/* * A V4L2 driver for s5k5e2_mipi cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("Chomoly"); MODULE_DESCRIPTION("A low-level driver for s5k5e2yx sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 1 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[s5k5e2yx]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[s5k5e2yx]"x,##arg) #define vfe_dev_print(x,arg...) printk("[s5k5e2yx]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_FALLING #define V4L2_IDENT_SENSOR 0x5e20 /* * Our nominal (default) frame rate. */ #ifdef FPGA #define SENSOR_FRAME_RATE 15 #else #define SENSOR_FRAME_RATE 30 #endif /* * The s5k5e2_mipi sits on i2c with ID 0x20 */ #define I2C_ADDR (0x20) #define SENSOR_NAME "s5k5e2yx" static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { // / +++++++++++++++++++++++++++// // Reset for operation {0x0100,0x00}, //stream off //Analog Timing Tuning (0817) {0x3000,0x04}, // ct_ld_start {0x3002,0x03}, // ct_sl_start {0x3003,0x04}, // ct_sl_margin {0x3004,0x02}, // ct_rx_start {0x3005,0x00}, // ct_rx_margin (MSB) {0x3006,0x10}, // ct_rx_margin (LSB) {0x3007,0x03}, // ct_tx_start {0x3008,0x55}, // ct_tx_width {0x3039,0x00}, // cintc1_margin {0x303A,0x00}, // cintc2_margin {0x303B,0x00}, // offs_sh {0x3009,0x05}, // ct_srx_margin {0x300A,0x55}, // ct_stx_width {0x300B,0x38}, // ct_dstx_width {0x300C,0x10}, // ct_stx2dstx {0x3012,0x05}, // ct_cds_start {0x3013,0x00}, // ct_s1s_start {0x3014,0x22}, // ct_s1s_end {0x300E,0x79}, // ct_s3_width {0x3010,0x68}, // ct_s4_width {0x3019,0x03}, // ct_s4d_start {0x301A,0x00}, // ct_pbr_start {0x301B,0x06}, // ct_pbr_width {0x301C,0x00}, // ct_pbs_start {0x301D,0x22}, // ct_pbs_width {0x301E,0x00}, // ct_pbr_ob_start {0x301F,0x10}, // ct_pbr_ob_width {0x3020,0x00}, // ct_pbs_ob_start {0x3021,0x00}, // ct_pbs_ob_width {0x3022,0x0A}, // ct_cds_lim_start {0x3023,0x1E}, // ct_crs_start {0x3024,0x00}, // ct_lp_hblk_cds_start (MSB) {0x3025,0x00}, // ct_lp_hblk_cds_start (LSB) {0x3026,0x00}, // ct_lp_hblk_cds_end (MSB) {0x3027,0x00}, // ct_lp_hblk_cds_end (LSB) {0x3028,0x1A}, // ct_rmp_off_start {0x3015,0x00}, // ct_rmp_rst_start (MSB) {0x3016,0x84}, // ct_rmp_rst_start (LSB) {0x3017,0x00}, // ct_rmp_sig_start (MSB) {0x3018,0xA0}, // ct_rmp_sig_start (LSB) {0x302B,0x10}, // ct_cnt_margin {0x302C,0x0A}, // ct_rmp_per {0x302D,0x06}, // ct_cnt_ms_margin1 {0x302E,0x05}, // ct_cnt_ms_margin2 {0x302F,0x0E}, // rst_mx {0x3030,0x2F}, // sig_mx {0x3031,0x08}, // ct_latch_start {0x3032,0x05}, // ct_latch_width {0x3033,0x09}, // ct_hold_start {0x3034,0x05}, // ct_hold_width {0x3035,0x00}, // ct_lp_hblk_dbs_start (MSB) {0x3036,0x00}, // ct_lp_hblk_dbs_start (LSB) {0x3037,0x00}, // ct_lp_hblk_dbs_end (MSB) {0x3038,0x00}, // ct_lp_hblk_dbs_end (LSB) {0x3088,0x06}, // ct_lat_lsb_offset_start1 {0x308A,0x08}, // ct_lat_lsb_offset_end1 {0x308C,0x05}, // ct_lat_lsb_offset_start2 {0x308E,0x07}, // ct_lat_lsb_offset_end2 {0x3090,0x06}, // ct_conv_en_offset_start1 {0x3092,0x08}, // ct_conv_en_offset_end1 {0x3094,0x05}, // ct_conv_en_offset_start2 {0x3096,0x21}, // ct_conv_en_offset_end2 //CDS {0x3099,0x0E}, // cds_option ([3]:crs switch disable, s3,s4 strengthx16) {0x3070,0x10}, // comp1_bias (default:77) {0x3085,0x11}, // comp1_bias (gain1~4) {0x3086,0x01}, // comp1_bias (gain4~8) modified 8/13 {0x306B,0x10}, //RMP {0x3064,0x00}, // Multiple sampling(gainx8,x16) {0x3062,0x08}, // off_rst //DBR {0x3061,0x11}, // dbr_tune_rd (default :08, 0E 3.02V) 3.1V {0x307B,0x20}, // dbr_tune_rgsl (default :08) //Bias sampling {0x3068,0x00}, // RMP BP bias sampling {0x3074,0x00}, // Pixel bias sampling [2]:Default L {0x307D,0x00}, // VREF sampling [1] {0x3045,0x01}, // ct_opt_l1_start {0x3046,0x05}, // ct_opt_l1_width {0x3047,0x78}, //Smart PLA {0x307F,0xB1}, //RDV_OPTION[5:4], RG default high {0x3098,0x01}, //CDS_OPTION[16] SPLA-II enable {0x305C,0xF6}, //lob_extension[6] {0x3063,0x27}, // ADC_SAT 490mV --> 610mV {0x320C,0x07}, // ADC_MAX (def:076Ch --> 0700h) {0x320D,0x00}, {0x3400,0x01}, // GAS bypass {0x3235,0x49}, // L/F-ADLC on {0x3233,0x00}, // D-pedestal L/F ADLC off (1FC0h) {0x3234,0x00}, {0x3300,0x0D}, //BPC bypass {0x0204,0x00}, //Analog gain x16 {0x0205,0x20}, //{0x0114,0x01}, // streaming ON {0x0100,0x01}, }; static struct regval_list sensor_qsxga_regs[] = { //2576*1936 pclk=89.5MHz//2560x1920 #if 1 {0x0100,0x00}, //stream off //{0x0301,0x01}, {0x0301,0x01}, {REG_DLY,0x22}, // Size Setting {0x0305,0x05}, //PLLP (def:5)pre_pll_clk {0x0306,0x00}, {0x0307,0xB3}, //PLLM (def:CCh 204d --> B3h 179d)pll_multiple {0x3C1F,0x00}, //PLLS pll_scaler {0x0820,0x03}, // requested link bit rate mbps : (def:3D3h 979d --> 35Bh 859d) {0x0821,0x5B}, {0x3C1C,0x58}, //dbr_div 7:4 sys_clk_divider 3:0 divider for DBLR // Size Setting {0x0340,0x07}, // frame_length_lines : def. 1962d (7C2 --> 7A6 Mimnimum 22 lines)1959 {0x0341,0xA7}, {0x0342,0x0B}, // line_length_pck : def. 2900d {0x0343,0x54}, {0x0900,0x00}, {0x0901,0x11}, {0x3c33,0x00}, {0x0344,0x00}, //x_addr_start :8 {0x0345,0x08}, {0x0346,0x00}, //y_addr_start :248 {0x0347,0x08}, {0x0348,0x0A}, //x_addr_end :2567 {0x0349,0x07}, {0x034A,0x07}, //y_addr_end :1687 {0x034B,0x87}, {0x034C,0x0A}, //x_output size :2560 {0x034D,0x00}, {0x034E,0x07}, //y_output size :1440 {0x034F,0x80}, {0x0387,0x01}, //Integration time {0x0202,0x02}, // coarse integration {0x0203,0x00}, //{0x0200,0x0A}, // fine integration (AA8h --> AC4h) {0x0200,0x03}, {0x0201,0x14}, // streaming ON {0x0100,0x01}, #endif }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { }; static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int s5k5e2_sensor_vts ; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val,shutter,frame_length; unsigned char explow,exphigh; unsigned char gainlow=0; unsigned char gainhigh=0; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; exp_val=exp_val>>4;//rounding to 1 shutter = exp_val; gain_val=gain_val*2;//shift to 1/32 step exphigh = (unsigned char) ( (0xff00&exp_val)>>8); explow = (unsigned char) ( (0x00ff&exp_val) ); gainlow=(unsigned char)(gain_val&0xff); gainhigh=(unsigned char)((gain_val>>8)&0xff); if(shutter > s5k5e2_sensor_vts-4) frame_length = shutter+4; else frame_length = s5k5e2_sensor_vts; vfe_dev_dbg("frame_length = %d,%d,%d\n",frame_length,shutter,s5k5e2_sensor_vts); sensor_write(sd,0x0104,0x01); sensor_write(sd, 0x0341,( (frame_length) & 0xff)); sensor_write(sd, 0x0340,((frame_length) >> 8)); sensor_write(sd, 0x0203, explow); sensor_write(sd, 0x0202, exphigh); sensor_write(sd, 0x0205, gainlow); sensor_write(sd, 0x0204, gainhigh); sensor_write(sd,0x0104,0x00); //vfe_dev_dbg("s5k5e2 sensor_set_gain = %d, Done!\n", gain_val); info->gain = gain_val; info->exp = exp_val; return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char explow,exphigh; data_type tmp1,tmp2; unsigned short tmp = 0; struct sensor_info *info = to_state(sd); //vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val); if(exp_val>0xffffff) exp_val=0xfffff0; if(exp_val<16) exp_val=16; exp_val=(exp_val+8)>>4;//rounding to 1 //printk("sensor_set_exposure real= %d\n", exp_val); exphigh = (unsigned char) ( (0xff00&exp_val)>>8); explow = (unsigned char) ( (0x00ff&exp_val) ); sensor_write(sd,0x0104,0x01); sensor_write(sd, 0x0203, explow);//coarse integration time sensor_write(sd, 0x0202, exphigh); sensor_write(sd,0x0104,0x00); sensor_read(sd,0x0203,&tmp1); sensor_read(sd,0x0202,&tmp2); tmp = ((tmp2<<8)|tmp1); printk("readout shutter =%d\n",tmp); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); unsigned char gainlow=0; unsigned char gainhigh=0; gain_val=gain_val*2;//step 32 gainlow=(unsigned char)(gain_val&0xff); gainhigh=(unsigned char)((gain_val>>8)&0xff); sensor_write(sd,0x0104,0x01); sensor_write(sd, 0x0205, gainlow); sensor_write(sd, 0x0204, gainhigh); sensor_write(sd,0x0104,0x00); // sensor_write(sd, 0xb7, anagmax); printk("s5k5e2yx set_gain = %d\n", gain_val); info->gain = gain_val; return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret; data_type rdval; ret=sensor_read(sd, 0x0100, &rdval); printk("sensor read 0x0100 value is 0x%x",rdval); if(ret!=0) return ret; if(on_off==CSI_GPIO_LOW)//sw stby on { ret=sensor_write(sd, 0x0100, rdval&0xfe); } else//sw stby off { ret=sensor_write(sd, 0x0100, rdval|0x01); } return ret; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); ret = sensor_s_sw_stby(sd, 1); if(ret < 0) vfe_dev_err("soft stby falied!\n"); usleep_range(10000,12000); cci_lock(sd); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); cci_unlock(sd); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); cci_unlock(sd); ret = sensor_s_sw_stby(sd, 0); if(ret < 0) vfe_dev_err("soft stby off falied!\n"); usleep_range(10000,12000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); vfe_set_pmu_channel(sd,AFVDD,OFF); //vfe_gpio_set_status(sd,RESET,0);//set the gpio to input //vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; sensor_read(sd, 0x0000, &rdval); printk("0x0000=0x%x\n",rdval); if(rdval != 0x5e) return -ENODEV; sensor_read(sd, 0x0001, &rdval); printk("0x0001=0x%x\n",rdval); if(rdval != 0x20) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = QSXGA_WIDTH; info->height = QSXGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 15; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case ISP_SET_EXP_GAIN: ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SGRBG10_10X1, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* qsxga: 2576*1936 */ { .width = 2560,//QSXGA_WIDTH, .height = 1920,//QSXGA_HEIGHT, .hoffset = 0,//(2576-2560)/2,//(2608-2592)/2, .voffset = 0,//(1936-1440)/2,//(1960-1936)/2, .hts = 2900,//must over 2738, limited by sensor .vts = 1958, .pclk = 170*1000*1000,//(89*1000*1000+500*1000), .mipi_bps = (859*1000*1000+600*1000)/1, .fps_fixed = 1, .bin_factor = 1, .intg_min = 3<<4, .intg_max = (1959-8)<<4, .gain_min = 1<<4, .gain_max = 16<<4, .regs = sensor_qsxga_regs, .regs_size = ARRAY_SIZE(sensor_qsxga_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); LOG_ERR_RET(sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)) ); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; s5k5e2_sensor_vts = wsize->vts; vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else { //capture image } return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*32, 16*32, 1, 32); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 3*16, 65535*16, 1, 3*16); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);