oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/gc0307.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

2370 lines
52 KiB
C
Executable file

/*
* A V4L2 driver for GalaxyCore GC0307 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("raymonxiu");
MODULE_DESCRIPTION("A low-level driver for GalaxyCore GC0307 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[CSI_DEBUG][GC0307]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[CSI_ERR][GC0307]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[CSI][GC0307]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (12*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0307
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 10
/*
* The gc0307 sits on i2c with ID 0x42
*/
#define I2C_ADDR 0x42
#define SENSOR_NAME "gc0307"
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] =
{
// Initail Sequence Write In.
//========= close output
{0xf0,0x00},
{0x43,0x00},
{0x44,0xa2},
//========= close some functions
// open them after configure their parmameters
{0x40,0x10},
{0x41,0x00},
{0x42,0x10},
{0x47,0x00},//mode1,
{0x48,0xc1},//mode2,
{0x49,0x00},//dither_mode
{0x4a,0x00},//clock_gating_en
{0x4b,0x00},//mode_reg3
{0x4E,0x23},//sync mode
{0x4F,0x01},//AWB, AEC, every N frame
//========= frame timing
{0x01,0x6a},//HB
{0x02,0x70},//VB//0c
{0x1C,0x00},//Vs_st
{0x1D,0x00},//Vs_et
{0x10,0x00},//high 4 bits of VB, HB
{0x11,0x05},//row_tail, AD_pipe_number
{0x03,0x01},//row_start
{0x04,0x2c},
//========= windowing
{0x05,0x00},//row_start
{0x06,0x00},
{0x07,0x00},//col start
{0x08,0x00},
{0x09,0x01},//win height
{0x0A,0xE8},
{0x0B,0x02},//win width, pixel array only 640
{0x0C,0x80},
//========= analog
{0x0D,0x22},//rsh_width
{0x0E,0x02},//CISCTL mode2,
{0x0F,0xb2},//CISCTL mode1
{0x12,0x70},//7 hrst, 6_4 darsg,
{0x13,0x00},//7 CISCTL_restart, 0 apwd
{0x14,0x00},//NA
{0x15,0xba},//7_4 vref
{0x16,0x13},//5to4 _coln_r, __1to0__da18
{0x17,0x52},//opa_r, ref_r, sRef_r
//{0x18,0xc0},//analog_mode, best case for left band.
{0x18,0x00},
{0x1E,0x0d},//tsp_width
{0x1F,0x32},//sh_delay
//========= offset
{0x47,0x00}, //7__test_image, __6__fixed_pga, //__5__auto_DN,__4__CbCr_fix,
//__3to2__dark_sequence, __1__allow_pclk_vcync, __0__LSC_test_image
{0x19,0x06}, //pga_o
{0x1a,0x06}, //pga_e
{0x31,0x00}, //4 //pga_oFFset , high 8bits of 11bits
{0x3B,0x00}, //global_oFFset, low 8bits of 11bits
{0x59,0x0f}, //offset_mode
{0x58,0x88}, //DARK_VALUE_RATIO_G, DARK_VALUE_RATIO_RB
{0x57,0x08}, //DARK_CURRENT_RATE
{0x56,0x77}, //PGA_OFFSET_EVEN_RATIO, PGA_OFFSET_ODD_RATIO
//========= blk
{0x35,0xd8}, //blk_mode
{0x36,0x40},
{0x3C,0x00},
{0x3D,0x00},
{0x3E,0x00},
{0x3F,0x00},
{0xb5,0x70},
{0xb6,0x40},
{0xb7,0x00},
{0xb8,0x38},
{0xb9,0xc3},
{0xba,0x0f},
{0x7e,0x45},
{0x7f,0x66},
{0x5c,0x48},//78
{0x5d,0x58},//88
//========= manual_gain
{0x61,0x80},//manual_gain_g1
{0x63,0x80},//manual_gain_r
{0x65,0x98},//manual_gai_b, 0xa0=1.25, 0x98=1.1875
{0x67,0x80},//manual_gain_g2
{0x68,0x18},//global_manual_gain 2.4bits
//=========CC _R
{0x69,0x58}, //54//58
{0x6A,0xf6}, //ff
{0x6B,0xfb}, //fe
{0x6C,0xf4}, //ff
{0x6D,0x5a}, //5f
{0x6E,0xe6}, //e1
{0x6f,0x00},
//=========lsc
{0x70,0x14},
{0x71,0x1c},
{0x72,0x20},
{0x73,0x10},
{0x74,0x3c},//480/8
{0x75,0x52},// 640/8
//=========dn
{0x7d,0x2f}, //dn_mode
{0x80,0x0c},//when auto_dn, check 7e,7f
{0x81,0x0c},
{0x82,0x44},
//dd
{0x83,0x18}, //DD_TH1
{0x84,0x18}, //DD_TH2
{0x85,0x04}, //DD_TH3
{0x87,0x34}, //32 b DNDD_low_range X16, DNDD_low_range_C_weight_center
//=========intp-ee
{0x88,0x04},
{0x89,0x01},
{0x8a,0x50},//60
{0x8b,0x50},//60
{0x8c,0x07},
{0x50,0x0c},
{0x5f,0x3c},
{0x8e,0x02},
{0x86,0x02},
{0x51,0x20},
{0x52,0x08},
{0x53,0x00},
//========= YCP
//contrast_center
{0x77,0x80},//contrast_center
{0x78,0x00},//fixed_Cb
{0x79,0x00},//fixed_Cr
{0x7a,0x00},//luma_offset
{0x7b,0x40},//hue_cos
{0x7c,0x00},//hue_sin
//saturation
{0xa0,0x40},//global_saturation
{0xa1,0x40},//luma_contrast
{0xa2,0x34},//saturation_Cb//0x34
{0xa3,0x32},// 34 saturation_Cr//0x34
{0xa4,0xc8},
{0xa5,0x02},
{0xa6,0x28},
{0xa7,0x02},
//skin
{0xa8,0xee},
{0xa9,0x12},
{0xaa,0x01},
{0xab,0x20},
{0xac,0xf0},
{0xad,0x10},
//========= ABS
{0xae,0x18},// black_pixel_target_number
{0xaf,0x74},
{0xb0,0xe0},
{0xb1,0x20},
{0xb2,0x6c},
{0xb3,0x40},
{0xb4,0x04},
//========= AWB
{0xbb,0x42},
{0xbc,0x60},
{0xbd,0x50},
{0xbe,0x50},
{0xbf,0x0c},
{0xc0,0x06},
{0xc1,0x60},
{0xc2,0xf1}, //f4
{0xc3,0x40},
{0xc4,0x1c},//18
{0xc5,0x56},
{0xc6,0x1d},
{0xca,0x70},//0x70
{0xcb,0x70},//0x70
{0xcc,0x78},//0x78
{0xcd,0x80},//R_ratio
{0xce,0x80},//G_ratio , cold_white white
{0xcf,0x80},//B_ratio
//========= aecT
{0x20,0x06},//02
{0x21,0xc0},
{0x22,0x40},
{0x23,0x88},
{0x24,0x96},
{0x25,0x30},
{0x26,0xd0},
{0x27,0x00},
/////23 M
{0x28,0x02},//AEC_exp_level_1bit11to8
{0x29,0x58},//AEC_exp_level_1bit7to0
{0x2a,0x02},//AEC_exp_level_2bit11to8
{0x2b,0x58},//AEC_exp_level_2bit7to0
{0x2c,0x02},//AEC_exp_level_3bit11to8 659 - 8FPS, 8ca - 6FPS //
{0x2d,0x58},//AEC_exp_level_3bit7to0
{0x2e,0x02},//AEC_exp_level_4bit11to8 4FPS
{0x2f,0xee},//AEC_exp_level_4bit7to0
{0x30,0x20},
{0x31,0x00},
{0x32,0x1c},
{0x33,0x90},
{0x34,0x10},
{0xd0,0x34},//[2] 1 before gamma, 0 after gamma
{0xd1,0x50},//AEC_target_Y//0x50
{0xd2,0x61},//f2
{0xd4,0x4b},//96
{0xd5,0x01},// 10
{0xd6,0x4b},//antiflicker_step //96
{0xd7,0x03},//AEC_exp_time_min //10
{0xd8,0x02},
{0xdd,0x12},
//========= measure window
{0xe0,0x03},
{0xe1,0x02},
{0xe2,0x27},
{0xe3,0x1e},
{0xe8,0x3b},
{0xe9,0x6e},
{0xea,0x2c},
{0xeb,0x50},
{0xec,0x73},
//========= close_frame
{0xed,0x00},//close_frame_num1 ,can be use to reduce FPS
{0xee,0x00},//close_frame_num2
{0xef,0x00},//close_frame_num
// page1
{0xf0,0x01},//select page1
{0x00,0x20},
{0x01,0x20},
{0x02,0x20},
{0x03,0x20},
{0x04,0x78},
{0x05,0x78},
{0x06,0x78},
{0x07,0x78},
{0x10,0x04},
{0x11,0x04},
{0x12,0x04},
{0x13,0x04},
{0x14,0x01},
{0x15,0x01},
{0x16,0x01},
{0x17,0x01},
{0x20,0x00},
{0x21,0x00},
{0x22,0x00},
{0x23,0x00},
{0x24,0x00},
{0x25,0x00},
{0x26,0x00},
{0x27,0x00},
{0x40,0x11},
//=============================lscP
{0x45,0x06},
{0x46,0x06},
{0x47,0x05},
{0x48,0x04},
{0x49,0x03},
{0x4a,0x03},
{0x62,0xd8},
{0x63,0x24},
{0x64,0x24},
{0x65,0x24},
{0x66,0xd8},
{0x67,0x24},
{0x5a,0x00},
{0x5b,0x00},
{0x5c,0x00},
{0x5d,0x00},
{0x5e,0x00},
{0x5f,0x00},
//============================= ccP
{0x69,0x03},//cc_mode
//CC_G
{0x70,0x5d},
{0x71,0xed},
{0x72,0xff},
{0x73,0xe5},
{0x74,0x5f},
{0x75,0xe6},
//CC_B
{0x76,0x41},
{0x77,0xef},
{0x78,0xff},
{0x79,0xff},
{0x7a,0x5f},
{0x7b,0xfa},
//============================= AGP
{0x7e,0x00},
{0x7f,0x30}, // 00 select gamma
{0x80,0x48}, // c8
{0x81,0x06},
{0x82,0x08},
{0x83,0x23},
{0x84,0x38},
{0x85,0x4F},
{0x86,0x61},
{0x87,0x72},
{0x88,0x80},
{0x89,0x8D},
{0x8a,0xA2},
{0x8b,0xB2},
{0x8c,0xC0},
{0x8d,0xCA},
{0x8e,0xD3},
{0x8f,0xDB},
{0x90,0xE2},
{0x91,0xED},
{0x92,0xF6},
{0x93,0xFD},
//about gamma1 is hex r oct
{0x94,0x04},
{0x95,0x0E},
{0x96,0x1B},
{0x97,0x28},
{0x98,0x35},
{0x99,0x41},
{0x9a,0x4E},
{0x9b,0x67},
{0x9c,0x7E},
{0x9d,0x94},
{0x9e,0xA7},
{0x9f,0xBA},
{0xa0,0xC8},
{0xa1,0xD4},
{0xa2,0xE7},
{0xa3,0xF4},
{0xa4,0xFA},
//========= open functions
{0xf0,0x00},//set back to page0
{0x40,0x7e},
{0x41,0x2f},
{0x43,0x40},
{0x44,0xE2},
{0x0f,0x82},
{0x45,0x24},
{0x47,0x20},
};
static struct regval_list sensor_oe_disable[] =
{
{0xf0,0x00},
{0x44,0xA2},
};
/*
* The white balance settings
* Here only tune the R G B channel gain.
* The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb
*/
static struct regval_list sensor_wb_manual[] = {
//null
};
static struct regval_list sensor_wb_auto_regs[] = {
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x4c},
{0xc8,0x40},
{0xc9,0x4a},
};
static struct regval_list sensor_wb_incandescence_regs[] = {
//bai re guang
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x48},
{0xc8,0x40},
{0xc9,0x5c},
};
static struct regval_list sensor_wb_fluorescent_regs[] = {
//ri guang deng
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x40},
{0xc8,0x42},
{0xc9,0x50},
};
static struct regval_list sensor_wb_tungsten_regs[] = {
//wu si deng
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x40},
{0xc8,0x54},
{0xc9,0x70},
};
static struct regval_list sensor_wb_horizon[] = {
//null
};
static struct regval_list sensor_wb_daylight_regs[] = {
//tai yang guang
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x50},
{0xc8,0x45},
{0xc9,0x40},
};
static struct regval_list sensor_wb_flash[] = {
//null
};
static struct regval_list sensor_wb_cloud_regs[] = {
{0xf0,0x00},
// {0x41,0x2b},
{0xc7,0x5a},
{0xc8,0x42},
{0xc9,0x40},
};
static struct regval_list sensor_wb_shade[] = {
//null
};
static struct cfg_array sensor_wb[] = {
{
.regs = sensor_wb_manual, //V4L2_WHITE_BALANCE_MANUAL
.size = ARRAY_SIZE(sensor_wb_manual),
},
{
.regs = sensor_wb_auto_regs, //V4L2_WHITE_BALANCE_AUTO
.size = ARRAY_SIZE(sensor_wb_auto_regs),
},
{
.regs = sensor_wb_incandescence_regs, //V4L2_WHITE_BALANCE_INCANDESCENT
.size = ARRAY_SIZE(sensor_wb_incandescence_regs),
},
{
.regs = sensor_wb_fluorescent_regs, //V4L2_WHITE_BALANCE_FLUORESCENT
.size = ARRAY_SIZE(sensor_wb_fluorescent_regs),
},
{
.regs = sensor_wb_tungsten_regs, //V4L2_WHITE_BALANCE_FLUORESCENT_H
.size = ARRAY_SIZE(sensor_wb_tungsten_regs),
},
{
.regs = sensor_wb_horizon, //V4L2_WHITE_BALANCE_HORIZON
.size = ARRAY_SIZE(sensor_wb_horizon),
},
{
.regs = sensor_wb_daylight_regs, //V4L2_WHITE_BALANCE_DAYLIGHT
.size = ARRAY_SIZE(sensor_wb_daylight_regs),
},
{
.regs = sensor_wb_flash, //V4L2_WHITE_BALANCE_FLASH
.size = ARRAY_SIZE(sensor_wb_flash),
},
{
.regs = sensor_wb_cloud_regs, //V4L2_WHITE_BALANCE_CLOUDY
.size = ARRAY_SIZE(sensor_wb_cloud_regs),
},
{
.regs = sensor_wb_shade, //V4L2_WHITE_BALANCE_SHADE
.size = ARRAY_SIZE(sensor_wb_shade),
},
};
/*
* The color effect settings
*/
static struct regval_list sensor_colorfx_none_regs[] = {
{0xf0,0x00},
{0x41,0x2f},// 3f
{0x40,0x7e},
{0x42,0x10},
{0x47,0x2c},//
{0x48,0xc3},
{0x8a,0x50},//60
{0x8b,0x50},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0x00},
{0x79,0x00},
{0x7b,0x40},
{0x7c,0x00},
};
static struct regval_list sensor_colorfx_bw_regs[] = {
{0xf0,0x00},
{0x41,0x2f},//2f blackboard
{0x40,0x7e},
{0x42,0x10},
{0x47,0x3c},//2c
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0x00},
{0x79,0x00},
{0x7b,0x40},
{0x7c,0x00},
};
static struct regval_list sensor_colorfx_sepia_regs[] = {
{0xf0,0x00},
{0x41,0x2f},
{0x40,0x7e},
{0x42,0x10},
{0x47,0x3c},
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0xc0},
{0x79,0x20},
{0x7b,0x40},
{0x7c,0x00},
};
static struct regval_list sensor_colorfx_negative_regs[] = {
{0xf0,0x00},
{0x41,0x6f},//[6]
{0x40,0x7e},
{0x42,0x10},
{0x47,0x20},//20
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0x00},
{0x79,0x00},
{0x7b,0x40},
{0x7c,0x00},
{0x41,0x6f},
};
static struct regval_list sensor_colorfx_emboss_regs[] = {
};
static struct regval_list sensor_colorfx_sketch_regs[] = {
{0xf0,0x00},
{0x41,0x2f},
{0x40,0x7e},
{0x42,0x10},
{0x47,0x3c},
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0x00},
{0x79,0x00},
{0x7b,0x40},
{0x7c,0x00},
};
static struct regval_list sensor_colorfx_sky_blue_regs[] = {
{0xf0,0x00},
{0x41,0x2f},
{0x40,0x7e},
{0x42,0x10},
{0x47,0x2c},
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0x70},
{0x79,0x00},
{0x7b,0x3f},
{0x7c,0xf5},
};
static struct regval_list sensor_colorfx_grass_green_regs[] = {
{0xf0,0x00},
{0x41,0x2f},
{0x40,0x7e},
{0x42,0x10},
{0x47,0x3c},
{0x48,0xc3},
{0x8a,0x60},
{0x8b,0x60},
{0x8c,0x07},
{0x50,0x0c},
{0x77,0x80},
{0xa1,0x40},
{0x7a,0x00},
{0x78,0xc0},
{0x79,0xc0},
{0x7b,0x40},
{0x7c,0x00},
};
static struct regval_list sensor_colorfx_skin_whiten_regs[] = {
//NULL
};
static struct regval_list sensor_colorfx_vivid_regs[] = {
//NULL
};
static struct regval_list sensor_colorfx_aqua_regs[] = {
//null
};
static struct regval_list sensor_colorfx_art_freeze_regs[] = {
//null
};
static struct regval_list sensor_colorfx_silhouette_regs[] = {
//null
};
static struct regval_list sensor_colorfx_solarization_regs[] = {
//null
};
static struct regval_list sensor_colorfx_antique_regs[] = {
//null
};
static struct regval_list sensor_colorfx_set_cbcr_regs[] = {
//null
};
static struct cfg_array sensor_colorfx[] = {
{
.regs = sensor_colorfx_none_regs, //V4L2_COLORFX_NONE = 0,
.size = ARRAY_SIZE(sensor_colorfx_none_regs),
},
{
.regs = sensor_colorfx_bw_regs, //V4L2_COLORFX_BW = 1,
.size = ARRAY_SIZE(sensor_colorfx_bw_regs),
},
{
.regs = sensor_colorfx_sepia_regs, //V4L2_COLORFX_SEPIA = 2,
.size = ARRAY_SIZE(sensor_colorfx_sepia_regs),
},
{
.regs = sensor_colorfx_negative_regs, //V4L2_COLORFX_NEGATIVE = 3,
.size = ARRAY_SIZE(sensor_colorfx_negative_regs),
},
{
.regs = sensor_colorfx_emboss_regs, //V4L2_COLORFX_EMBOSS = 4,
.size = ARRAY_SIZE(sensor_colorfx_emboss_regs),
},
{
.regs = sensor_colorfx_sketch_regs, //V4L2_COLORFX_SKETCH = 5,
.size = ARRAY_SIZE(sensor_colorfx_sketch_regs),
},
{
.regs = sensor_colorfx_sky_blue_regs, //V4L2_COLORFX_SKY_BLUE = 6,
.size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs),
},
{
.regs = sensor_colorfx_grass_green_regs, //V4L2_COLORFX_GRASS_GREEN = 7,
.size = ARRAY_SIZE(sensor_colorfx_grass_green_regs),
},
{
.regs = sensor_colorfx_skin_whiten_regs, //V4L2_COLORFX_SKIN_WHITEN = 8,
.size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs),
},
{
.regs = sensor_colorfx_vivid_regs, //V4L2_COLORFX_VIVID = 9,
.size = ARRAY_SIZE(sensor_colorfx_vivid_regs),
},
{
.regs = sensor_colorfx_aqua_regs, //V4L2_COLORFX_AQUA = 10,
.size = ARRAY_SIZE(sensor_colorfx_aqua_regs),
},
{
.regs = sensor_colorfx_art_freeze_regs, //V4L2_COLORFX_ART_FREEZE = 11,
.size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs),
},
{
.regs = sensor_colorfx_silhouette_regs, //V4L2_COLORFX_SILHOUETTE = 12,
.size = ARRAY_SIZE(sensor_colorfx_silhouette_regs),
},
{
.regs = sensor_colorfx_solarization_regs, //V4L2_COLORFX_SOLARIZATION = 13,
.size = ARRAY_SIZE(sensor_colorfx_solarization_regs),
},
{
.regs = sensor_colorfx_antique_regs, //V4L2_COLORFX_ANTIQUE = 14,
.size = ARRAY_SIZE(sensor_colorfx_antique_regs),
},
{
.regs = sensor_colorfx_set_cbcr_regs, //V4L2_COLORFX_SET_CBCR = 15,
.size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs),
},
};
/*
* The brightness setttings
*/
static struct regval_list sensor_brightness_neg4_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_neg3_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_neg2_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_neg1_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_zero_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_pos1_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_pos2_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_pos3_regs[] = {
//NULL
};
static struct regval_list sensor_brightness_pos4_regs[] = {
//NULL
};
static struct cfg_array sensor_brightness[] = {
{
.regs = sensor_brightness_neg4_regs,
.size = ARRAY_SIZE(sensor_brightness_neg4_regs),
},
{
.regs = sensor_brightness_neg3_regs,
.size = ARRAY_SIZE(sensor_brightness_neg3_regs),
},
{
.regs = sensor_brightness_neg2_regs,
.size = ARRAY_SIZE(sensor_brightness_neg2_regs),
},
{
.regs = sensor_brightness_neg1_regs,
.size = ARRAY_SIZE(sensor_brightness_neg1_regs),
},
{
.regs = sensor_brightness_zero_regs,
.size = ARRAY_SIZE(sensor_brightness_zero_regs),
},
{
.regs = sensor_brightness_pos1_regs,
.size = ARRAY_SIZE(sensor_brightness_pos1_regs),
},
{
.regs = sensor_brightness_pos2_regs,
.size = ARRAY_SIZE(sensor_brightness_pos2_regs),
},
{
.regs = sensor_brightness_pos3_regs,
.size = ARRAY_SIZE(sensor_brightness_pos3_regs),
},
{
.regs = sensor_brightness_pos4_regs,
.size = ARRAY_SIZE(sensor_brightness_pos4_regs),
},
};
/*
* The contrast setttings
*/
static struct regval_list sensor_contrast_neg4_regs[] = {
};
static struct regval_list sensor_contrast_neg3_regs[] = {
};
static struct regval_list sensor_contrast_neg2_regs[] = {
};
static struct regval_list sensor_contrast_neg1_regs[] = {
};
static struct regval_list sensor_contrast_zero_regs[] = {
};
static struct regval_list sensor_contrast_pos1_regs[] = {
};
static struct regval_list sensor_contrast_pos2_regs[] = {
};
static struct regval_list sensor_contrast_pos3_regs[] = {
};
static struct regval_list sensor_contrast_pos4_regs[] = {
};
static struct cfg_array sensor_contrast[] = {
{
.regs = sensor_contrast_neg4_regs,
.size = ARRAY_SIZE(sensor_contrast_neg4_regs),
},
{
.regs = sensor_contrast_neg3_regs,
.size = ARRAY_SIZE(sensor_contrast_neg3_regs),
},
{
.regs = sensor_contrast_neg2_regs,
.size = ARRAY_SIZE(sensor_contrast_neg2_regs),
},
{
.regs = sensor_contrast_neg1_regs,
.size = ARRAY_SIZE(sensor_contrast_neg1_regs),
},
{
.regs = sensor_contrast_zero_regs,
.size = ARRAY_SIZE(sensor_contrast_zero_regs),
},
{
.regs = sensor_contrast_pos1_regs,
.size = ARRAY_SIZE(sensor_contrast_pos1_regs),
},
{
.regs = sensor_contrast_pos2_regs,
.size = ARRAY_SIZE(sensor_contrast_pos2_regs),
},
{
.regs = sensor_contrast_pos3_regs,
.size = ARRAY_SIZE(sensor_contrast_pos3_regs),
},
{
.regs = sensor_contrast_pos4_regs,
.size = ARRAY_SIZE(sensor_contrast_pos4_regs),
},
};
/*
* The saturation setttings
*/
static struct regval_list sensor_saturation_neg4_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_neg3_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_neg2_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_neg1_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_zero_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_pos1_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_pos2_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_pos3_regs[] = {
//NULL
};
static struct regval_list sensor_saturation_pos4_regs[] = {
//NULL
};
static struct cfg_array sensor_saturation[] = {
{
.regs = sensor_saturation_neg4_regs,
.size = ARRAY_SIZE(sensor_saturation_neg4_regs),
},
{
.regs = sensor_saturation_neg3_regs,
.size = ARRAY_SIZE(sensor_saturation_neg3_regs),
},
{
.regs = sensor_saturation_neg2_regs,
.size = ARRAY_SIZE(sensor_saturation_neg2_regs),
},
{
.regs = sensor_saturation_neg1_regs,
.size = ARRAY_SIZE(sensor_saturation_neg1_regs),
},
{
.regs = sensor_saturation_zero_regs,
.size = ARRAY_SIZE(sensor_saturation_zero_regs),
},
{
.regs = sensor_saturation_pos1_regs,
.size = ARRAY_SIZE(sensor_saturation_pos1_regs),
},
{
.regs = sensor_saturation_pos2_regs,
.size = ARRAY_SIZE(sensor_saturation_pos2_regs),
},
{
.regs = sensor_saturation_pos3_regs,
.size = ARRAY_SIZE(sensor_saturation_pos3_regs),
},
{
.regs = sensor_saturation_pos4_regs,
.size = ARRAY_SIZE(sensor_saturation_pos4_regs),
},
};
/*
* The exposure target setttings
*/
static struct regval_list sensor_ev_neg4_regs[] = {
{0xf0,0x00},
{0x7a,0x00},
{0xd1,0x50},
};
static struct regval_list sensor_ev_neg3_regs[] = {
{0xf0,0x00},
{0x7a,0xd0},
{0xd1,0x38},
};
static struct regval_list sensor_ev_neg2_regs[] = {
{0xf0,0x00},
{0x7a,0xe0},
{0xd1,0x40},
};
static struct regval_list sensor_ev_neg1_regs[] = {
{0xf0,0x00},
{0x7a,0xf0},
{0xd1,0x48},
};
static struct regval_list sensor_ev_zero_regs[] = {
{0xf0,0x00},
{0x7a,0x00},
{0xd1,0x50},
};
static struct regval_list sensor_ev_pos1_regs[] = {
{0xf0,0x00},
{0x7a,0x00},
{0xd1,0x50},
};
static struct regval_list sensor_ev_pos2_regs[] = {
{0xf0,0x00},
{0x7a,0x20},
{0xd1,0x58},
};
static struct regval_list sensor_ev_pos3_regs[] = {
{0xf0,0x00},
{0x7a,0x30},
{0xd1,0x60},
};
static struct regval_list sensor_ev_pos4_regs[] = {
{0xf0,0x00},
{0x7a,0x40},
{0xd1,0x68},
};
static struct cfg_array sensor_ev[] = {
{
.regs = sensor_ev_neg4_regs,
.size = ARRAY_SIZE(sensor_ev_neg4_regs),
},
{
.regs = sensor_ev_neg3_regs,
.size = ARRAY_SIZE(sensor_ev_neg3_regs),
},
{
.regs = sensor_ev_neg2_regs,
.size = ARRAY_SIZE(sensor_ev_neg2_regs),
},
{
.regs = sensor_ev_neg1_regs,
.size = ARRAY_SIZE(sensor_ev_neg1_regs),
},
{
.regs = sensor_ev_zero_regs,
.size = ARRAY_SIZE(sensor_ev_zero_regs),
},
{
.regs = sensor_ev_pos1_regs,
.size = ARRAY_SIZE(sensor_ev_pos1_regs),
},
{
.regs = sensor_ev_pos2_regs,
.size = ARRAY_SIZE(sensor_ev_pos2_regs),
},
{
.regs = sensor_ev_pos3_regs,
.size = ARRAY_SIZE(sensor_ev_pos3_regs),
},
{
.regs = sensor_ev_pos4_regs,
.size = ARRAY_SIZE(sensor_ev_pos4_regs),
},
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_yuv422_yuyv[] = {
//YCbYCr
{0xf0,0x00},
{0x44,0xE2},
};
static struct regval_list sensor_fmt_yuv422_yvyu[] = {
//YCrYCb
{0xf0,0x00},
{0x44,0xE3},
};
static struct regval_list sensor_fmt_yuv422_vyuy[] = {
//CrYCbY
{0xf0,0x00},
{0x44,0xE1},
};
static struct regval_list sensor_fmt_yuv422_uyvy[] = {
//CbYCrY
{0xf0,0x00},
{0x44,0xE0},
};
//static struct regval_list sensor_fmt_raw[] = {
// {0x24,0xb7},//raw
//};
static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x0f, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_hflip!\n");
return ret;
}
val &= (1<<4);
val = val>>4; //0x0f bit4 is mirror
*value = val;
info->hflip = *value;
return 0;
}
static int sensor_s_hflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type R0f, R45, R47;
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x0f, &R0f);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x45, &R45);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x47, &R47);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
switch (value) {
case 0:
R0f &= 0xef;
R45 &= 0xfe;
R47 &= 0xfb;
break;
case 1:
R0f |= 0x10;
R45 |= 0x01;
R47 |= 0x04;
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x0f, R0f);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_write(sd, 0x45, R45);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_write(sd, 0x47, R47);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
msleep(100);
info->hflip = value;
return 0;
}
static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_vflip!\n");
return ret;
}
ret = sensor_read(sd, 0x0f, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_vflip!\n");
return ret;
}
val &= (1<<5);
val = val>>5; //0x0f bit5 is upsidedown
*value = val;
info->vflip = *value;
return 0;
}
static int sensor_s_vflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type R0f, R45, R47;
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_vflip!\n");
return ret;
}
ret = sensor_read(sd, 0x0f, &R0f);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x45, &R45);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x47, &R47);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
switch (value) {
case 0:
R0f &= 0xdf;
R45 &= 0xfd;
R47 &= 0xf7;
break;
case 1:
R0f |= 0x20;
R45 |= 0x02;
R47 |= 0x08;
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x0f, R0f);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_write(sd, 0x45, R45);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_write(sd, 0x47, R47);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
msleep(100);
info->vflip = value;
return 0;
}
static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_autogain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x41, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autoexp!\n");
return ret;
}
val &= 0x08;
if (val == 0x08) {
*value = V4L2_EXPOSURE_AUTO;
}
else
{
*value = V4L2_EXPOSURE_MANUAL;
}
info->autoexp = *value;
return 0;
}
static int sensor_s_autoexp(struct v4l2_subdev *sd,
enum v4l2_exposure_auto_type value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x41, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autoexp!\n");
return ret;
}
switch (value) {
case V4L2_EXPOSURE_AUTO:
val |= 0x08;
break;
case V4L2_EXPOSURE_MANUAL:
val &= 0xf7;
break;
case V4L2_EXPOSURE_SHUTTER_PRIORITY:
return -EINVAL;
case V4L2_EXPOSURE_APERTURE_PRIORITY:
return -EINVAL;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x41, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
usleep_range(10000,12000);
info->autoexp = value;
return 0;
}
static int sensor_g_autowb(struct v4l2_subdev *sd, int *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x41, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autowb!\n");
return ret;
}
val &= (1<<2);
val = val>>2; //0x41 bit2 is awb enable
*value = val;
info->autowb = *value;
return 0;
}
static int sensor_s_autowb(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs));
if (ret < 0) {
vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x41, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autowb!\n");
return ret;
}
switch(value) {
case 0:
val &= 0xfb;
break;
case 1:
val |= 0x04;
break;
default:
break;
}
ret = sensor_write(sd, 0x41, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
usleep_range(10000,12000);
info->autowb = value;
return 0;
}
static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_hue(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
/* *********************************************end of ******************************************** */
static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->brightness;
return 0;
}
static int sensor_s_brightness(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->brightness == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value+4].regs, sensor_brightness[value+4].size))
info->brightness = value;
return 0;
}
static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->contrast;
return 0;
}
static int sensor_s_contrast(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->contrast == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value+4].regs, sensor_contrast[value+4].size))
info->contrast = value;
return 0;
}
static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->saturation;
return 0;
}
static int sensor_s_saturation(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->saturation == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value+4].regs, sensor_saturation[value+4].size))
info->saturation = value;
return 0;
}
static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp_bias;
return 0;
}
static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if(info->exp_bias == value)
return 0;
if(value < -4 || value > 4)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value+4].regs, sensor_ev[value+4].size))
info->exp_bias = value;
return 0;
}
static int sensor_g_wb(struct v4l2_subdev *sd, int *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance*)value;
*wb_type = info->wb;
return 0;
}
static int sensor_s_wb(struct v4l2_subdev *sd,
enum v4l2_auto_n_preset_white_balance value)
{
struct sensor_info *info = to_state(sd);
if(info->capture_mode == V4L2_MODE_IMAGE)
return 0;
if(info->wb == value)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs ,sensor_wb[value].size) )
if (value == V4L2_WHITE_BALANCE_AUTO)
info->autowb = 1;
else
info->autowb = 0;
info->wb = value;
return 0;
}
static int sensor_g_colorfx(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx*)value;
*clrfx_type = info->clrfx;
return 0;
}
static int sensor_s_colorfx(struct v4l2_subdev *sd,
enum v4l2_colorfx value)
{
struct sensor_info *info = to_state(sd);
if(info->clrfx == value)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size))
info->clrfx = value;
return 0;
}
static int sensor_g_flash_mode(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode*)value;
*flash_mode = info->flash_mode;
return 0;
}
static int sensor_s_flash_mode(struct v4l2_subdev *sd,
enum v4l2_flash_led_mode value)
{
struct sensor_info *info = to_state(sd);
info->flash_mode = value;
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n");
vfe_dev_print("disalbe oe!\n");
ret = sensor_write_array(sd,sensor_oe_disable,ARRAY_SIZE(sensor_oe_disable));
if(ret < 0)
vfe_dev_err("sensor_oe_disable error\n");
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
msleep(100);//must be long enough
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
msleep(50);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
usleep_range(30000,31000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
usleep_range(30000,31000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n");
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(30000,31000);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_set_mclk(sd,OFF);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
int ret;
data_type val;
ret = sensor_write(sd, 0xf0, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_detect!\n");
return ret;
}
ret = sensor_read(sd, 0x00, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_detect!\n");
return ret;
}
if(val != 0x99)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
return sensor_write_array(sd, sensor_default_regs , ARRAY_SIZE(sensor_default_regs));
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;//linux-3.0
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "YUYV 4:2:2",
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,//linux-3.0
.regs = sensor_fmt_yuv422_yuyv,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv),
.bpp = 2,
},
{
.desc = "YVYU 4:2:2",
.mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,//linux-3.0
.regs = sensor_fmt_yuv422_yvyu,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu),
.bpp = 2,
},
{
.desc = "UYVY 4:2:2",
.mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,//linux-3.0
.regs = sensor_fmt_yuv422_uyvy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy),
.bpp = 2,
},
{
.desc = "VYUY 4:2:2",
.mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,//linux-3.0
.regs = sensor_fmt_yuv422_vyuy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy),
.bpp = 2,
},
// {
// .desc = "Raw RGB Bayer",
// .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,//linux-3.0
// .regs = sensor_fmt_raw,
// .regs_size = ARRAY_SIZE(sensor_fmt_raw),
// .bpp = 1
// },
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size
sensor_win_sizes[] = {
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)//linux-3.0
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL ;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)//linux-3.0
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
sensor_write_array(sd, sensor_fmt->regs , sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
{
ret = sensor_write_array(sd, wsize->regs , wsize->regs_size);
if (ret < 0)
return ret;
}
if (wsize->set_size)
{
ret = wsize->set_size(sd);
if (ret < 0)
return ret;
}
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->timeperframe.numerator = 1;
cp->timeperframe.denominator = SENSOR_FRAME_RATE;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
return 0;
}
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
/* *********************************************begin of ******************************************** */
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
/* see sensor_s_parm and sensor_g_parm for the meaning of value */
switch (qc->id) {
// case V4L2_CID_BRIGHTNESS:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_CONTRAST:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_SATURATION:
// return v4l2_ctrl_query_fill(qc, -4, 4, 1, 1);
// case V4L2_CID_HUE:
// return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
case V4L2_CID_VFLIP:
case V4L2_CID_HFLIP:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
// case V4L2_CID_GAIN:
// return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
// case V4L2_CID_AUTOGAIN:
// return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return v4l2_ctrl_query_fill(qc, -4, 4, 1, 0);
case V4L2_CID_EXPOSURE_AUTO:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return v4l2_ctrl_query_fill(qc, 0, 9, 1, 1);
case V4L2_CID_AUTO_WHITE_BALANCE:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
case V4L2_CID_COLORFX:
return v4l2_ctrl_query_fill(qc, 0, 15, 1, 0);
case V4L2_CID_FLASH_LED_MODE:
return v4l2_ctrl_query_fill(qc, 0, 4, 1, 0);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_g_brightness(sd, &ctrl->value);
case V4L2_CID_CONTRAST:
return sensor_g_contrast(sd, &ctrl->value);
case V4L2_CID_SATURATION:
return sensor_g_saturation(sd, &ctrl->value);
case V4L2_CID_HUE:
return sensor_g_hue(sd, &ctrl->value);
case V4L2_CID_VFLIP:
return sensor_g_vflip(sd, &ctrl->value);
case V4L2_CID_HFLIP:
return sensor_g_hflip(sd, &ctrl->value);
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_AUTOGAIN:
return sensor_g_autogain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_g_exp_bias(sd, &ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_g_autoexp(sd, &ctrl->value);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_g_wb(sd, &ctrl->value);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_g_autowb(sd, &ctrl->value);
case V4L2_CID_COLORFX:
return sensor_g_colorfx(sd, &ctrl->value);
case V4L2_CID_FLASH_LED_MODE:
return sensor_g_flash_mode(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (qc.type == V4L2_CTRL_TYPE_MENU ||
qc.type == V4L2_CTRL_TYPE_INTEGER ||
qc.type == V4L2_CTRL_TYPE_BOOLEAN)
{
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
return -ERANGE;
}
}
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_s_brightness(sd, ctrl->value);
case V4L2_CID_CONTRAST:
return sensor_s_contrast(sd, ctrl->value);
case V4L2_CID_SATURATION:
return sensor_s_saturation(sd, ctrl->value);
case V4L2_CID_HUE:
return sensor_s_hue(sd, ctrl->value);
case V4L2_CID_VFLIP:
return sensor_s_vflip(sd, ctrl->value);
case V4L2_CID_HFLIP:
return sensor_s_hflip(sd, ctrl->value);
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_AUTOGAIN:
return sensor_s_autogain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_s_exp_bias(sd, ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_s_autoexp(sd, (enum v4l2_exposure_auto_type) ctrl->value);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_s_wb(sd, (enum v4l2_auto_n_preset_white_balance) ctrl->value);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_s_autowb(sd, ctrl->value);
case V4L2_CID_COLORFX:
return sensor_s_colorfx(sd, (enum v4l2_colorfx) ctrl->value);
case V4L2_CID_FLASH_LED_MODE:
return sensor_s_flash_mode(sd, (enum v4l2_flash_led_mode) ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->brightness = 0;
info->contrast = 0;
info->saturation = 0;
info->hue = 0;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->autogain = 1;
info->exp = 0;
info->autoexp = 0;
info->autowb = 1;
info->wb = 0;
info->clrfx = 0;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{ SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);