(sd, ctrl->value); case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_s_autogain(sd, ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_s_exp_bias(sd, ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_s_autoexp(sd,(enum v4l2_exposure_auto_type) ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_s_wb(sd,(enum v4l2_auto_n_preset_white_balance) ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_s_autowb(sd, ctrl->value); case V4L2_CID_COLORFX: return sensor_s_colorfx(sd,(enum v4l2_colorfx) ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_s_flash_mode(sd,(enum v4l2_flash_led_mode) ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; info->auto_focus = 0; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { { SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);