/* * A V4L2 driver for Superpix SP0838 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("EricYuan"); MODULE_DESCRIPTION("A low-level driver for Superpix SP0838 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[CSI_DEBUG][SP0838]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[CSI_ERR][SP0838]"x,##arg) #define vfe_dev_print(x,arg...) printk("[CSI][SP0838]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0838 #define AWB_EN (1<<4) #define AWB_DIS (~(1<<4)) #define AE_EN (1<<0) #define AE_DIS (~(1<<0)) #define VGA_WIDTH 640 #define VGA_HEIGHT 480 #define QVGA_WIDTH 320 #define QVGA_HEIGHT 240 #define CIF_WIDTH 352 #define CIF_HEIGHT 288 #define QCIF_WIDTH 176 #define QCIF_HEIGHT 144 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 10 /* * The sp0838 sits on i2c with ID 0x30 */ #define I2C_ADDR 0x30 #define SENSOR_NAME "sp0838" //HEQ #define Pre_Value_P0_0xdd 0x70 #define Pre_Value_P0_0xde 0x90 /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { //[Sensor] {0xfd,0x00}, //P0 {0x1B,0x02}, {0x27,0xe8}, {0x28,0x0B}, {0x32,0x00}, {0x22,0xc0}, {0x26,0x10}, {0x31,0x10}, //Upside/mirr/Pclk inv/sub {0x5f,0x11}, //Bayer order {0xfd,0x01}, //P1 {0x25,0x1a}, //Awb start {0x26,0xfb}, {0x28,0x75}, {0x29,0x4e}, {0xfd,0x00}, {0xe7,0x03}, {0xe7,0x00}, {0xfd,0x01}, {0x31,0x60},//64 {0x32,0x18}, {0x4d,0xdc}, {0x4e,0x53}, {0x41,0x8c}, {0x42,0x57}, {0x55,0xff}, {0x56,0x00}, {0x59,0x82}, {0x5a,0x00}, {0x5d,0xff}, {0x5e,0x6f}, {0x57,0xff}, {0x58,0x00}, {0x5b,0xff}, {0x5c,0xa8}, {0x5f,0x75}, {0x60,0x00}, {0x2d,0x00}, {0x2e,0x00}, {0x2f,0x00}, {0x30,0x00}, {0x33,0x00}, {0x34,0x00}, {0x37,0x00}, {0x38,0x00}, //awb end {0xfd,0x00}, //P0 {0x33,0x6f}, //LSC BPC EN {0x51,0x3f}, //BPC debug start {0x52,0x09}, {0x53,0x00}, {0x54,0x00}, {0x55,0x10}, //BPC debug end {0x4f,0x08}, //blueedge {0x50,0x08}, {0x57,0x10}, //Raw filter debut start {0x58,0x10}, {0x59,0x10}, {0x56,0x71}, {0x5a,0x02}, {0x5b,0x05}, {0x5c,0x28}, //Raw filter debut end {0x65,0x04}, //Sharpness debug start {0x66,0x01}, {0x67,0x03}, {0x68,0x45}, {0x69,0x7f}, {0x6a,0x01}, {0x6b,0x06},//zyy20130709 {0x6c,0x01}, {0x6d,0x03}, //Edge gain normal {0x6e,0x43}, //Edge gain normal {0x6f,0x7f}, {0x70,0x01}, {0x71,0x08}, //����ֵ {0x72,0x01}, //��������ֵ {0x73,0x03}, //��Ե��������ֵ {0x74,0x43}, //��Ե��������ֵ {0x75,0x7f}, //ʹ��λ {0x76,0x01}, //Sharpness debug end {0xcb,0x07}, //HEQ&Saturation debug start {0xcc,0x04}, {0xce,0xff}, {0xcf,0x10}, {0xd0,0x20}, {0xd1,0x00}, {0xd2,0x1c}, {0xd3,0x16}, {0xd4,0x00}, {0xd6,0x1c}, {0xd7,0x16}, {0xdd,0x70}, //Contrast {0xde,0x94}, //HEQ&Saturation debug end {0x7f,0xd7}, //Color Correction start {0x80,0xbc}, {0x81,0xed}, {0x82,0xd7}, {0x83,0xd4}, {0x84,0xd6}, {0x85,0xff}, {0x86,0x89}, {0x87,0xf8}, {0x88,0x3c}, {0x89,0x33}, {0x8a,0x0f}, //Color Correction end {0x8b,0x00}, //gamma start {0x8c,0x1a}, {0x8d,0x29}, {0x8e,0x41}, {0x8f,0x62}, {0x90,0x7c}, {0x91,0x90}, {0x92,0xa2}, {0x93,0xaf}, {0x94,0xbc}, {0x95,0xc5}, {0x96,0xcd}, {0x97,0xd5}, {0x98,0xdd}, {0x99,0xe5}, {0x9a,0xed}, {0x9b,0xf5}, {0xfd,0x01}, //P1 {0x8d,0xfd}, {0x8e,0xff}, //gamma end {0xfd,0x00}, //P0 {0xca,0xcf}, {0xd8,0x48}, //UV outdoor {0xd9,0x48}, //UV indoor {0xda,0x44}, //UV dummy//zyy {0xdb,0x40}, //UV lowlight {0xb9,0x00}, //Ygamma start {0xba,0x04}, {0xbb,0x08}, {0xbc,0x10}, {0xbd,0x20}, {0xbe,0x30}, {0xbf,0x40}, {0xc0,0x50}, {0xc1,0x60}, {0xc2,0x70}, {0xc3,0x80}, {0xc4,0x90}, {0xc5,0xA0}, {0xc6,0xB0}, {0xc7,0xC0}, {0xc8,0xD0}, {0xc9,0xE0}, {0xfd,0x01}, //P1 {0x89,0xf0}, {0x8a,0xff}, //Ygamma end {0xfd,0x00}, //P0 {0xe8,0x30}, //AEdebug start {0xe9,0x30}, {0xea,0x40}, //Alc Window sel {0xf4,0x1b}, //outdoor mode sel {0xf5,0x80}, {0xf7,0x78}, //AE target {0xf8,0x63}, {0xf9,0x68}, //AE target {0xfa,0x53}, {0xfd,0x01}, //P1 {0x09,0x31}, //AE Step 3.0 {0x0a,0x85}, {0x0b,0x0b}, //AE Step 3.0 {0x14,0x20}, {0x15,0x0f}, //caprure preview daylight 24M 50hz 20-8FPS maxgain:0x70 {0xfd,0x00}, {0x05,0x00}, {0x06,0x00}, {0x09,0x01}, {0x0a,0x76}, {0xf0,0x62}, {0xf1,0x00}, {0xf2,0x5f}, {0xf5,0x78}, {0xfd,0x01}, {0x00,0xb2}, {0x0f,0x60}, {0x16,0x60}, {0x17,0xa2}, {0x18,0xaa}, {0x1b,0x60}, {0x1c,0xaa}, {0xb4,0x20}, {0xb5,0x3a}, {0xb6,0x5e}, {0xb9,0x40}, {0xba,0x4f}, {0xbb,0x47}, {0xbc,0x45}, {0xbd,0x43}, {0xbe,0x42}, {0xbf,0x42}, {0xc0,0x42}, {0xc1,0x41}, {0xc2,0x41}, {0xc3,0x41}, {0xc4,0x41}, {0xc5,0x70}, {0xc6,0x41}, {0xca,0x70}, {0xcb,0xc }, {0xfd,0x00}, //P0 {0x32,0x15}, //Auto_mode set {0x34,0x66}, //Isp_mode set {0x35,0x00}, //out format }; /* * The white balance settings * Here only tune the R G B channel gain. * The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb */ static struct regval_list sensor_wb_manual[] = { //null }; static struct regval_list sensor_wb_auto_regs[] = { //sp0838_reg_WB_auto {0xfd, 0x01}, {0x28, 0x75}, {0x29, 0x4e}, {0xfd, 0x00}, // AUTO 3000K~7000K {0x32, 0x15}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_incandescence_regs[] = { //bai re guang {0xfd, 0x00}, {0x32, 0x05}, {0xfd, 0x01}, {0x28, 0x41}, {0x29, 0x71}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_fluorescent_regs[] = { //ri guang deng {0xfd, 0x00}, {0x32, 0x05}, {0xfd, 0x01}, {0x28, 0x5a}, {0x29, 0x62}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_tungsten_regs[] = { //wu si deng {0xfd, 0x00}, {0x32, 0x05}, {0xfd, 0x01}, {0x28, 0x57}, {0x29, 0x66}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_horizon[] = { //null }; static struct regval_list sensor_wb_daylight_regs[] = { //tai yang guang {0xfd, 0x00}, {0x32, 0x05}, {0xfd, 0x01}, {0x28, 0x6b}, {0x29, 0x4b}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_flash[] = { //null }; static struct regval_list sensor_wb_cloud_regs[] = { {0xfd, 0x00}, {0x32, 0x05}, {0xfd, 0x01}, {0x28, 0x71}, {0x29, 0x41}, {0xfd, 0x00}, }; static struct regval_list sensor_wb_shade[] = { //null }; static struct cfg_array sensor_wb[] = { { .regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL .size = ARRAY_SIZE(sensor_wb_manual), }, { .regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO .size = ARRAY_SIZE(sensor_wb_auto_regs), }, { .regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT .size = ARRAY_SIZE(sensor_wb_incandescence_regs), }, { .regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT .size = ARRAY_SIZE(sensor_wb_fluorescent_regs), }, { .regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H .size = ARRAY_SIZE(sensor_wb_tungsten_regs), }, { .regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON .size = ARRAY_SIZE(sensor_wb_horizon), }, { .regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT .size = ARRAY_SIZE(sensor_wb_daylight_regs), }, { .regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH .size = ARRAY_SIZE(sensor_wb_flash), }, { .regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY .size = ARRAY_SIZE(sensor_wb_cloud_regs), }, { .regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE .size = ARRAY_SIZE(sensor_wb_shade), }, }; /* * The color effect settings */ static struct regval_list sensor_colorfx_none_regs[] = { {0xfd, 0x00}, {0x62, 0x00}, {0x63, 0x80}, {0x64, 0x80}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_bw_regs[] = { {0xfd, 0x00}, {0x62, 0x40}, {0x63, 0x80}, {0x64, 0x80}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_sepia_regs[] = { {0xfd, 0x00}, {0x62, 0x20}, {0x63, 0xc0}, {0x64, 0x20}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_negative_regs[] = { {0xfd, 0x00}, {0x62, 0x10}, {0x63, 0x80}, {0x64, 0x80}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_emboss_regs[] = { //null }; static struct regval_list sensor_colorfx_sketch_regs[] = { //null }; static struct regval_list sensor_colorfx_sky_blue_regs[] = { {0xfd, 0x00}, {0x62, 0x20}, {0x63, 0x20}, {0x64, 0xf0}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_grass_green_regs[] = { {0xfd, 0x00}, {0x62, 0x20}, {0x63, 0x20}, {0x64, 0x20}, {0xfd, 0x00} }; static struct regval_list sensor_colorfx_skin_whiten_regs[] = { //null }; static struct regval_list sensor_colorfx_vivid_regs[] = { //NULL }; static struct regval_list sensor_colorfx_aqua_regs[] = { //null }; static struct regval_list sensor_colorfx_art_freeze_regs[] = { //null }; static struct regval_list sensor_colorfx_silhouette_regs[] = { //null }; static struct regval_list sensor_colorfx_solarization_regs[] = { //null }; static struct regval_list sensor_colorfx_antique_regs[] = { //null }; static struct regval_list sensor_colorfx_set_cbcr_regs[] = { //null }; static struct cfg_array sensor_colorfx[] = { { .regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0, .size = ARRAY_SIZE(sensor_colorfx_none_regs), }, { .regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1, .size = ARRAY_SIZE(sensor_colorfx_bw_regs), }, { .regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2, .size = ARRAY_SIZE(sensor_colorfx_sepia_regs), }, { .regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3, .size = ARRAY_SIZE(sensor_colorfx_negative_regs), }, { .regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4, .size = ARRAY_SIZE(sensor_colorfx_emboss_regs), }, { .regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5, .size = ARRAY_SIZE(sensor_colorfx_sketch_regs), }, { .regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6, .size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs), }, { .regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7, .size = ARRAY_SIZE(sensor_colorfx_grass_green_regs), }, { .regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8, .size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs), }, { .regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9, .size = ARRAY_SIZE(sensor_colorfx_vivid_regs), }, { .regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10, .size = ARRAY_SIZE(sensor_colorfx_aqua_regs), }, { .regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11, .size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs), }, { .regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12, .size = ARRAY_SIZE(sensor_colorfx_silhouette_regs), }, { .regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13, .size = ARRAY_SIZE(sensor_colorfx_solarization_regs), }, { .regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14, .size = ARRAY_SIZE(sensor_colorfx_antique_regs), }, { .regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15, .size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs), }, }; /* * The brightness setttings */ static struct regval_list sensor_brightness_neg4_regs[] = { {0xfd, 0x00}, {0xdc, 0xc0}, }; static struct regval_list sensor_brightness_neg3_regs[] = { {0xfd, 0x00}, {0xdc, 0xd0}, }; static struct regval_list sensor_brightness_neg2_regs[] = { {0xfd, 0x00}, {0xdc, 0xe0}, }; static struct regval_list sensor_brightness_neg1_regs[] = { {0xfd, 0x00}, {0xdc, 0xf0}, }; static struct regval_list sensor_brightness_zero_regs[] = { {0xfd, 0x00}, {0xdc, 0x00}, }; static struct regval_list sensor_brightness_pos1_regs[] = { {0xfd, 0x00}, {0xdc, 0x10}, }; static struct regval_list sensor_brightness_pos2_regs[] = { {0xfd, 0x00}, {0xdc, 0x20}, }; static struct regval_list sensor_brightness_pos3_regs[] = { {0xfd, 0x00}, {0xdc, 0x30}, }; static struct regval_list sensor_brightness_pos4_regs[] = { {0xfd, 0x00}, {0xdc, 0x40}, }; static struct cfg_array sensor_brightness[] = { { .regs = sensor_brightness_neg4_regs, .size = ARRAY_SIZE(sensor_brightness_neg4_regs), }, { .regs = sensor_brightness_neg3_regs, .size = ARRAY_SIZE(sensor_brightness_neg3_regs), }, { .regs = sensor_brightness_neg2_regs, .size = ARRAY_SIZE(sensor_brightness_neg2_regs), }, { .regs = sensor_brightness_neg1_regs, .size = ARRAY_SIZE(sensor_brightness_neg1_regs), }, { .regs = sensor_brightness_zero_regs, .size = ARRAY_SIZE(sensor_brightness_zero_regs), }, { .regs = sensor_brightness_pos1_regs, .size = ARRAY_SIZE(sensor_brightness_pos1_regs), }, { .regs = sensor_brightness_pos2_regs, .size = ARRAY_SIZE(sensor_brightness_pos2_regs), }, { .regs = sensor_brightness_pos3_regs, .size = ARRAY_SIZE(sensor_brightness_pos3_regs), }, { .regs = sensor_brightness_pos4_regs, .size = ARRAY_SIZE(sensor_brightness_pos4_regs), }, }; /* * The contrast setttings */ static struct regval_list sensor_contrast_neg4_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd-0x40}, //level -4 {0xde, Pre_Value_P0_0xde-0x40} }; static struct regval_list sensor_contrast_neg3_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd-0x30}, //level -3 {0xde, Pre_Value_P0_0xde-0x30} }; static struct regval_list sensor_contrast_neg2_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd-0x20}, //level -2 {0xde, Pre_Value_P0_0xde-0x20} }; static struct regval_list sensor_contrast_neg1_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd-0x10}, //level -1 {0xde, Pre_Value_P0_0xde-0x10} }; static struct regval_list sensor_contrast_zero_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd}, //level 0 {0xde, Pre_Value_P0_0xde}, }; static struct regval_list sensor_contrast_pos1_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd+0x10}, //level +1 {0xde, Pre_Value_P0_0xde+0x10} }; static struct regval_list sensor_contrast_pos2_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd+0x20}, //level +2 {0xde, Pre_Value_P0_0xde+0x20} }; static struct regval_list sensor_contrast_pos3_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd+0x30}, //level +3 {0xde, Pre_Value_P0_0xde+0x30} }; static struct regval_list sensor_contrast_pos4_regs[] = { {0xfd, 0x00}, {0xdd, Pre_Value_P0_0xdd+0x40}, //level +4 {0xde, Pre_Value_P0_0xde+0x40} }; static struct cfg_array sensor_contrast[] = { { .regs = sensor_contrast_neg4_regs, .size = ARRAY_SIZE(sensor_contrast_neg4_regs), }, { .regs = sensor_contrast_neg3_regs, .size = ARRAY_SIZE(sensor_contrast_neg3_regs), }, { .regs = sensor_contrast_neg2_regs, .size = ARRAY_SIZE(sensor_contrast_neg2_regs), }, { .regs = sensor_contrast_neg1_regs, .size = ARRAY_SIZE(sensor_contrast_neg1_regs), }, { .regs = sensor_contrast_zero_regs, .size = ARRAY_SIZE(sensor_contrast_zero_regs), }, { .regs = sensor_contrast_pos1_regs, .size = ARRAY_SIZE(sensor_contrast_pos1_regs), }, { .regs = sensor_contrast_pos2_regs, .size = ARRAY_SIZE(sensor_contrast_pos2_regs), }, { .regs = sensor_contrast_pos3_regs, .size = ARRAY_SIZE(sensor_contrast_pos3_regs), }, { .regs = sensor_contrast_pos4_regs, .size = ARRAY_SIZE(sensor_contrast_pos4_regs), }, }; /* * The saturation setttings */ static struct regval_list sensor_saturation_neg4_regs[] = { //null }; static struct regval_list sensor_saturation_neg3_regs[] = { //null }; static struct regval_list sensor_saturation_neg2_regs[] = { //null }; static struct regval_list sensor_saturation_neg1_regs[] = { //null }; static struct regval_list sensor_saturation_zero_regs[] = { //null }; static struct regval_list sensor_saturation_pos1_regs[] = { //null }; static struct regval_list sensor_saturation_pos2_regs[] = { //null }; static struct regval_list sensor_saturation_pos3_regs[] = { //null }; static struct regval_list sensor_saturation_pos4_regs[] = { //null }; static struct cfg_array sensor_saturation[] = { { .regs = sensor_saturation_neg4_regs, .size = ARRAY_SIZE(sensor_saturation_neg4_regs), }, { .regs = sensor_saturation_neg3_regs, .size = ARRAY_SIZE(sensor_saturation_neg3_regs), }, { .regs = sensor_saturation_neg2_regs, .size = ARRAY_SIZE(sensor_saturation_neg2_regs), }, { .regs = sensor_saturation_neg1_regs, .size = ARRAY_SIZE(sensor_saturation_neg1_regs), }, { .regs = sensor_saturation_zero_regs, .size = ARRAY_SIZE(sensor_saturation_zero_regs), }, { .regs = sensor_saturation_pos1_regs, .size = ARRAY_SIZE(sensor_saturation_pos1_regs), }, { .regs = sensor_saturation_pos2_regs, .size = ARRAY_SIZE(sensor_saturation_pos2_regs), }, { .regs = sensor_saturation_pos3_regs, .size = ARRAY_SIZE(sensor_saturation_pos3_regs), }, { .regs = sensor_saturation_pos4_regs, .size = ARRAY_SIZE(sensor_saturation_pos4_regs), }, }; /* * The exposure target setttings */ static struct regval_list sensor_ev_neg4_regs[] = { {0xfd, 0x00}, {0xdc, 0xc0}, }; static struct regval_list sensor_ev_neg3_regs[] = { {0xfd, 0x00}, {0xdc, 0xd0}, }; static struct regval_list sensor_ev_neg2_regs[] = { {0xfd, 0x00}, {0xdc, 0xe0}, }; static struct regval_list sensor_ev_neg1_regs[] = { {0xfd, 0x00}, {0xdc, 0xf0}, }; static struct regval_list sensor_ev_zero_regs[] = { {0xfd, 0x00}, {0xdc, 0x00}, }; static struct regval_list sensor_ev_pos1_regs[] = { {0xfd, 0x00}, {0xdc, 0x10}, }; static struct regval_list sensor_ev_pos2_regs[] = { {0xfd, 0x00}, {0xdc, 0x20}, }; static struct regval_list sensor_ev_pos3_regs[] = { {0xfd, 0x00}, {0xdc, 0x30}, }; static struct regval_list sensor_ev_pos4_regs[] = { {0xfd, 0x00}, {0xdc, 0x40}, }; static struct cfg_array sensor_ev[] = { { .regs = sensor_ev_neg4_regs, .size = ARRAY_SIZE(sensor_ev_neg4_regs), }, { .regs = sensor_ev_neg3_regs, .size = ARRAY_SIZE(sensor_ev_neg3_regs), }, { .regs = sensor_ev_neg2_regs, .size = ARRAY_SIZE(sensor_ev_neg2_regs), }, { .regs = sensor_ev_neg1_regs, .size = ARRAY_SIZE(sensor_ev_neg1_regs), }, { .regs = sensor_ev_zero_regs, .size = ARRAY_SIZE(sensor_ev_zero_regs), }, { .regs = sensor_ev_pos1_regs, .size = ARRAY_SIZE(sensor_ev_pos1_regs), }, { .regs = sensor_ev_pos2_regs, .size = ARRAY_SIZE(sensor_ev_pos2_regs), }, { .regs = sensor_ev_pos3_regs, .size = ARRAY_SIZE(sensor_ev_pos3_regs), }, { .regs = sensor_ev_pos4_regs, .size = ARRAY_SIZE(sensor_ev_pos4_regs), }, }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_yuv422_yuyv[] = { {0xfd, 0x00}, //YCbYCr {0x35, 0x40} }; static struct regval_list sensor_fmt_yuv422_yvyu[] = { {0xfd, 0x00}, //YCrYCb {0x35, 0x40} }; static struct regval_list sensor_fmt_yuv422_vyuy[] = { {0xfd, 0x00}, //CrYCbY {0x35, 0x01} }; static struct regval_list sensor_fmt_yuv422_uyvy[] = { {0xfd, 0x00}, //CbYCrY {0x35, 0x00} }; static struct regval_list sensor_fmt_raw[] = { {0xfd, 0x00}, //raw {0x35, 0x20} }; static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_hflip!\n"); return ret; } ret = sensor_read(sd, 0x31, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_hflip!\n"); return ret; } val &= (1<<5); val = val>>5; //0x31 bit5 is mirror *value = val; info->hflip = *value; return 0; } static int sensor_s_hflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; msleep(100); ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } msleep(100); ret = sensor_read(sd, 0x31, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_hflip!\n"); return ret; } msleep(100); switch (value) { case 0: val &= 0xdf; break; case 1: val |= 0x20; break; default: return -EINVAL; } ret = sensor_write(sd, 0x31, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } msleep(10); info->hflip = value; return 0; } static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_vflip!\n"); return ret; } ret = sensor_read(sd, 0x31, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_vflip!\n"); return ret; } val &= (1<<6); val = val>>6; //0x31 bit6 is upsidedown *value = val; info->vflip = *value; return 0; } static int sensor_s_vflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; msleep(100); ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } msleep(100); ret = sensor_read(sd, 0x31, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_vflip!\n"); return ret; } msleep(100); switch (value) { case 0: val &= 0xbf; break; case 1: val |= 0x40; break; default: return -EINVAL; } ret = sensor_write(sd, 0x31, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } msleep(10); info->vflip = value; return 0; } static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_autogain(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autoexp!\n"); return ret; } ret = sensor_read(sd, 0x32, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autoexp!\n"); return ret; } val &= 0x01; if (val == 0x01) { *value = V4L2_EXPOSURE_AUTO; } else { *value = V4L2_EXPOSURE_MANUAL; } info->autoexp = *value; return 0; } static int sensor_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } ret = sensor_read(sd, 0x32, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autoexp!\n"); return ret; } switch (value) { case V4L2_EXPOSURE_AUTO: val |= AE_EN; break; case V4L2_EXPOSURE_MANUAL: val &= AE_DIS; break; case V4L2_EXPOSURE_SHUTTER_PRIORITY: return -EINVAL; case V4L2_EXPOSURE_APERTURE_PRIORITY: return -EINVAL; default: return -EINVAL; } ret = sensor_write(sd, 0x32, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } msleep(10); info->autoexp = value; return 0; } static int sensor_g_autowb(struct v4l2_subdev *sd, int *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autowb!\n"); return ret; } ret = sensor_read(sd, 0x32, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autowb!\n"); return ret; } val &= (1<<4); val = val>>4; //0x22 bit1 is awb enable *value = val; info->autowb = *value; return 0; } static int sensor_s_autowb(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs)); if (ret < 0) { vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n"); return ret; } ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } ret = sensor_read(sd, 0x32, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autowb!\n"); return ret; } switch(value) { case 0: val &= AWB_DIS; break; case 1: val |= AWB_EN; break; default: break; } ret = sensor_write(sd, 0x32, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } msleep(10); info->autowb = value; return 0; } static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_hue(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_gain(struct v4l2_subdev *sd, int value) { return -EINVAL; } /* *********************************************end of ******************************************** */ static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->brightness; return 0; } static int sensor_s_brightness(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->brightness == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size)) info->brightness = value; return 0; } static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->contrast; return 0; } static int sensor_s_contrast(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->contrast == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size)) info->contrast = value; return 0; } static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->saturation; return 0; } static int sensor_s_saturation(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->saturation == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size)) info->saturation = value; return 0; } static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp_bias; return 0; } static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if(info->exp_bias == value) return 0; if(value < -4 || value > 4) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size)) info->exp_bias = value; return 0; } static int sensor_g_wb(struct v4l2_subdev *sd, int *value) { struct sensor_info *info = to_state(sd); enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value; *wb_type = info->wb; return 0; } static int sensor_s_wb(struct v4l2_subdev *sd, enum v4l2_auto_n_preset_white_balance value) { struct sensor_info *info = to_state(sd); if(info->capture_mode == V4L2_MODE_IMAGE) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs ,sensor_wb[value].size) ) if (value == V4L2_WHITE_BALANCE_AUTO) info->autowb = 1; else info->autowb = 0; info->wb = value; return 0; } static int sensor_g_colorfx(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value; *clrfx_type = info->clrfx; return 0; } static int sensor_s_colorfx(struct v4l2_subdev *sd, enum v4l2_colorfx value) { struct sensor_info *info = to_state(sd); if(info->clrfx == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size)) info->clrfx = value; return 0; } static int sensor_g_flash_mode(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value; *flash_mode = info->flash_mode; return 0; } static int sensor_s_flash_mode(struct v4l2_subdev *sd, enum v4l2_flash_led_mode value) { struct sensor_info *info = to_state(sd); info->flash_mode = value; return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { cci_lock(sd); switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n"); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(30000,31000); vfe_set_mclk(sd,OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n"); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(30000,31000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n"); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); usleep_range(20000,22000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(30000,31000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n"); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_set_mclk(sd,OFF); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input break; default: return -EINVAL; } cci_unlock(sd); return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { int ret; data_type val; ret = sensor_write(sd, 0xfd, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_detect!\n"); return ret; } ret = sensor_read(sd, 0x02, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } if(val != 0x27) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } return sensor_write_array(sd, sensor_default_regs , ARRAY_SIZE(sensor_default_regs)); } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "YUYV 4:2:2", .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8, .regs = sensor_fmt_yuv422_yuyv, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv), .bpp = 2, }, { .desc = "YVYU 4:2:2", .mbus_code = V4L2_MBUS_FMT_YVYU8_2X8, .regs = sensor_fmt_yuv422_yvyu, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu), .bpp = 2, }, { .desc = "UYVY 4:2:2", .mbus_code = V4L2_MBUS_FMT_UYVY8_2X8, .regs = sensor_fmt_yuv422_uyvy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy), .bpp = 2, }, { .desc = "VYUY 4:2:2", .mbus_code = V4L2_MBUS_FMT_VYUY8_2X8, .regs = sensor_fmt_yuv422_vyuy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy), .bpp = 2, }, { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,//linux-3.0 .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code)//linux-3.0 break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE;//linux-3.0 /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width;//linux-3.0 fmt->height = wsize->height;//linux-3.0 return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)//linux-3.0 { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size); ret = 0; if (wsize->regs) { ret = sensor_write_array(sd, wsize->regs , wsize->regs_size); if (ret < 0) return ret; } if (wsize->set_size) { ret = wsize->set_size(sd); if (ret < 0) return ret; } info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; //struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->timeperframe.numerator = 1; cp->timeperframe.denominator = SENSOR_FRAME_RATE; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* *********************************************begin of ******************************************** */ static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ /* see sensor_s_parm and sensor_g_parm for the meaning of value */ switch (qc->id) { // case V4L2_CID_BRIGHTNESS: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_CONTRAST: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_SATURATION: // return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1); // case V4L2_CID_HUE: // return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0); case V4L2_CID_VFLIP: case V4L2_CID_HFLIP: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); // case V4L2_CID_GAIN: // return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128); // case V4L2_CID_AUTOGAIN: // return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0); case V4L2_CID_EXPOSURE_AUTO: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 9, 1, 1); case V4L2_CID_AUTO_WHITE_BALANCE: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1); case V4L2_CID_COLORFX: return v4l2_ctrl_query_fill(qc, 0, 15, 1, 0); case V4L2_CID_FLASH_LED_MODE: return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_g_brightness(sd, &ctrl->value); case V4L2_CID_CONTRAST: return sensor_g_contrast(sd, &ctrl->value); case V4L2_CID_SATURATION: return sensor_g_saturation(sd, &ctrl->value); case V4L2_CID_HUE: return sensor_g_hue(sd, &ctrl->value); case V4L2_CID_VFLIP: return sensor_g_vflip(sd, &ctrl->value); case V4L2_CID_HFLIP: return sensor_g_hflip(sd, &ctrl->value); case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_g_autogain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_g_exp_bias(sd, &ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_g_autoexp(sd, &ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_g_wb(sd, &ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_g_autowb(sd, &ctrl->value); case V4L2_CID_COLORFX: return sensor_g_colorfx(sd, &ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_g_flash_mode(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; //vfe_dev_dbg("sensor_s_ctrl ctrl->id=0x%8x\n", ctrl->id); qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (qc.type == V4L2_CTRL_TYPE_MENU || qc.type == V4L2_CTRL_TYPE_INTEGER || qc.type == V4L2_CTRL_TYPE_BOOLEAN) { if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { return -ERANGE; } } switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_s_brightness(sd, ctrl->value); case V4L2_CID_CONTRAST: return sensor_s_contrast(sd, ctrl->value); case V4L2_CID_SATURATION: return sensor_s_saturation(sd, ctrl->value); case V4L2_CID_HUE: return sensor_s_hue(sd, ctrl->value); case V4L2_CID_VFLIP: return sensor_s_vflip(sd, ctrl->value); case V4L2_CID_HFLIP: return sensor_s_hflip(sd, ctrl->value); case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_AUTOGAIN: return sensor_s_autogain(sd, ctrl->value); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_s_exp_bias(sd, ctrl->value); case V4L2_CID_EXPOSURE_AUTO: return sensor_s_autoexp(sd,(enum v4l2_exposure_auto_type) ctrl->value); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_s_wb(sd,(enum v4l2_auto_n_preset_white_balance) ctrl->value); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_s_autowb(sd, ctrl->value); case V4L2_CID_COLORFX: return sensor_s_colorfx(sd,(enum v4l2_colorfx) ctrl->value); case V4L2_CID_FLASH_LED_MODE: return sensor_s_flash_mode(sd,(enum v4l2_flash_led_mode) ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); if(client) { client->addr=0x30>>1; } info->fmt = &sensor_formats[0]; info->brightness = 0; info->contrast = 0; info->saturation = 0; info->hue = 0; info->hflip = 0; info->vflip = 0; info->gain = 0; info->autogain = 1; info->exp = 0; info->autoexp = 0; info->autowb = 1; info->wb = 0; info->clrfx = 0; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { { SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);