/* * A V4L2 driver for OV2710 Raw cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("xiongbiao"); MODULE_DESCRIPTION("A low-level driver for OV2710 Raw sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 1 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[OV2710 Raw]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[OV2710 Raw]"x,##arg) #define vfe_dev_print(x,arg...) printk("[OV2710 Raw]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x2710 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The ov2710 i2c address */ //#define I2C_ADDR 0x6c #define OV2710_WRITE_ADDR (0x6c) #define OV2710_READ_ADDR (0x6d) //static struct delayed_work sensor_s_ae_ratio_work; static struct v4l2_subdev *glb_sd; #define SENSOR_NAME "ov2710_mipi" /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = {}; static struct regval_list sensor_1080p_regs[] = { //1080: 1920*1080@30fps {0x3103,0x93}, {0x3008,0x82}, {REG_DLY,0x10}, {0x3008,0x42}, {0x3017,0x00},//7f},pad output enable01 0-input 1-output {0x3018,0x00},//fc},pad output enable02 0-input 1-output {0x3706,0x61}, {0x3712,0x0c}, {0x3630,0x6d}, {0x3801,0xb4}, {0x3621,0x04}, {0x3604,0x60}, {0x3603,0xa7}, {0x3631,0x26}, {0x3600,0x04}, {0x3620,0x37}, {0x3623,0x00}, {0x3702,0x9e}, {0x3703,0x5c}, {0x3704,0x40}, {0x370d,0x0f}, {0x3713,0x9f}, {0x3714,0x4c}, {0x3710,0x9e}, {0x3801,0xc4}, {0x3605,0x05}, {0x3606,0x3f}, {0x302d,0x90}, {0x370b,0x40}, {0x3716,0x31}, {0x3707,0x52}, {0x380d,0x74}, {0x5181,0x20}, {0x518f,0x00}, {0x4301,0xff}, {0x4303,0x00}, {0x3a00,0x78}, // {0x300f,0x88}, // {0x3011,0x28}, {0x3a1a,0x06}, {0x3a18,0x00}, {0x3a19,0x7a}, {0x3a13,0x54}, {0x382e,0x0f}, {0x381a,0x1a}, {0x401d,0x02}, {0x5688,0x03}, {0x5684,0x07}, {0x5685,0xa0}, {0x5686,0x04}, {0x5687,0x43}, {0x3011,0x0a}, {0x300f,0xc3}, {REG_DLY,0x10}, //{0x3017,0x00}, //{0x3018,0x00}, {0x300e,0x04}, {0x3030,0x2b},// extent dvdd {0x4801,0x0f}, // {0x4800,0x24}, //AEC control {0x3a0f,0x40}, {0x3a10,0x38}, {0x3a1b,0x48}, {0x3a1e,0x30}, {0x3a11,0x90}, {0x3a1f,0x10}, //{0x3008,0x02}, /*close ae */ {0x3503,0x07}, //{0x302c,0x02}, {0x3501,0x2e}, {0x3502,0x00}, //{0x3501,0x46}, //{0x3502,0x20}, {0x350b,0x10}, //{0x3a00,0x7c}, //{0x5001,0x4f}, /* close awb */ {0x5001,0x4f}, {0x3406,0x01}, {0x3400,0x04}, {0x3401,0x00}, {0x3402,0x04}, {0x3403,0x00}, {0x3404,0x04}, {0x3405,0x00}, /* modified blc */ //{0x4002,0x40}, {0x4000,0x05}, //{0x401d,0x02}, /*drive capacity*/ {0x302c,0x00}, /* close lenc */ //{0x5000,0xdf}, {0x5000,0x5b}, {0x3008,0x02},//nomal work mode }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { }; static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char explow,expmid,exphigh; struct sensor_info *info = to_state(sd); if(exp_val>0x1fffff) exp_val=0x1fffff; exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16); expmid = (unsigned char) ( (0x00ff00&exp_val)>>8); explow = (unsigned char) (0x0000ff&exp_val) ; sensor_write(sd, 0x3502, explow); sensor_write(sd, 0x3501, expmid); sensor_write(sd, 0x3500, exphigh); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); unsigned char gainlow=0; unsigned char gainhigh=0; unsigned char gainlow_l4b=0; unsigned int tmp_gain_val=0,real_gain = 1, awb_gain = 0; tmp_gain_val=gain_val; //determine ?gain_val>31 if(tmp_gain_val>31) { gainlow |= 0x10; real_gain = real_gain * 2; tmp_gain_val = tmp_gain_val>>1; } //determine ?gain_val>2*31 if(tmp_gain_val>31) { gainlow |= 0x20; real_gain = real_gain * 2; tmp_gain_val = tmp_gain_val>>1; } //determine ?gain_val>4*31 if(tmp_gain_val>31) { gainlow |= 0x40; real_gain = real_gain * 2; tmp_gain_val = tmp_gain_val>>1; } //determine ?gain_val>8*31 if(tmp_gain_val>31) { gainlow |= 0x80; real_gain = real_gain * 2; tmp_gain_val = tmp_gain_val>>1; } //determine ?gain_val>16*31 if(tmp_gain_val>31) { gainhigh = 0x01; real_gain = real_gain * 2; tmp_gain_val = tmp_gain_val>>1; } if(tmp_gain_val>=16) gainlow_l4b=((tmp_gain_val-16)&0x0f); gainlow = gainlow | gainlow_l4b; real_gain = real_gain * (16*gainlow_l4b /16 +16); awb_gain = gain_val * 1024/real_gain; sensor_write(sd, 0x350b, gainlow); sensor_write(sd, 0x350a, gainhigh); sensor_write(sd, 0x3400, (awb_gain >> 8)); sensor_write(sd, 0x3401, (awb_gain & 0xff)); sensor_write(sd, 0x3402, (awb_gain >> 8)); sensor_write(sd, 0x3403, (awb_gain & 0xff)); sensor_write(sd, 0x3404, (awb_gain >> 8)); sensor_write(sd, 0x3405, (awb_gain & 0xff)); info->gain = gain_val; return 0; } static int ov2710_sensor_vts; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val,shutter,frame_length; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; if(exp_val>0xfffff) exp_val=0xfffff; shutter = exp_val/16; if(shutter > ov2710_sensor_vts- 4) frame_length = shutter + 4; else frame_length = ov2710_sensor_vts; sensor_write(sd,0x3212,0x00); sensor_write(sd, 0x380f, (frame_length & 0xff)); sensor_write(sd, 0x380e, (frame_length >> 8)); sensor_s_exp(sd,exp_val); sensor_s_gain(sd,gain_val); sensor_write(sd,0x3212,0x10); sensor_write(sd,0x3212,0xa0); info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret = 0; return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH); if(ret < 0) vfe_dev_err("soft stby falied!\n"); usleep_range(10000,12000); cci_lock(sd); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); cci_unlock(sd); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_set_status(sd,POWER_EN,1);//set the gpio to output vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_set_pmu_channel(sd,IOVDD,ON); usleep_range(1000,1200); vfe_set_pmu_channel(sd,AVDD,ON); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); usleep_range(7000,8000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(20000,22000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_set_mclk(sd,OFF); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input vfe_gpio_set_status(sd,POWER_EN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0x300A, &rdval)) if(rdval != (V4L2_IDENT_SENSOR>>8)) { printk(KERN_DEBUG"*********sensor error,read id is %d.\n",rdval); return -ENODEV; } LOG_ERR_RET(sensor_read(sd, 0x300B, &rdval)) if(rdval != (V4L2_IDENT_SENSOR&0x00ff)) { printk(KERN_DEBUG"*********sensor error,read id is %d.\n",rdval); return -ENODEV; } else { printk(KERN_DEBUG"*********find ov2710 raw data camera sensor now.\n"); return 0; } } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = HD1080_WIDTH; info->height = HD1080_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code =V4L2_MBUS_FMT_SBGGR10_10X1, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* 1080P */ { .width = HD1080_WIDTH, .height = HD1080_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 2420,//2376,//2415,// 2382,//724, .vts = 1102,//1122,//1104,//1120,//1104, .pclk = 80*1000*1000, .mipi_bps = 800*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1, .intg_max = 1102<<4,//1122<<4, .gain_min = 1<<4, .gain_max = 16<<4, .regs = sensor_1080p_regs,// .regs_size = ARRAY_SIZE(sensor_1080p_regs),// .set_size = NULL, }, /* 720P */ { .width = HD720_WIDTH, .height = HD720_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 2420,//2376,//2415,// 2382,//724, .vts = 1102,//1122,//1104,//1120,//1104, .pclk = 80*1000*1000, .mipi_bps = 800*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1, .intg_max = 1102<<4,//1122<<4, .gain_min = 1<<4, .gain_max = 16<<4, .width_input = 1920, .height_input = 1080, .regs = sensor_1080p_regs,// .regs_size = ARRAY_SIZE(sensor_1080p_regs),// .set_size = NULL, }, /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 240, .voffset = 0, .hts = 2420,//2376,//2415,// 2382,//724, .vts = 1102,//1122,//1104,//1120,//1104, .pclk = 80*1000*1000, .mipi_bps = 800*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1, .intg_max = 1102<<4,//1122<<4, .gain_min = 1<<4, .gain_max = 16<<4, .width_input = 1440, .height_input = 1080, .regs = sensor_1080p_regs,// .regs_size = ARRAY_SIZE(sensor_1080p_regs),// .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0|V4L2_MBUS_CSI2_1_LANE|V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); // sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs)); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size)) ret = 0; if (wsize->regs) { // usleep_range(5000,6000); LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) } if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; info->exp = 0; info->gain = 0; ov2710_sensor_vts = wsize->vts; vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } //sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs)); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 16*16, 1, 16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1); case V4L2_CID_FRAME_RATE: return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);