/* * A V4L2 driver for OV8825 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("lwj"); MODULE_DESCRIPTION("A low-level driver for OV8825 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 1 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[OV8825]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[OV8825]"x,##arg) #define vfe_dev_print(x,arg...) printk("[OV8825]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x8825 int ov8825_sensor_vts; /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 30 /* * The ov8825 sits on i2c with ID 0x6c */ #define I2C_ADDR 0x6c #define SENSOR_NAME "ov8825" //static struct delayed_work sensor_s_ae_ratio_work; static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { //2lane initial // Slave_ID=0x6c// {0x0103,0x01}, // software reset // delay(5ms) {0x3000,0x16}, // strobe disable, frex disable, vsync disable {0x3001,0x00}, {0x3002,0x6c}, // SCCB ID = 0x6c {0x300d,0x00}, // PLL2 {0x301f,0x09}, // frex_mask_mipi, frex_mask_mipi_phy {0x3010,0x00}, // strobe, sda, frex, vsync, shutter GPIO unselected {0x3011,0x01}, // MIPI_2_Lane bit[1:0]:lane num bit2: 1:8bit 0:10bit {0x3018,0x00}, // clear PHY HS TX power down and PHY LP RX power down {0x3104,0x20}, // SCCB_PLL {0x3300,0x00}, {0x3509,0x10}, // use sensor gain {0x3603,0x5c}, // analog control {0x3604,0x98}, // analog control {0x3605,0xf5}, // analog control {0x3609,0xb4}, // analog control {0x360a,0x7c}, // analog control {0x360b,0xc9}, // analog control {0x360c,0x0b}, // analog control {0x3612,0x00}, // pad drive 1x, analog control {0x3613,0x02}, // analog control {0x3614,0x0f}, // analog control {0x3615,0x00}, // analog control {0x3616,0x03}, // analog control {0x3617,0xa1}, // analog control {0x3618,0x00}, // VCM position & slew rate, slew rate = 0 {0x3619,0x00}, // VCM position = 0 {0x361a,0xB0}, // VCM clock divider, VCM clock = 24000000/0x4b0 = 20000 {0x361b,0x04}, // VCM clock divider {0x3701,0x44}, // sensor control {0x3707,0x63}, // SENCTROL7 Sensor control {0x370b,0x01}, // sensor control {0x370c,0x50}, // sensor control {0x370d,0x00}, // sensor control {0x3816,0x02}, // Hsync start H {0x3817,0x40}, // Hsync start L {0x3818,0x00}, // Hsync end H {0x3819,0x40}, // Hsync end L {0x3b1f,0x00}, // Frex conrol // clear OTP data buffer {0x3d00,0x00}, {0x3d01,0x00}, {0x3d02,0x00}, {0x3d03,0x00}, {0x3d04,0x00}, {0x3d05,0x00}, {0x3d06,0x00}, {0x3d07,0x00}, {0x3d08,0x00}, {0x3d09,0x00}, {0x3d0a,0x00}, {0x3d0b,0x00}, {0x3d0c,0x00}, {0x3d0d,0x00}, {0x3d0e,0x00}, {0x3d0f,0x00}, {0x3d10,0x00}, {0x3d11,0x00}, {0x3d12,0x00}, {0x3d13,0x00}, {0x3d14,0x00}, {0x3d15,0x00}, {0x3d16,0x00}, {0x3d17,0x00}, {0x3d18,0x00}, {0x3d19,0x00}, {0x3d1a,0x00}, {0x3d1b,0x00}, {0x3d1c,0x00}, {0x3d1d,0x00}, {0x3d1e,0x00}, {0x3d1f,0x00}, {0x3d80,0x00}, {0x3d81,0x00}, {0x3d84,0x00}, {0x3f01,0xfc}, // PSRAM Ctrl1 {0x3f05,0x10}, // PSRAM Ctrl5 {0x3f06,0x00}, {0x3f07,0x00}, // BLC {0x4000,0x29}, {0x4001,0x02}, // BLC start line {0x4002,0x45}, // BLC auto, reset 5 frames {0x4003,0x08}, // BLC redo at 8 frames {0x4004,0x04}, // 4 black lines are used for BLC {0x4005,0x18}, // no black line output, apply one channel offset (0x400c, 0x400d) to all manual BLC //channels {0x4300,0xff}, // max {0x4303,0x00}, // format control {0x4304,0x08}, // output {data[7:0], data[9:8]} {0x4307,0x00}, // embedded control //MIPI {0x4800,0x04}, //|(CLOCK_INCONT<<5), //bit5 0:clock free running 1:gating when blanking {0x4801,0x0f}, // ECC configure {0x4843,0x02}, // manual set pclk divider {0x485c,0x1f}, // ISP {0x5000,0x06}, // LENC off, BPC on, WPC on {0x5001,0x00}, // MWB off {0x5002,0x00}, {0x501f,0x00}, // enable ISP {0x5780,0xfc}, // DPC control {0x5c00,0x80}, // PBLC CTRL00 {0x5c01,0x00}, // PBLC CTRL01 {0x5c02,0x00}, // PBLC CTRL02 {0x5c03,0x00}, // PBLC CTRL03 {0x5c04,0x00}, // PBLC CTRL04 {0x5c05,0x00}, // pre BLC {0x5c06,0x00}, // pre BLC {0x5c07,0x80}, // pre BLC {0x5c08,0x10}, // PBLC CTRL08 // temperature sensor {0x6700,0x05}, {0x6701,0x19}, {0x6702,0xfd}, {0x6703,0xd7}, {0x6704,0xff}, {0x6705,0xff}, {0x6800,0x10}, {0x6801,0x02}, {0x6802,0x90}, {0x6803,0x10}, {0x6804,0x59}, {0x6900,0x60}, // CADC CTRL00 {0x6901,0x04}, // CADC control // Default Lens Correction {0x5800,0x0f}, {0x5801,0x0d}, {0x5802,0x09}, {0x5803,0x0a}, {0x5804,0x0d}, {0x5805,0x14}, {0x5806,0x0a}, {0x5807,0x04}, {0x5808,0x03}, {0x5809,0x03}, {0x580a,0x05}, {0x580b,0x0a}, {0x580c,0x05}, {0x580d,0x02}, {0x580e,0x00}, {0x580f,0x00}, {0x5810,0x03}, {0x5811,0x05}, {0x5812,0x09}, {0x5813,0x03}, {0x5814,0x01}, {0x5815,0x01}, {0x5816,0x04}, {0x5817,0x09}, {0x5818,0x09}, {0x5819,0x08}, {0x581a,0x06}, {0x581b,0x06}, {0x581c,0x08}, {0x581d,0x06}, {0x581e,0x33}, {0x581f,0x11}, {0x5820,0x0e}, {0x5821,0x0f}, {0x5822,0x11}, {0x5823,0x3f}, {0x5824,0x08}, {0x5825,0x46}, {0x5826,0x46}, {0x5827,0x46}, {0x5828,0x46}, {0x5829,0x46}, {0x582a,0x42}, {0x582b,0x42}, {0x582c,0x44}, {0x582d,0x46}, {0x582e,0x46}, {0x582f,0x60}, {0x5830,0x62}, {0x5831,0x42}, {0x5832,0x46}, {0x5833,0x46}, {0x5834,0x44}, {0x5835,0x44}, {0x5836,0x44}, {0x5837,0x48}, {0x5838,0x28}, {0x5839,0x46}, {0x583a,0x48}, {0x583b,0x68}, {0x583c,0x28}, {0x583d,0xae}, {0x5842,0x00}, {0x5843,0xef}, {0x5844,0x01}, {0x5845,0x3f}, {0x5846,0x01}, {0x5847,0x3f}, {0x5848,0x00}, {0x5849,0xd5}, // Exposure {0x3503,0x17}, // Gain has no delay, VTS manual, AGC manual, AEC manual {0x3500,0x00}, // expo[19:16] = lines/16 {0x3501,0xff}, // expo[15:8] {0x3502,0x00}, // expo[7:0] {0x350a,0x00}, // gain {0x350b,0x1f}, // gain // MWB {0x3400,0x04}, // red h {0x3401,0x00}, // red l {0x3402,0x04}, // green h {0x3403,0x00}, // green l {0x3404,0x04}, // blue h {0x3405,0x00}, // blue l {0x3406,0x00}, // MWB manual //set DATA LPX {0x4805,0x10}, {0x4824,0x03}, //LPX PCLK MIN MSB[9:8] {0x4825,0xff}, //LPX PCLK MIN LSB[7:0] {0x4830,0x3f}, //LPX UI MIN //set DATA PREPARE {0x4826,0x00}, //PREPARE PCLK MIN MSB[9:8] {0x4827,0x78}, //PREPARE PCLK MIN LSB[7:0] {0x4831,0x04}, //PREPARE UI MIN };; //for capture static struct regval_list sensor_quxga_regs[] = { //@@3264_2448_2lane_2.5fps_110Mbps/lane {0x0100,0x00}, // sleep {REG_DLY,0x32}, {0x3003,0xce}, // PLL_CTRL0 {0x3004,0xd8}, // PLL_CTRL1 0xd8:656Mbps 0xcb:864Mbps {0x3005,0x00}, // PLL_CTRL2 0x00:656MBps/lane 0x05:110Mbps/lane {0x3006,0x10}, // PLL_CTRL3 0x10:656MBps/lane 0x15:110Mbps/lane {0x3007,0x3b}, // PLL_CTRL4 {0x3012,0x81}, // SC_PLL CTRL_S0 {0x3013,0x39}, // SC_PLL CTRL_S1 {0x3106,0x11}, // SRB_CTRL {0x3600,0x07}, // ANACTRL0 {0x3601,0x33}, // ANACTRL1 {0x3602,0x42}, // {0x3700,0x10}, // SENCTROL0 Sensor control {0x3702,0x28}, // SENCTROL2 Sensor control {0x3703,0x6c}, // SENCTROL3 Sensor control {0x3704,0x8d}, // SENCTROL4 Sensor control {0x3705,0x0a}, // SENCTROL5 Sensor control {0x3706,0x27}, // SENCTROL6 Sensor control {0x3708,0x40}, // SENCTROL8 Sensor control {0x3709,0x20}, // SENCTROL9 Sensor control {0x370a,0x31}, // SENCTROLA Sensor control {0x370e,0x00}, // SENCTROLE Sensor control {0x3711,0x07}, // SENCTROL11 Sensor control {0x3712,0x4e}, // SENCTROL12 Sensor control {0x3724,0x00}, // Reserved {0x3725,0xd4}, // Reserved {0x3726,0x00}, // Reserved {0x3727,0xe1}, // Reserved {0x3800,0x00}, // HS(HREF start High) {0x3801,0x00}, // HS(HREF start Low) {0x3802,0x00}, // VS(Vertical start High) {0x3803,0x00}, // VS(Vertical start Low) {0x3804,0x0c}, // HW = 3295 {0x3805,0xdf}, // HW {0x3806,0x09}, // VH = 2459 {0x3807,0x9b}, // VH {0x3808,0x0c}, // ISPHO = 3264 {0x3809,0xc0}, // ISPHO {0x380a,0x09}, // ISPVO = 2448 {0x380b,0x90}, // ISPVO {0x380c,0x0e}, //11, //15, //c, //0e, // HTS = 3584 {0x380d,0x00}, //80, //00, // HTS {0x380e,0x09}, // VTS = 2480 {0x380f,0xb0}, // VTS {0x3810,0x00}, // HOFF = 16 {0x3811,0x10}, // HOFF {0x3812,0x00}, // VOFF = 6 {0x3813,0x06}, // VOFF {0x3814,0x11}, // X INC {0x3815,0x11}, // Y INC {0x3820,0x80}, // Timing Reg20:Vflip {0x3821,0x16}, // Timing Reg21:Hmirror {0x3f00,0x02}, // PSRAM Ctrl0 {0x4005,0x1A}, // Every frame do BLC {0x404f,0x7F}, // {0x4600,0x04}, // VFIFO Ctrl0 {0x4601,0x00}, // VFIFO Read ST High {0x4602,0x78}, // VFIFO Read ST Low {0x4837,0x28}, // MIPI PCLK PERIOD {0x5068,0x00}, // HSCALE_CTRL {0x506a,0x00}, // VSCALE_CTRL {0x0100,0x01}, // wake up }; //for video static struct regval_list sensor_1080p_regs[] = { //@@1920_1080_2Lane_5fps_120Mbps/lane {0x0100,0x00}, // sleep {REG_DLY,0x32}, {0x3003,0xce}, // PLL_CTRL0 {0x3004,0xd4}, // PLL_CTRL1 //0xd4: 45 0xcf:50 0xc9: {0x3005,0x00}, // PLL_CTRL2 0x00:720Mbps/lane 0x05:120Mbps/lane {0x3006,0x00}, // PLL_CTRL3 0x00:720Mbps/lane 0x05:120Mbps/lane {0x3007,0x3b}, // PLL_CTRL4 {0x3012,0x80}, // SC_PLL CTRL_S0 {0x3013,0x39}, // SC_PLL CTRL_S1 {0x3106,0x15}, // SRB_CTRL {0x3600,0x06}, // ANACTRL0 {0x3601,0x34}, // ANACTRL1 {0x3602,0x42}, // {0x3700,0x20}, // SENCTROL0 Sensor control {0x3702,0x50}, // SENCTROL2 Sensor control {0x3703,0xcc}, // SENCTROL3 Sensor control {0x3704,0x19}, // SENCTROL4 Sensor control {0x3705,0x14}, // SENCTROL5 Sensor control {0x3706,0x4b}, // SENCTROL6 Sensor control {0x3708,0x84}, // SENCTROL8 Sensor control {0x3709,0x40}, // SENCTROL9 Sensor control {0x370a,0x31}, // SENCTROLA Sensor control {0x370e,0x00}, // SENCTROLE Sensor control {0x3711,0x0f}, // SENCTROL11 Sensor control {0x3712,0x9c}, // SENCTROL12 Sensor control {0x3724,0x01}, // Reserved {0x3725,0x92}, // Reserved {0x3726,0x01}, // Reserved {0x3727,0xa9}, // Reserved {0x3800,0x00}, // HS(HREF start High) {0x3801,0x00}, // HS(HREF start Low) {0x3802,0x01}, // VS(Vertical start High) {0x3803,0x30}, // VS(Vertical start Low) {0x3804,0x0c}, // HW = 3295 {0x3805,0xdf}, // HW {0x3806,0x08}, // VH = 2151 {0x3807,0x67}, // VH {0x3808,0x07}, // ISPHO = 1920 {0x3809,0x80}, // ISPHO {0x380a,0x04}, // ISPVO = 1080 {0x380b,0x38}, // ISPVO {0x380c,0x0d}, // HTS = 3568 {0x380d,0xf0}, // HTS {0x380e,0x07}, // VTS = 1868 {0x380f,0x4c}, // VTS {0x3810,0x00}, // HOFF = 16 {0x3811,0x10}, // HOFF {0x3812,0x00}, // VOFF = 6 {0x3813,0x06}, // VOFF {0x3814,0x11}, // X INC {0x3815,0x11}, // Y INC {0x3820,0x80}, // Timing Reg20:Vflip {0x3821,0x16}, // Timing Reg21:Hmirror {0x3f00,0x02}, //PSRAM Ctrl0 {0x4005,0x18}, // Gain triger for BLC {0x404f,0x8F}, // Auto BLC while more than value {0x4600,0x04}, // VFIFO Ctrl0 {0x4601,0x01}, // VFIFO Read ST High {0x4602,0x00}, // VFIFO Read ST Low {0x4837,0x28}, // MIPI PCLK PERIOD {0x5068,0x53}, // HSCALE_CTRL {0x506a,0x53}, // VSCALE_CTRL {0x0100,0x01}, // wake up }; static struct regval_list sensor_sxga_regs[] = { {0x0100,0x00}, // sleep {REG_DLY,0x32}, {0x3003,0xce}, // PLL_CTRL0 {0x3004,0xd4}, // PLL_CTRL1 {0x3005,0x00}, // PLL_CTRL2 {0x3006,0x10}, // PLL_CTRL3 {0x3007,0x3b}, // PLL_CTRL4 {0x3012,0x81}, // SC_PLL CTRL_S0 {0x3013,0x39}, // SC_PLL CTRL_S1 {0x3106,0x11}, // SRB_CTRL {0x3600,0x07}, // ANACTRL0 {0x3601,0x33}, // ANACTRL1 {0x3602,0xc2}, // {0x3700,0x10}, // SENCTROL0 Sensor control {0x3702,0x28}, // SENCTROL2 Sensor control {0x3703,0x6c}, // SENCTROL3 Sensor control {0x3704,0x8d}, // SENCTROL4 Sensor control {0x3705,0x0a}, // SENCTROL5 Sensor control {0x3706,0x27}, // SENCTROL6 Sensor control {0x3708,0x40}, // SENCTROL8 Sensor control {0x3709,0x20}, // SENCTROL9 Sensor control {0x370a,0x33}, // SENCTROLA Sensor control {0x370e,0x08}, // SENCTROLE Sensor control {0x3711,0x07}, // SENCTROL11 Sensor control {0x3712,0x4e}, // SENCTROL12 Sensor control {0x3724,0x00}, // Reserved {0x3725,0xd4}, // Reserved {0x3726,0x00}, // Reserved {0x3727,0xe1}, // Reserved {0x3800,0x00}, // HS(HREF start High) {0x3801,0x00}, // HS(HREF start Low) {0x3802,0x00}, // VS(Vertical start High) {0x3803,0x00}, // VS(Vertical start Low) {0x3804,0x0c}, // HW = 3295 {0x3805,0xdf}, // HW {0x3806,0x09}, // VH = 2459 {0x3807,0x9b}, // VH {0x3808,0x06}, // ISPHO = 1632 {0x3809,0x60}, // ISPHO {0x380a,0x04}, // ISPVO = 1224 {0x380b,0xc8}, // ISPVO {0x380c,0x0d}, // HTS = 3516 {0x380d,0xbc}, // HTS {0x380e,0x04}, // VTS = 1264 {0x380f,0xf0}, // VTS {0x3810,0x00}, // HOFF = 8 {0x3811,0x08}, // HOFF {0x3812,0x00}, // VOFF = 4 {0x3813,0x04}, // VOFF {0x3814,0x31}, // X INC {0x3815,0x31}, // Y INC {0x3820,0x80}, // Timing Reg20:Vflip {0x3821,0x17}, // Timing Reg21:Hmirror {0x3f00,0x00}, // PSRAM Ctrl0 {0x4005,0x18}, // Gain trigger for BLC {0x404f,0x8F}, // Auto BLC while more than value {0x4600,0x04}, // VFIFO Ctrl0 {0x4601,0x00}, // VFIFO Read ST High {0x4602,0x78}, // VFIFO Read ST Low {0x4837,0x28}, // MIPI PCLK PERIOD {0x5068,0x00}, // HSCALE_CTRL {0x506a,0x00}, // VSCALE_CTRL {0x0100,0x01}, // wake up }; static struct regval_list sensor_720p_regs[] = { //@@1280_720_2Lane_60fps_456Mbps/lane {0x0100,0x00}, // sleep {REG_DLY,0x32}, {0x3003,0xce}, // PLL_CTRL0 {0x3004,0xc8}, // PLL_CTRL1 {0x3005,0x10}, // PLL_CTRL2 0x00:720Mbps/lane 0x05:120Mbps/lane {0x3006,0x01}, // PLL_CTRL3 0x00:720Mbps/lane 0x15:120Mbps/lane {0x3007,0x3b}, // PLL_CTRL4 {0x3012,0x80}, // SC_PLL CTRL_S0 {0x3013,0x39}, // SC_PLL CTRL_S1 {0x3106,0x15}, // SRB_CTRL {0x3600,0x06}, // ANACTRL0 {0x3601,0x34}, // ANACTRL1 {0x3602,0x42}, // {0x3700,0x20}, // SENCTROL0 Sensor control {0x3702,0x50}, // SENCTROL2 Sensor control {0x3703,0xcc}, // SENCTROL3 Sensor control {0x3704,0x19}, // SENCTROL4 Sensor control {0x3705,0x14}, // SENCTROL5 Sensor control {0x3706,0x4b}, // SENCTROL6 Sensor control {0x3708,0x84}, // SENCTROL8 Sensor control {0x3709,0x40}, // SENCTROL9 Sensor control {0x370a,0x33}, // SENCTROLA Sensor control {0x370e,0x08}, // SENCTROLE Sensor control {0x3711,0x0f}, // SENCTROL11 Sensor control {0x3712,0x9c}, // SENCTROL12 Sensor control {0x3724,0x01}, // Reserved {0x3725,0x92}, // Reserved {0x3726,0x01}, // Reserved {0x3727,0xa9}, // Reserved {0x3800,0x00}, // HS(HREF start High) {0x3801,0x28}, // HS(HREF start Low) {0x3802,0x01}, // VS(Vertical start High) {0x3803,0x40}, // VS(Vertical start Low) {0x3804,0x0c}, // HW = 3255 {0x3805,0xb7}, // HW {0x3806,0x08}, // VH = 2135 {0x3807,0x57}, // VH {0x3808,0x05}, // ISPHO = 1280 {0x3809,0x00}, // ISPHO {0x380a,0x02}, // ISPVO = 720 {0x380b,0xd0}, // ISPVO {0x380c,0x0d}, // HTS = 3552 {0x380d,0xe0}, // HTS {0x380e,0x03}, // VTS = 928 {0x380f,0xa0}, // VTS {0x3810,0x00}, // HOFF = 4 {0x3811,0x04}, // HOFF {0x3812,0x00}, // VOFF = 4 {0x3813,0x04}, // VOFF {0x3814,0x31}, // X INC {0x3815,0x31}, // Y INC {0x3820,0x80}, // Timing Reg20:Vflip {0x3821,0x17}, // Timing Reg21:Hmirror {0x3f00,0x00}, //PSRAM Ctrl0 {0x3f05,0x50}, // PSRAM Ctrl5 {0x4005,0x18}, // Gain triger for BLC {0x404f,0x8F}, // Auto BLC while more than value {0x4600,0x14}, // VFIFO Ctrl0 {0x4601,0x14}, // VFIFO Read ST High {0x4602,0x00}, // VFIFO Read ST Low {0x4837,0x1e}, // MIPI PCLK PERIOD {0x5068,0x5A}, // HSCALE_CTRL {0x506a,0x5A}, // VSCALE_CTRL {0x0100,0x01}, // wake up }; static struct regval_list sensor_vga_regs[] = { //VGA: 640*480 {0x0100,0x00}, // sleep {REG_DLY,0x32}, {0x3003,0x8c}, {0x3004,0xe3}, {0x3005,0x10}, {0x3006,0x00}, {0x3007,0x3b}, {0x3012,0x83}, {0x3013,0x39}, {0x3106,0x15}, {0x3600,0x06}, {0x3601,0x34}, {0x3602,0xc2}, // {0x3700,0x20}, // SENCTROL0 Sensor control {0x3702,0x50}, // SENCTROL2 Sensor control {0x3703,0xcc}, // SENCTROL3 Sensor control {0x3704,0x19}, // SENCTROL4 Sensor control {0x3705,0x14}, // SENCTROL5 Sensor control {0x3706,0x4b}, // SENCTROL6 Sensor control {0x3708,0x84}, // SENCTROL8 Sensor control {0x3709,0x40}, // SENCTROL9 Sensor control {0x370a,0xf4}, // SENCTROLA Sensor control {0x370e,0x00}, // SENCTROLE Sensor control {0x3711,0x0f}, // SENCTROL11 Sensor control {0x3712,0x9c}, // SENCTROL12 Sensor control {0x3724,0x01}, // Reserved {0x3725,0x92}, // Reserved {0x3726,0x01}, // Reserved {0x3727,0xa9}, // Reserved {0x3800,0x00}, // HS(HREF start High) {0x3801,0x08}, // HS(HREF start Low) {0x3802,0x00}, // VS(Vertical start High) {0x3803,0x00}, // VS(Vertical start Low) {0x3804,0x0c}, // HW = 3295 {0x3805,0xdf}, // HW {0x3806,0x09}, // VH = 2459 {0x3807,0x9b}, // VH {0x3808,0x02}, // ISPHO = 640 {0x3809,0x80}, // ISPHO {0x380a,0x01}, // ISPVO = 480 {0x380b,0xe0}, // ISPVO {0x380c,0x0d}, // HTS = 3504 {0x380d,0xbc}, // HTS {0x380e,0x02}, // VTS = 634 {0x380f,0x78}, // VTS {0x3810,0x00}, // HOFF = 12 {0x3811,0x0c}, // HOFF {0x3812,0x00}, // VOFF = 08 {0x3813,0x08}, // VOFF {0x3814,0x71}, // X INC {0x3815,0x71}, // Y INC {0x370e,0x00}, // SENCTROLE Sensor control {0x3820,0x80}, // Timing Reg20:Vflip {0x3821,0x16}, // Timing Reg21:Hmirror {0x3f00,0x00}, // PSRAM Ctrl0 {0x4005,0x18}, // Gain trigger for BLC {0x404f,0x8F}, // Auto BLC while more than value {0x4600,0x14}, // VFIFO Ctrl0 {0x4601,0x14}, // VFIFO Read ST High {0x4602,0x00}, // VFIFO Read ST Low {0x4837,0x1e}, // MIPI PCLK PERIOD {0x5068,0x59}, // HSCALE_CTRL 1.25x {0x506a,0x5A}, // VSCALE_CTRL 1.25x {0x0100,0x01}, // wake up }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { }; static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val,shutter,frame_length; unsigned char explow=0,expmid=0,exphigh=0; unsigned char gainlow=0,gainhigh=0; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; if(exp_val>0xfffff) exp_val=0xfffff; gainlow=(unsigned char)(gain_val&0xff); gainhigh=(unsigned char)((gain_val>>8)&0x3); exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16); expmid = (unsigned char) ( (0x00ff00&exp_val)>>8); explow = (unsigned char) ( (0x0000f0&exp_val) ); //ov8825 doesn't support fraction exposure time and low 4 bits should always be 0. shutter = exp_val/16; if(shutter > ov8825_sensor_vts- 4) frame_length = shutter + 4; else frame_length = ov8825_sensor_vts; // printk("exp_val = %d,gain_val = %d\n",exp_val,gain_val); sensor_write(sd, 0x3208, 0x00);//enter group write sensor_write(sd, 0x3503, 0x17); sensor_write(sd, 0x380f, (frame_length & 0xff)); sensor_write(sd, 0x380e, (frame_length >> 8)); sensor_write(sd, 0x350b, gainlow); sensor_write(sd, 0x350a, gainhigh); sensor_write(sd, 0x3502, explow); sensor_write(sd, 0x3501, expmid); sensor_write(sd, 0x3500, exphigh); sensor_write(sd, 0x3208, 0x10);//end group write sensor_write(sd, 0x3208, 0xa0);//init group write info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char explow,expmid,exphigh; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val>>4); if(exp_val>0xfffff) exp_val=0xfffff; //if(info->exp == exp_val && exp_val <= (2480)*16) // return 0; exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16); expmid = (unsigned char) ( (0x00ff00&exp_val)>>8); explow = (unsigned char) ( (0x0000f0&exp_val) ); //ov8825 don't support fraction exposure time and low 4 bits should always be 0. sensor_write(sd, 0x3208, 0x00);//enter group write sensor_write(sd, 0x3502, explow); sensor_write(sd, 0x3501, expmid); sensor_write(sd, 0x3500, exphigh); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); unsigned char gainlow=0; unsigned char gainhigh=0; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; vfe_dev_dbg("sensor_set_gain = %d\n", gain_val); gainlow=(unsigned char)(gain_val&0xff); gainhigh=(unsigned char)((gain_val>>8)&0x3); sensor_write(sd, 0x3503, 0x17); sensor_write(sd, 0x350b, gainlow); sensor_write(sd, 0x350a, gainhigh); sensor_write(sd, 0x3208, 0x10);//end group write sensor_write(sd, 0x3208, 0xa0);//init group write printk("8825 sensor_set_gain = %d, Done!\n", gain_val); info->gain = gain_val; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret; data_type rdval; ret=sensor_read(sd, 0x0100, &rdval); if(ret!=0) return ret; if(on_off==CSI_GPIO_LOW)//sw stby on { ret=sensor_write(sd, 0x0100, rdval&0xfe); } else//sw stby off { ret=sensor_write(sd, 0x0100, rdval|0x01); } return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW); if(ret < 0) vfe_dev_err("soft stby falied!\n"); mdelay(10); cci_lock(sd); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); mdelay(10); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); mdelay(10); cci_unlock(sd); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); mdelay(1); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); mdelay(10); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); mdelay(10); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); mdelay(30); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); mdelay(10); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0x300a, &rdval)) if(rdval != 0x88) return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0x300b, &rdval)) if(rdval != 0x25) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = QUXGA_WIDTH; info->height = QUXGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 15; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR10_10X1,//V4L2_MBUS_FMT_SGRBG10_10X1, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* quxga: 3264*2448 */ { .width = QUXGA_WIDTH,//3280, .height = QUXGA_HEIGHT,//2464, .hoffset = 0, .voffset = 0, .hts = 3584, .vts = 2480, .pclk = 134*1000*1000, .mipi_bps = 656*1000*1000, .fps_fixed = 2, .bin_factor = 1, .intg_min = 16, .intg_max = (2480-4)<<4, .gain_min = 1<<4, .gain_max = 12<<4, .regs = sensor_quxga_regs, .regs_size = ARRAY_SIZE(sensor_quxga_regs), .set_size = NULL, }, /* 1080P */ { .width = HD1080_WIDTH, .height = HD1080_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3568, .vts = 1868, .pclk = 200*1000*1000, .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = (1868-4)<<4, .gain_min = 1<<4, .gain_max = 12<<4, .regs = sensor_1080p_regs,// .regs_size = ARRAY_SIZE(sensor_1080p_regs),// .set_size = NULL, }, /* SXGA */ { .width = SXGA_WIDTH, .height = SXGA_HEIGHT, .hoffset = 176, .voffset = 132, .hts = 3516, .vts = 1264, .pclk = 133*1000*1000, .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1, .intg_max = (1264-4)<<4, .gain_min = 1<<4, .gain_max = 12<<4, .regs = sensor_sxga_regs, .regs_size = ARRAY_SIZE(sensor_sxga_regs), .set_size = NULL, }, /* 720p */ { .width = HD720_WIDTH, .height = HD720_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3552, .vts = 928, .pclk = 99*1000*1000, .mipi_bps = 456*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 16, .intg_max = (928-4)<<4, .gain_min = 1<<4, .gain_max = 12<<4, .regs = sensor_720p_regs,// .regs_size = ARRAY_SIZE(sensor_720p_regs),// .set_size = NULL, }, /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3504,//limited by sensor .vts = 634, .pclk = 67*1000*1000,//67 .mipi_bps = 240*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 16, .intg_max = (634-4)<<4, .gain_min = 1<<4, .gain_max = 12<<4, .regs = sensor_vga_regs, .regs_size = ARRAY_SIZE(sensor_vga_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); //sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs)); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; ov8825_sensor_vts = wsize->vts; vfe_dev_print("s_fmt = %x, width = %d, height = %d\n",sensor_fmt->mbus_code,wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } //sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs)); vfe_dev_print("s_fmt end\n"); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 32*16, 1, 16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 0); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);