oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/ov5650.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

1269 lines
29 KiB
C
Executable file

/*
* A V4L2 driver for OV ov5650 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("raymonxiu");
MODULE_DESCRIPTION("A low-level driver for OV5650 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[OV5650]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[OV5650]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[OV5650]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x5650
/*
* Our nominal (default) frame rate.
*/
#ifdef FPGA
#define SENSOR_FRAME_RATE 15
#else
#define SENSOR_FRAME_RATE 30
#endif
/*
* The ov5650 sits on i2c with ID 0x6c
*/
#define I2C_ADDR 0x6c
#define SENSOR_NAME "ov5650"
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
{0x3008, 0x82},
{REG_DLY, 0x05},
{0x3008, 0x42},
{0x3030, 0x10}, //bit4=1 bypass internal dvdd ldo
{0x3103, 0x93},
{0x3b07, 0x0c},
{0x3017, 0xff},
{0x3018, 0xfc},
{0x3706, 0x41},
{0x3630, 0x22},
{0x3605, 0x04},
{0x3606, 0x3f},
{0x3712, 0x13},
{0x370e, 0x00},
{0x370b, 0x40},
{0x3600, 0x54},
{0x3601, 0x05},
{0x3713, 0x22},
{0x3714, 0x27},
{0x3631, 0x22},
{0x3612, 0x1a},
{0x3604, 0x40},
{0x3710, 0x28},
{0x3702, 0x3a},
{0x3704, 0x18},
{0x3a18, 0x00},
{0x3a19, 0xf8},
{0x3a00, 0x38},
{0x380c, 0x0c},
{0x380d, 0xb4},
{0x380e, 0x07},
{0x380f, 0xb0},
{0x3830, 0x50},
{0x3a08, 0x12},
{0x3a09, 0x70},
{0x3a0a, 0x0f},
{0x3a0b, 0x60},
{0x3a0d, 0x06},
{0x3a0e, 0x06},
{0x3a13, 0x54},
{0x3815, 0x82},
{0x5059, 0x80},
{0x3615, 0x52},
{0x505a, 0x0a},
{0x505b, 0x2e},
{0x3826, 0x00},
{0x3a1a, 0x06},
//{0x3503, 0x00},
{0x3623, 0x01},
{0x3633, 0x24},
{0x3c01, 0x34},
{0x3c04, 0x28},
{0x3c05, 0x98},
{0x3c07, 0x07},
{0x3c09, 0xc2},
{0x4000, 0x05},
{0x4001, 0x02},
{0x5046, 0x01},
{0x3810, 0x40},
{0x3836, 0x41},
{0x505f, 0x04},
{0x5000, 0x00},
{0x5001, 0x00},
{0x503d, 0x00},
{0x585a, 0x01},
{0x585b, 0x2c},
{0x585c, 0x01},
{0x585d, 0x93},
{0x585e, 0x01},
{0x585f, 0x90},
{0x5860, 0x01},
{0x5861, 0x0d},
{0x5180, 0xc0},
{0x5184, 0x00},
{0x470a, 0x00},
{0x470b, 0x00},
{0x470c, 0x00},
{0x300f, 0x8e},
{0x3603, 0xa7},
{0x3632, 0x55},
{0x3620, 0x56},
{0x3631, 0x36},
{0x3632, 0x5f},
{0x3711, 0x24},
{0x401f, 0x03},
{0x3a0f, 0x78},
{0x3a10, 0x68},
{0x3a1b, 0x78},
{0x3a1e, 0x68},
{0x3a11, 0xd0},
{0x3a1f, 0x40},
{0x3503, 0x13}, //manual AE AGC
{0x5001, 0x01}, //manual AWB
{0x5046, 0x09},
{0x3406, 0x01},
{0x3400, 0x04},
{0x3401, 0x00},
{0x3402, 0x04},
{0x3403, 0x00},
{0x3404, 0x04},
{0x3405, 0x00},
{0x5000, 0x06}, //[7]lenc off,[1:0]bc/wc on
{0x3008, 0x02},
};
//for capture
static struct regval_list sensor_qsxga_regs[] = { //qsxga: 2592*1936@7.5fps 48MHz
//capture 5Mega 7.5fps
{0x3008, 0x42},
{0x3613, 0x44},//?
{0x370d, 0x04},//|
{0x3703, 0xe6},//|
{0x3705, 0xda},//|
{0x370a, 0x80},//
{0x370c, 0x00},
{0x3703, 0xe6},
{0x3713, 0x22},
{0x3714, 0x27},//analog ctrl
{0x3010, 0x30},//PLL1
{0x3011, 0x10},//PLL2
{0x3012, 0x00},//PLL3
{0x3800, 0x02},//HREF start[11:8]
{0x3801, 0x54},//HREF start[7:0]
{0x3802, 0x00},//VREF start[11:8]
{0x3803, 0x0c},//VREF start[7:0]
{0x3804, 0x0a},//HREF width[11:8]
{0x3805, 0x20},//HREF width[7:0]
{0x3806, 0x07},//VREF width[11:8]
{0x3807, 0x98},//VREF width[7:0]
{0x3808, 0x0a},//DVP H output[11:8]
{0x3809, 0x20},//DVP H output[7:0]
{0x380a, 0x07},//DVP V output[11:8]
{0x380b, 0x98},//DVP V output[7:0]
{0x380c, 0x0c},//HTS[11:8]
{0x380d, 0xb4},//HTS[7:0]
{0x380e, 0x07},//VTS[11:8] 0x03
{0x380f, 0xb0},//VTS[7:0] 0xEC
{0x3815, 0x82},//[4:0]pclk2sclk ratio
{0x3818, 0xc0},//[6:5]mirro/flip [1:0]vsub4/2
{0x3819, 0x80},//[7:4]SOF to HREF delay(count in lines) [1:0]vts ctrl
{0x381a, 0x4a},//HS mirror adj
{0x381c, 0x20},//[7]vga preview mode [3:0]tc_vs_crop_l
{0x381d, 0x0a},//tc_vs_crop_h
{0x381e, 0x01},//vh_crop_h
{0x381f, 0x20},//vh_crop_l
{0x3820, 0x00},
{0x3821, 0x00},
{0x3824, 0x01},
{0x3825, 0xb4},
{0x3827, 0x0a},
{0x3503, 0x13},//[5:4] gain delay frame
{0x350c, 0x00},//vts_diff[15:8] manual mode set to 0
{0x350d, 0x00},//vts_diff[7:0] manual mode set to 0
{0x3a01, 0x00},//min exp??
{0x3a00, 0x38},//[6:0] LOL/band_en/band_low_limit/m.n_en/debug/freeze
{0x3a13, 0x54},//[5][4:0]pre_gain en/value
{0x401d, 0x28},//
{0x401c, 0x46},//?
{0x5002, 0x00},//[1] VAP_en
{0x5900, 0x00},//VAP ctrl
{0x5901, 0x00},//VAP ctrl1
{0x3621, 0x2f},//?
{0x3008, 0x02},
{0x5000, 0x00},
{0x5001, 0x00},
{0x5002, 0x00},
{0x5046, 0x00},
};
static struct regval_list sensor_sxga_regs[] = { //SXGA: 1280*960@30fps //64MHz pclk
// {0x3008,0x42},
{0x3613,0xc4},//?
{0x370d,0x42},//|
{0x3703,0x9a},//|
{0x3705,0xdb},//|
{0x370a,0x81},//
{0x370c,0x00},
{0x3703,0x9a},
{0x3713,0x92},
{0x3714,0x17},//analog ctrl
{0x3010,0x30},//PLL1 0x10->96MHz 0x20 64MHz 0x30 48MHz
{0x3011,0x10},//PLL2
{0x3012,0x02},//PLL3 0x02->30fps
{0x3800,0x03},//HREF start[11:8]
{0x3801,0x34},//HREF start[7:0]
{0x3802,0x00},//VREF start[11:8]
{0x3803,0x0b},//VREF start[7:0]//0x0c
{0x3804,0x05},//HREF width[11:8]
{0x3805,0x10},//HREF width[7:0]
{0x3806,0x03},//VREF width[11:8]
{0x3807,0xcc},//VREF width[7:0]
{0x3808,0x05},//DVP H output[11:8]
{0x3809,0x00},//DVP H output[7:0]
{0x380a,0x03},//DVP V output[11:8]
{0x380b,0xc0},//DVP V output[7:0]
{0x380c,0x08},//HTS[11:8]
{0x380d,0x78},//HTS[7:0]
{0x380e,0x03},//VTS[11:8] 0x03
{0x380f,0xD8},//VTS[7:0] 0xEC
{0x3815,0x81},//[4:0]pclk2sclk ratio
{0x3818,0xc1},//[6:5]mirro/flip [1:0]vsub4/2
{0x3819,0x80},//[7:4]SOF to HREF delay(count in lines) [1:0]vts ctrl
{0x381a,0x4a},//HS mirror adj//0x381b,0x4a,//VS flip adj
{0x381c,0x20},//[7]vga preview mode [3:0]tc_vs_crop_l
{0x381d,0x0a},//tc_vs_crop_h
{0x381e,0x01},//vh_crop_h
{0x381f,0x20},//vh_crop_l
{0x3820,0x00},
{0x3821,0x00},
{0x3824,0x01},
{0x3825,0xb4},
{0x3827,0x0a},
{0x3503,0x13},//[5:4] gain delay frame
{0x350c,0x00},//vts_diff[15:8] manual mode set to 0
{0x350d,0x00},//vts_diff[7:0] manual mode set to 0
{0x3a01,0x00},//min exp??
{0x3a00,0x38},//[6:0] LOL/band_en/band_low_limit/m.n_en/debug/freeze
{0x3a13,0x54},//[5][4:0]pre_gain en/value
{0x401d,0x08},//
{0x401c,0x42},//?
{0x5002,0x00},//[1] VAP_en
{0x5900,0x00},//VAP ctrl
{0x5901,0x00},//VAP ctrl1
{0x3621,0xaf},//?
{0x3008,0x02},
};
//for video
static struct regval_list sensor_1080p_regs[] = { //1080: 1920*1080@30fps //96MHz pclk
// {0x3008,0x42},
{0x3613,0x44},//?
{0x370d,0x04},//|
{0x3703,0xe6},//|
{0x3705,0xda},//|
{0x370a,0x80},//
{0x370c,0x00},
{0x3703,0xe6},
{0x3713,0x22},
{0x3714,0x27},//analog ctrl
{0x3010,0x10},//PLL1 0x10->96MHz 0x20 64MHz 0x30 48MHz
{0x3011,0x10},//PLL2
{0x3012,0x02},//PLL3
{0x3800,0x02},//HREF start[11:8]
{0x3801,0x94},//HREF start[7:0]
{0x3802,0x00},//VREF start[11:8]
{0x3803,0x0a},//VREF start[7:0]//0x0c
{0x3804,0x07},//HREF width[11:8]
{0x3805,0x80},//HREF width[7:0]
{0x3806,0x04},//VREF width[11:8]
{0x3807,0x38},//VREF width[7:0]
{0x3808,0x07},//DVP H output[11:8]
{0x3809,0x80},//DVP H output[7:0]
{0x380a,0x04},//DVP V output[11:8]
{0x380b,0x38},//DVP V output[7:0]
{0x380c,0x0a},//HTS[11:8]
{0x380d,0x84},//HTS[7:0]
{0x380e,0x04},//VTS[11:8] 0x03
{0x380f,0xa4},//VTS[7:0] 0xEC
{0x3815,0x82},//[4:0]pclk2sclk ratio
{0x3818,0xc0},//[6:5]mirro/flip [1:0]vsub4/2
{0x3819,0x80},//[7:4]SOF to HREF delay(count in lines) [1:0]vts ctrl
{0x381a,0x1c},//HS mirror adj//0x381b,0x4a,//VS flip adj
{0x381c,0x31},//[7]vga preview mode [3:0]tc_vs_crop_l
{0x381d,0xa4},//tc_vs_crop_h
{0x381e,0x04},//vh_crop_h
{0x381f,0x60},//vh_crop_l
{0x3820,0x03},
{0x3821,0x1a},
{0x3824,0x01},
{0x3825,0xb4},
{0x3827,0x0a},
{0x3503,0x13},//[5:4] gain delay frame
{0x350c,0x00},//vts_diff[15:8] manual mode set to 0
{0x350d,0x00},//vts_diff[7:0] manual mode set to 0
{0x3a01,0x00},//min exp??
{0x3a00,0x38},//[6:0] LOL/band_en/band_low_limit/m.n_en/debug/freeze
{0x3a13,0x54},//[5][4:0]pre_gain en/value
{0x401d,0x28},//
{0x401c,0x46},//?
{0x5002,0x00},//[1] VAP_en
{0x5900,0x00},//VAP ctrl
{0x5901,0x00},//VAP ctrl1
{0x3621,0x2f},//?
{0x3008,0x02},
};
static struct regval_list sensor_720p_regs[] = { //720: 1280*720@30fps //48MHz pclk
// {0x3008,0x42},
{0x3613,0xc4},//?
{0x370d,0x42},//|
{0x3703,0x9a},//|
{0x3705,0xdb},//|
{0x370a,0x81},//
{0x370c,0x00},
{0x3703,0x9a},
{0x3713,0x92},
{0x3714,0x17},//analog ctrl
{0x3010,0x30},//PLL1 0x10->96MHz 0x20 64MHz 0x30 48MHz
{0x3011,0x10},//PLL2
{0x3012,0x02},//PLL3
{0x3800,0x02},//HREF start[11:8]
{0x3801,0x54},//HREF start[7:0]
{0x3802,0x00},//VREF start[11:8]
{0x3803,0xf8},//VREF start[7:0]//0x0c
{0x3804,0x05},//HREF width[11:8]
{0x3805,0x00},//HREF width[7:0]
{0x3806,0x02},//VREF width[11:8]
{0x3807,0xd0},//VREF width[7:0]
{0x3808,0x05},//DVP H output[11:8]
{0x3809,0x00},//DVP H output[7:0]
{0x380a,0x02},//DVP V output[11:8]
{0x380b,0xd0},//DVP V output[7:0]
{0x380c,0x08},//HTS[11:8]
{0x380d,0x72},//HTS[7:0]
{0x380e,0x02},//VTS[11:8]
{0x380f,0xe4},//VTS[7:0]
{0x3815,0x81},//[4:0]pclk2sclk ratio
{0x3818,0xc1},//[6:5]mirro/flip [1:0]vsub4/2
{0x3819,0x80},//[7:4]SOF to HREF delay(count in lines) [1:0]vts ctrl
{0x381a,0x00},//HS mirror adj//0x381b,0x4a,//VS flip adj
{0x381c,0x10},//[7]vga preview mode [3:0]tc_vs_crop_l
{0x381d,0x82},//tc_vs_crop_h
{0x381e,0x05},//vh_crop_h
{0x381f,0xc0},//vh_crop_l
{0x3820,0x00},
{0x3821,0x20},
{0x3824,0x23},
{0x3825,0x2c},
{0x3827,0x0c},
{0x3503,0x13},//[5:4] gain delay frame
{0x350c,0x00},//vts_diff[15:8] manual mode set to 0
{0x350d,0x00},//vts_diff[7:0] manual mode set to 0
{0x3a01,0x00},//min exp??
{0x3a00,0x38},//[6:0] LOL/band_en/band_low_limit/m.n_en/debug/freeze
{0x3a13,0x54},//[5][4:0]pre_gain en/value
{0x401d,0x28},//
{0x401c,0x42},//?
{0x5002,0x00},//[1] VAP_en
{0x5900,0x00},//VAP ctrl
{0x5901,0x00},//VAP ctrl1
{0x3621,0xaf},//?
{0x3008,0x02},
};
//misc
static struct regval_list sensor_oe_disable_regs[] = {
{0x3017,0x00},
{0x3018,0x00},
};
static struct regval_list sensor_oe_enable_regs[] = {
{0x3017,0x7f},
{0x3018,0xfc},
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
{0x3508, 0x00},//long gain[8]
{0x3509, 0x00},//long gain[7:0]
{0x350a, 0x00},//
{0x350b, 0x00},//gain=2X
{0x3500, 0x00},//long exp[19:16] unit in 1/16 line
{0x3501, 0x40},//long exp[15:8]
{0x3502, 0xf0},//long exp[7:0]
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,expmid,exphigh;
struct sensor_info *info = to_state(sd);
// vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val>>4);
if(exp_val>0xfffff)
exp_val=0xfffff;
exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16);
expmid = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) ( (0x0000ff&exp_val) );
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
//printk("5650 sensor_set_exp = %d, Done!\n", exp_val);
info->exp = exp_val;
return 0;
}
enum ov5647_clk_div {
CLK_DIV_BY_1 = 0,
CLK_DIV_BY_1_dot_5 = 1,
CLK_DIV_BY_2 = 2,
CLK_DIV_BY_2_dot_5 = 3,
CLK_DIV_BY_3 = 4,
CLK_DIV_BY_4 = 5,
CLK_DIV_BY_6 = 6,
CLK_DIV_BY_8 = 7,
};
int frame_rate_relat[] = {120,80,60,48,40,30,20,15};
static int sensor_s_framerate(struct v4l2_subdev *sd, unsigned int frame_rate)
{
int set_clk_div;
// struct sensor_info *info = to_state(sd);
switch(frame_rate)
{
case 120:
set_clk_div = CLK_DIV_BY_1;
break;
case 80:
set_clk_div = CLK_DIV_BY_1_dot_5;
break;
case 60:
set_clk_div = CLK_DIV_BY_2;
break;
case 48:
set_clk_div = CLK_DIV_BY_2_dot_5;
break;
case 40:
set_clk_div = CLK_DIV_BY_3;
break;
case 30:
set_clk_div = CLK_DIV_BY_4;
break;
case 20:
set_clk_div = CLK_DIV_BY_6;
break;
case 15:
set_clk_div = CLK_DIV_BY_8;
break;
default:
set_clk_div = CLK_DIV_BY_1;
break;
}
//printk("set_clk_div = %d\n",set_clk_div);
sensor_write(sd,0x3012,set_clk_div);
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow=0;
unsigned char gainhigh=0;
unsigned char gainlow_l4b=0;
unsigned int tmp_gain_val=0;
tmp_gain_val=gain_val;
//determine ?gain_val>31
if(tmp_gain_val>31)
{
gainlow |= 0x10;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>2*31
if(tmp_gain_val>31)
{
gainlow |= 0x20;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>4*31
if(tmp_gain_val>31)
{
gainlow |= 0x40;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>8*31
if(tmp_gain_val>31)
{
gainlow |= 0x80;
tmp_gain_val = tmp_gain_val>>1;
}
//determine ?gain_val>16*31
if(tmp_gain_val>31)
{
gainhigh = 0x01;
tmp_gain_val = tmp_gain_val>>1;
}
if(tmp_gain_val>16)
gainlow_l4b=(tmp_gain_val-16)&0x0f;
gainlow = gainlow | gainlow_l4b;
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
//printk("5650 sensor_set_gain = %d, Done!\n", gain_val);
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0x3008, &rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_HIGH)//sw stby on
{
ret=sensor_write(sd, 0x3008, rdval|0x40);
}
else//sw stby off
{
ret=sensor_write(sd, 0x00, rdval&0xbf);
}
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
vfe_dev_print("disalbe oe!\n");
ret = sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs));
if(ret < 0)
vfe_dev_err("disalbe oe falied!\n");
ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
usleep_range(10000,12000);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
cci_unlock(sd);
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
usleep_range(10000,12000);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x300a, &rdval))
if(rdval != 0x56)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x300b, &rdval))
if(rdval != 0x51)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = QSXGA_WIDTH;
info->height = QSXGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SBGGR10_1X10,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* qsxga: 2592*1936 */
{
.width = QSXGA_WIDTH,
.height = QSXGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3252,
.vts = 1968,
.pclk = 96*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 1968<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_qsxga_regs,
.regs_size = ARRAY_SIZE(sensor_qsxga_regs),
.set_size = NULL,
},
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2692,
.vts = 1188,
.pclk = 96*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 1188<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
/* SXGA */
{
.width = SXGA_WIDTH,
.height = SXGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2168,
.vts = 984,
.pclk = 64*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 984<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_sxga_regs,
.regs_size = ARRAY_SIZE(sensor_sxga_regs),
.set_size = NULL,
},
/* 720p */
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2162,
.vts = 740,
.pclk = 48*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 740<<4,
.gain_min = 1<<4,
.gain_max = 16<<4,
.regs = sensor_720p_regs,//
.regs_size = ARRAY_SIZE(sensor_720p_regs),//
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs));
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 16, 62*16, 1, 1*16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 0);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 0, 3, 1, 0);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
case V4L2_CID_FRAME_RATE:
return sensor_s_framerate(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);