#ifndef _LINUX_AXP_VIRTUAL_H_ #define _LINUX_AXP_VIRTUAL_H_ #include #include #include /* * struct regulator * * One for each consumer device. */ struct regulator { struct device *dev; struct list_head list; unsigned int always_on:1; unsigned int bypass:1; int uA_load; int min_uV; int max_uV; char *supply_name; struct device_attribute dev_attr; struct regulator_dev *rdev; struct dentry *debugfs; }; struct virtual_consumer_data { struct mutex lock; struct regulator *regulator; int enabled; int min_uV; int max_uV; int min_uA; int max_uA; unsigned int mode; }; static void update_voltage_constraints(struct virtual_consumer_data *data) { int ret = 0; if (data->min_uV && data->max_uV && data->min_uV <= data->max_uV) { ret = regulator_set_voltage(data->regulator, data->min_uV, data->max_uV); if (ret != 0) { printk(KERN_ERR "regulator_set_voltage() failed: %d\n", ret); return; } } if (data->min_uV && data->max_uV) { ret = data->regulator->rdev->desc->ops->enable(data->regulator->rdev); if (ret != 0) printk(KERN_ERR "regulator_enable() failed: %d\n", ret); } if (!(data->min_uV && data->max_uV)) { ret = data->regulator->rdev->desc->ops->disable(data->regulator->rdev); if (ret != 0) printk(KERN_ERR "regulator_disable() failed: %d\n", ret); } } static void update_current_limit_constraints(struct virtual_consumer_data *data) { int ret; if (data->max_uA && data->min_uA <= data->max_uA) { ret = regulator_set_current_limit(data->regulator, data->min_uA, data->max_uA); if (ret != 0) { pr_err("regulator_set_current_limit() failed: %d\n", ret); return; } } if (data->max_uA && !data->enabled) { ret = regulator_enable(data->regulator); if (ret == 0) data->enabled = 1; else printk(KERN_ERR "regulator_enable() failed: %d\n", ret); } if (!(data->min_uA && data->max_uA) && data->enabled) { ret = regulator_disable(data->regulator); if (ret == 0) data->enabled = 0; else printk(KERN_ERR "regulator_disable() failed: %d\n", ret); } } static ssize_t show_min_uV(struct device *dev, struct device_attribute *attr, char *buf) { struct virtual_consumer_data *data = dev_get_drvdata(dev); data->min_uV = regulator_get_voltage(data->regulator); return sprintf(buf, "%d\n", data->min_uV); } static ssize_t set_min_uV(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct virtual_consumer_data *data = dev_get_drvdata(dev); long val; if (strict_strtol(buf, 10, &val) != 0) return count; mutex_lock(&data->lock); data->min_uV = val; update_voltage_constraints(data); mutex_unlock(&data->lock); return count; } static ssize_t show_max_uV(struct device *dev, struct device_attribute *attr, char *buf) { struct virtual_consumer_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->max_uV); } static ssize_t set_max_uV(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct virtual_consumer_data *data = dev_get_drvdata(dev); long val; if (strict_strtol(buf, 10, &val) != 0) return count; mutex_lock(&data->lock); data->min_uV = regulator_get_voltage(data->regulator); data->max_uV = val; update_voltage_constraints(data); mutex_unlock(&data->lock); return count; } static ssize_t show_min_uA(struct device *dev, struct device_attribute *attr, char *buf) { struct virtual_consumer_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->min_uA); } static ssize_t set_min_uA(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct virtual_consumer_data *data = dev_get_drvdata(dev); long val; if (strict_strtol(buf, 10, &val) != 0) return count; mutex_lock(&data->lock); data->min_uA = val; update_current_limit_constraints(data); mutex_unlock(&data->lock); return count; } static ssize_t show_max_uA(struct device *dev, struct device_attribute *attr, char *buf) { struct virtual_consumer_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->max_uA); } static ssize_t set_max_uA(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct virtual_consumer_data *data = dev_get_drvdata(dev); long val; if (strict_strtol(buf, 10, &val) != 0) return count; mutex_lock(&data->lock); data->max_uA = val; update_current_limit_constraints(data); mutex_unlock(&data->lock); return count; } static ssize_t show_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct virtual_consumer_data *data = dev_get_drvdata(dev); switch (data->mode) { case REGULATOR_MODE_FAST: return sprintf(buf, "fast\n"); case REGULATOR_MODE_NORMAL: return sprintf(buf, "normal\n"); case REGULATOR_MODE_IDLE: return sprintf(buf, "idle\n"); case REGULATOR_MODE_STANDBY: return sprintf(buf, "standby\n"); default: return sprintf(buf, "unknown\n"); } } static ssize_t set_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct virtual_consumer_data *data = dev_get_drvdata(dev); unsigned int mode; int ret; if (strncmp(buf, "fast", strlen("fast")) == 0) mode = REGULATOR_MODE_FAST; else if (strncmp(buf, "normal", strlen("normal")) == 0) mode = REGULATOR_MODE_NORMAL; else if (strncmp(buf, "idle", strlen("idle")) == 0) mode = REGULATOR_MODE_IDLE; else if (strncmp(buf, "standby", strlen("standby")) == 0) mode = REGULATOR_MODE_STANDBY; else { dev_err(dev, "Configuring invalid mode\n"); return count; } mutex_lock(&data->lock); ret = regulator_set_mode(data->regulator, mode); if (ret == 0) data->mode = mode; else dev_err(dev, "Failed to configure mode: %d\n", ret); mutex_unlock(&data->lock); return count; } static DEVICE_ATTR(min_microvolts, 0644, show_min_uV, set_min_uV); static DEVICE_ATTR(max_microvolts, 0644, show_max_uV, set_max_uV); static DEVICE_ATTR(min_microamps, 0644, show_min_uA, set_min_uA); static DEVICE_ATTR(max_microamps, 0644, show_max_uA, set_max_uA); static DEVICE_ATTR(mode, 0644, show_mode, set_mode); static struct device_attribute *attributes_virtual[] = { &dev_attr_min_microvolts, &dev_attr_max_microvolts, &dev_attr_min_microamps, &dev_attr_max_microamps, &dev_attr_mode, }; #endif