/* * A V4L2 driver for superpix sp2508 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("Chomoly"); MODULE_DESCRIPTION("A low-level driver for superpix sp2508 sensors"); MODULE_LICENSE("GPL"); //for internel driver debug #define DEV_DBG_EN 0 #if(DEV_DBG_EN == 1) #define vfe_dev_dbg(x,arg...) printk("[sp2508]"x,##arg) #else #define vfe_dev_dbg(x,arg...) #endif #define vfe_dev_err(x,arg...) printk("[sp2508]"x,##arg) #define vfe_dev_print(x,arg...) printk("[sp2508]"x,##arg) #define LOG_ERR_RET(x) { \ int ret; \ ret = x; \ if(ret < 0) {\ vfe_dev_err("error at %s\n",__func__); \ return ret; \ } \ } //define module timing #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING //#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_FALLING #define V4L2_IDENT_SENSOR 0x2508 /* * Our nominal (default) frame rate. */ #define I2C_ADDR (0x78) #define SENSOR_NAME "sp2508" static struct v4l2_subdev *glb_sd; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain * exp_gain); /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list * regs; int size; }; static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ static struct regval_list sensor_default_regs[] = { {0xfd,0x00},// {0x1b,0x00},// {0x1c,0x00},// {0x1e,0x95},// {0x35,0x20},// ;pll bias {0x2f,0x10},//3b/*08*/},// ;pll clk 60M {0x34,0x01},//01}, {0xfd,0x01},// {0x03,0x02},// ;exp time, 3 base {0x04,0x2b},// {0x06,0x08},// ;vblank {0x24,0x60},// ;pga gain 6x {0x01,0x01},// ;enable reg write {0x2b,0xc5},// ;readout vref {0x2e,0x20},// ;dclk delay {0x79,0x42},// ;p39 p40 {0x85,0x0f},// ;p51 {0x09,0x03},// ;hblank {0x0a,0x00},// {0x1e,0x82},// {0x21,0xef},// ;pcp tx 4.05v {0x25,0xf2},// ;reg dac 2.7v, enable bl_en,vbl 1.4v {0x26,0x00},// ;vref2 1v, disable ramp driver {0x2a,0xea},// ;bypass dac res, adc range 0.745, vreg counter 0.9 {0x2c,0xf0},// ;high 8bit, pldo 2.7v {0x8a,0x55},// ;pixel bias 1uA {0x8b,0x55},// {0x19,0xf3},// ;icom1 1.7u, icom2 0.6u {0x3c,0x02},// {0x0e,0x04},// ;4 sample {0x0f,0x04},// {0x11,0x60},// ;rst num {0xd0,0x00},// ;disable boost {0x55,0x20},// {0x58,0x4d},// {0x5d,0x15},// {0x5e,0x05},// {0x64,0x40},// {0x65,0x00},// {0x66,0x66},// {0x67,0x00},// {0x68,0x68},// {0x72,0x70},// {0x75,0x60},// {0xfb,0x25},// {0xfd,0x02},// ;raw data digital gain {0x00,0x84},// {0x01,0x84},// {0x03,0x84},// {0x04,0x84},// }; static struct regval_list sensor_uxga_regs[] = { //UXGA: 1600*1200 {0xfd,0x00}, {0x1b,0x00}, {0x1c,0x00}, {0x30,0x05}, {0x1e,0x55}, {0xfd,0x01}, {0x31,0x00}, {0x0d,0x00},//add {0x1e,0x8b}, {0x01,0x01}, }; static struct regval_list sensor_720p_regs[] = { //1280*720 {0xfd,0x00}, {0x1b,0x00}, {0x1c,0x00}, {0x30,0x05}, {0xfd,0x01}, {0x31,0x10}, {0x01,0x01}, }; static struct regval_list sensor_sxga_regs[] = { //SXGA: 1280*960 }; static struct regval_list sensor_fmt_raw[] = { }; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { int exp_val, gain_val; unsigned char explow=0,expmid=0;//,exphigh=0,vts_diff_low,vts_diff_high; unsigned char gainlow=0;//,gainhigh=0; struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; if(gain_val<1*16) gain_val=16; if(gain_val>64*16-1) gain_val=64*16-1; if(exp_val>0xfffff) exp_val=0xfffff; gainlow=(unsigned char)(gain_val&0xff); expmid = (unsigned char) ( (0x0ff000&exp_val)>>12); explow = (unsigned char) ( (0x000ff0&exp_val)>>4); sensor_write(sd, 0xfd, 0x01); sensor_write(sd, 0x24, gainlow*2); sensor_write(sd, 0x03, expmid); sensor_write(sd, 0x04, explow); sensor_write(sd, 0x01, 0x01); printk("exp=%d,gain=%d\n",exp_val,gainlow*2); info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char expmid=0,explow=0; struct sensor_info *info = to_state(sd); sensor_write(sd, 0xfd, 0x01); expmid = (unsigned char) ( (0x0ff000&exp_val)>>12); explow = (unsigned char) ( (0x000ff0&exp_val)>>4); sensor_write(sd, 0x03, expmid); sensor_write(sd, 0x04, explow); sensor_write(sd, 0x01, 0x01); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { unsigned char gainlow; gainlow=(unsigned char)(gain_val&0xff); sensor_write(sd, 0xfd, 0x01);//enter group write sensor_write(sd, 0x24, gainlow*2); sensor_write(sd, 0x01, 0x01);//end group write printk("sp2508 sensor gain value is %d\n",gain_val); return 0; } static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) { int ret; data_type rdval; ret=sensor_read(sd, 0xfc, &rdval); if(ret!=0) return ret; if(on_off==CSI_GPIO_HIGH)//sw stby on { ret=sensor_write(sd, 0xfc, rdval | 0x01); sensor_write(sd, 0xf2, 0x00); } else//sw stby off { sensor_write(sd, 0xfc, rdval & 0xfe); ret=sensor_write(sd, 0xf2, 0xff); } return ret; //return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { cci_lock(sd); switch(on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n"); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(30000,31000); vfe_set_mclk(sd,OFF); usleep_range(10000,12000); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n"); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(30000,31000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n"); vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output vfe_gpio_set_status(sd,RESET,1);//set the gpio to output vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(1000,1200); vfe_set_mclk_freq(sd,MCLK); vfe_set_mclk(sd,ON); usleep_range(10000,12000); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH); vfe_set_pmu_channel(sd,AVDD,ON); vfe_set_pmu_channel(sd,IOVDD,ON); vfe_set_pmu_channel(sd,DVDD,ON); vfe_set_pmu_channel(sd,AFVDD,ON); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(30000,31000); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n"); vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH); usleep_range(10000,12000); vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW); vfe_set_pmu_channel(sd,AFVDD,OFF); vfe_set_pmu_channel(sd,DVDD,OFF); vfe_set_pmu_channel(sd,AVDD,OFF); vfe_set_pmu_channel(sd,IOVDD,OFF); usleep_range(10000,12000); vfe_set_mclk(sd,OFF); vfe_gpio_set_status(sd,RESET,0);//set the gpio to input vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input break; default: return -EINVAL; } cci_unlock(sd); return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch(val) { case 0: vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH); usleep_range(10000,12000); break; case 1: vfe_gpio_write(sd,RESET,CSI_GPIO_LOW); usleep_range(10000,12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0x02, &rdval)) // vfe_dev_dbg("0x0000=0x%x\n",rdval); if(rdval != 0x25) return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0x03, &rdval)) // vfe_dev_dbg("0x0001=0x%x\n",rdval); if(rdval != 0x08) return -ENODEV; return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ // ret = sensor_detect(sd); // if (ret) { // vfe_dev_err("chip found is not an target chip.\n"); // return ret; // } vfe_get_standby_mode(sd,&info->stby_mode); if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \ && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = UXGA_WIDTH; info->height = UXGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if(ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if(info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret=0; struct sensor_info *info = to_state(sd); switch(cmd) { case GET_CURRENT_WIN_CFG: if(info->current_wins != NULL) { memcpy( arg, info->current_wins, sizeof(struct sensor_win_size) ); ret=0; } else { vfe_dev_err("empty wins!\n"); ret=-1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; //__u32 pixelformat; enum v4l2_mbus_pixelcode mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ }sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* UXGA */ { .width = UXGA_WIDTH, .height = UXGA_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3205, .vts = 1224, .pclk = 82*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = 1224<<4, .gain_min = 1<<4, .gain_max = (7<<4), .regs = sensor_uxga_regs, .regs_size = ARRAY_SIZE(sensor_uxga_regs), .set_size = NULL, }, { .width = HD720_WIDTH, .height = HD720_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3300,//1646,//1616, .vts = 736,//754,//764, .pclk = 60*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = 736<<4, .gain_min = 1<<4, .gain_max = (8<<4)-1, .regs = sensor_720p_regs,// .regs_size = ARRAY_SIZE(sensor_720p_regs),// .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index >= N_FMTS) return -EINVAL; *code = sensor_formats[index].mbus_code; return 0; } static int sensor_enum_size(struct v4l2_subdev *sd, struct v4l2_frmsizeenum *fsize) { if(fsize->index > N_WIN_SIZES-1) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = sensor_win_sizes[fsize->index].width; fsize->discrete.height = sensor_win_sizes[fsize->index].height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_try_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ; return 0; } /* * Set a format. */ static int sensor_s_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { int ret; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; if(info->capture_mode == V4L2_MODE_VIDEO) { //video } else if(info->capture_mode == V4L2_MODE_IMAGE) { //image } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)) if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)) info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height); usleep_range(500000,600000); return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { /* Fill in min, max, step and default value for these controls. */ /* see include/linux/videodev2.h for details */ switch (qc->id) { case V4L2_CID_GAIN: return v4l2_ctrl_query_fill(qc, 1*16, 32*16, 1, 1*16); case V4L2_CID_EXPOSURE: return v4l2_ctrl_query_fill(qc, 0, 8192*16, 1, 0); case V4L2_CID_FRAME_RATE: return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120); } return -EINVAL; } static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->value); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->value); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct v4l2_queryctrl qc; int ret; qc.id = ctrl->id; ret = sensor_queryctrl(sd, &qc); if (ret < 0) { return ret; } if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) { vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum); return -ERANGE; } switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->value); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->value); } return -EINVAL; } static int sensor_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0); } /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops sensor_core_ops = { .g_chip_ident = sensor_g_chip_ident, .g_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, .queryctrl = sensor_queryctrl, .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .enum_mbus_fmt = sensor_enum_fmt, .enum_framesizes = sensor_enum_size, .try_mbus_fmt = sensor_try_fmt, .s_mbus_fmt = sensor_s_fmt, .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);