oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/imx219.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

1358 lines
32 KiB
C
Executable file

/*
* A V4L2 driver for IMX219 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for IMX219 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[IMX219]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[IMX219]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[IMX219]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0219
/*
* Our nominal (default) frame rate.
*/
#ifdef FPGA
#define SENSOR_FRAME_RATE 15
#else
#define SENSOR_FRAME_RATE 30
#endif
/*
* The IMX219 sits on i2c with ID 0x6c
*/
#define I2C_ADDR 0x20
#define SENSOR_NAME "imx219"
int imx219_sensor_vts;
#define ES_GAIN(a,b,c) ((unsigned short)(a*160)<(c*10) && (c*10)<=(unsigned short)(b*160))
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {/*3280 x 2464_20fps 4lanes 720Mbps/lane*/
};
//for capture
static struct regval_list sensor_hxga_regs[] = { //3280 * 2464 20fps 4lane
{0x30EB, 0x05},
{0x30EB, 0x0C},
{0x300A, 0xFF},
{0x300B, 0xFF},
{0x30EB, 0x05},
{0x30EB, 0x09},
{0x0114, 0x03},
{0x0128, 0x00},
{0x012A, 0x18},
{0x012B, 0x00},
{0x0160 ,0x0F },
{0x0161 ,0xC5 },
{0x0162 ,0x0D },
{0x0163 ,0x78 },
{0x0164, 0x00},
{0x0165, 0x00},
{0x0166, 0x0C},
{0x0167, 0xCF},
{0x0168, 0x00},
{0x0169, 0x00},
{0x016A, 0x09},
{0x016B, 0x9F},
{0x016C, 0x0C},
{0x016D, 0xD0},
{0x016E, 0x09},
{0x016F, 0xA0},
{0x0170, 0x01},
{0x0171, 0x01},
{0x0174, 0x00},
{0x0175, 0x00},
{0x018C, 0x0A},
{0x018D, 0x0A},
{0x0301, 0x05},
{0x0303, 0x01},
{0x0304, 0x03},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x57},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x030C, 0x00},
{0x030D, 0x5A},
{0x4767, 0x0F},
{0x4750, 0x14},
{0x47B4, 0x14},
{0x0100,0x01},
};
static struct regval_list sensor_sxga_regs[] = { //SXGA: 1280*960@30fps
//720Mbps 4lane 20fps
{0x30EB , 0x05 },
{0x30EB , 0x0C },
{0x300A , 0xFF },
{0x300B , 0xFF },
{0x30EB , 0x05 },
{0x30EB , 0x09 },
{0x0114 , 0x03 },
{0x0128 , 0x00 },
{0x012A , 0x18 },
{0x012B , 0x00 },
{0x0160 , 0x0a },
{0x0161 , 0x2f },
{0x0162 , 0x0d },
{0x0163 , 0xe8 },
{0x0164 , 0x03 },
{0x0165 , 0xe8 },
{0x0166 , 0x08 },
{0x0167 , 0xe7 },
{0x0168 , 0x02 },
{0x0169 , 0xf0 },
{0x016A , 0x06 },
{0x016B , 0xaF },
{0x016C , 0x05 },
{0x016D , 0x00 },
{0x016E , 0x03 },
{0x016F , 0xc0 },
//{0x016C , 0x0c },
//{0x016D , 0xd0 },
//{0x016E , 0x09 },
//{0x016F , 0xa0 },
{0x0170 , 0x01 },
{0x0171 , 0x01 },
{0x0174 , 0x00 },
{0x0175 , 0x00 },
{0x018C , 0x0A },
{0x018D , 0x0A },
{0x0301 , 0x05 },
{0x0303 , 0x01 },
{0x0304 , 0x03 },
{0x0305 , 0x03 },
{0x0306 , 0x00 },
{0x0307 , 0x57 },
{0x0309 , 0x0A },
{0x030B , 0x01 },
{0x030C , 0x00 },
{0x030D , 0x5A },
{0x4767 , 0x0F },
{0x4750 , 0x14 },
{0x47B4 , 0x14 },
{0x0100,0x01},
};
//for video
static struct regval_list sensor_1080p_regs[] = { //1080: 1920*1080@30fps
// MIPI=720Mbps
// 1920x1080 30fps
{0x30EB , 0x05 },
{0x30EB , 0x0C },
{0x300A , 0xFF },
{0x300B , 0xFF },
{0x30EB , 0x05 },
{0x30EB , 0x09 },
//{0x , 0x },
{0x0114 , 0x03 },
{0x0128 , 0x00 },
{0x012A , 0x18 },
{0x012B , 0x00 },
//{0x0157 , 0x },
//{0x015A , 0x },
//{0x015B , 0x },
{0x0160 , 0x0A },
{0x0161 , 0x2F },
{0x0162 , 0x0D },
{0x0163 , 0xE8 },
{0x0164 , 0x02 },
{0x0165 , 0xA8 },
{0x0166 , 0x0A },
{0x0167 , 0x27 },
{0x0168 , 0x02 },
{0x0169 , 0xB4 },
{0x016A , 0x06 },
{0x016B , 0xEB },
{0x016C , 0x07 },
{0x016D , 0x80 },
{0x016E , 0x04 },
{0x016F , 0x38 },
{0x0170 , 0x01 },
{0x0171 , 0x01 },
{0x0174 , 0x00 },
{0x0175 , 0x00 },
{0x018C , 0x0A },
{0x018D , 0x0A },
{0x0301 , 0x05 },
{0x0303 , 0x01 },
{0x0304 , 0x03 },
{0x0305 , 0x03 },
{0x0306 , 0x00 },
{0x0307 , 0x57 },
{0x0309 , 0x0A },
{0x030B , 0x01 },
{0x030C , 0x00 },
{0x030D , 0x5A },
{0x4767 , 0x0F },
{0x4750 , 0x14 },
{0x47B4 , 0x14 },
{0x0100,0x01},
};
static struct regval_list sensor_720p_regs[] = { //720: 1280*720@30fps
// MIPI=720Mbps,
// 1280x720 60fps //perhaps reach to 100~120fps
{0x30EB , 0x05 },
{0x30EB , 0x0C },
{0x300A , 0xFF },
{0x300B , 0xFF },
{0x30EB , 0x05 },
{0x30EB , 0x09 },
{0x0114 , 0x03 },
{0x0128 , 0x00 },
{0x012A , 0x18 },
{0x012B , 0x00 },
{0x0160 , 0x02 },//0x05 for 60fps
{0x0161 , 0x00 },//0x17 for 60fps
{0x0162 , 0x0d/*0D*/ },
{0x0163 , 0xE8 },
{0x0164 , 0x03 },
{0x0165 , 0xE8 },
{0x0166 , 0x08 },
{0x0167 , 0xE7 },
{0x0168 , 0x03 },
{0x0169 , 0x68 },
{0x016A , 0x06 },
{0x016B , 0x37 },
{0x016C , 0x05 },
{0x016D , 0x00 },
{0x016E , 0x02 },
{0x016F , 0xD0 },
{0x0170 , 0x01 },
{0x0171 , 0x01 },
{0x0174 , 0x00 },
{0x0175 , 0x00 },
{0x018C , 0x0A },
{0x018D , 0x0A },
{0x0301 , 0x05 },
{0x0303 , 0x01 },
{0x0304 , 0x03 },
{0x0305 , 0x03 },
{0x0306 , 0x00},
{0x0307 , 0x57 },
{0x0309 , 0x05/*0A*/ },
{0x030B , 0x01 },
{0x030C , 0x00 },
{0x030D , 0x5A },
{0x4767 , 0x0F },
{0x4750 , 0x14 },
{0x47B4 , 0x14 },
{0x0100,0x01},
};
static struct regval_list sensor_vga_regs[] = { //VGA: 640*480
};
//misc
static struct regval_list sensor_oe_disable_regs[] = {
};
static struct regval_list sensor_oe_enable_regs[] = {
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{ //return -1;
int exp_val, gain_val,frame_length,shutter;
unsigned char explow=0,expmid=0,exphigh=0;
unsigned char gainlow=0,gainhigh=0;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
//if((info->exp == exp_val)&&(info->gain == gain_val))
// return 0;
if(gain_val<1*16)
gain_val=16;
if(gain_val>10*16-1)
gain_val=10*16-1;
if(exp_val>0xfffff)
exp_val=0xfffff;
exp_val >>=4;
exphigh = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) ( (0x0000ff&exp_val) );
sensor_write(sd, 0x015b, explow);
sensor_write(sd, 0x015a, exphigh);
shutter = exp_val;
if(shutter > imx219_sensor_vts- 4)
frame_length = shutter + 4;
else
frame_length = imx219_sensor_vts;
sensor_write(sd,0x0161,frame_length & 0xff);
sensor_write(sd,0x0160,frame_length >>8);
if (gain_val ==16)
sensor_write(sd,0x0157,0x01);
if(ES_GAIN(1.0,1.1,gain_val))
sensor_write(sd,0x0157,24);
else if(ES_GAIN(1.1,1.2,gain_val))
sensor_write(sd,0x0157,42);
else if(ES_GAIN(1.2,1.3,gain_val))
sensor_write(sd,0x0157,60);
else if(ES_GAIN(1.3,1.4,gain_val))
sensor_write(sd,0x0157,73);
else if(ES_GAIN(1.4,1.5,gain_val))
sensor_write(sd,0x0157,85);
else if(ES_GAIN(1.5,1.6,gain_val))
sensor_write(sd,0x0157,96);
else if(ES_GAIN(1.6,1.7,gain_val))
sensor_write(sd,0x0157,105);
else if(ES_GAIN(1.7,1.8,gain_val))
sensor_write(sd,0x0157,114);
else if(ES_GAIN(1.8,1.9,gain_val))
sensor_write(sd,0x0157,122);
else if(ES_GAIN(1.9,2.0,gain_val))
sensor_write(sd,0x0157,0x80);
else if(ES_GAIN(2.0,2.1,gain_val))
sensor_write(sd,0x0157,134);
else if(ES_GAIN(2.1,2.2,gain_val))
sensor_write(sd,0x0157,140);
else if(ES_GAIN(2.2,2.3,gain_val))
sensor_write(sd,0x0157,145);
else if(ES_GAIN(2.3,2.4,gain_val))
sensor_write(sd,0x0157,150);
else if(ES_GAIN(2.4,2.5,gain_val))
sensor_write(sd,0x0157,154);
else if(ES_GAIN(2.5,2.6,gain_val))
sensor_write(sd,0x0157,158);
else if(ES_GAIN(2.6,2.7,gain_val))
sensor_write(sd,0x0157,162);
else if(ES_GAIN(2.7,2.8,gain_val))
sensor_write(sd,0x0157,165);
else if(ES_GAIN(2.8,2.9,gain_val))
sensor_write(sd,0x0157,168);
else if(ES_GAIN(2.9,3.0,gain_val))
sensor_write(sd,0x0157,0xab);
else if(ES_GAIN(3.0,3.1,gain_val))
sensor_write(sd,0x0157,174);
else if(ES_GAIN(3.1,3.2,gain_val))
sensor_write(sd,0x0157,176);
else if(ES_GAIN(3.2,3.3,gain_val))
sensor_write(sd,0x0157,179);
else if(ES_GAIN(3.3,3.4,gain_val))
sensor_write(sd,0x0157,181);
else if(ES_GAIN(3.4,3.5,gain_val))
sensor_write(sd,0x0157,183);
else if(ES_GAIN(3.5,3.6,gain_val))
sensor_write(sd,0x0157,185);
else if(ES_GAIN(3.6,3.7,gain_val))
sensor_write(sd,0x0157,187);
else if(ES_GAIN(3.7,3.8,gain_val))
sensor_write(sd,0x0157,189);
else if(ES_GAIN(3.8,3.9,gain_val))
sensor_write(sd,0x0157,191);
else if(ES_GAIN(3.9,4.0,gain_val))
sensor_write(sd,0x0157,192);
else if(ES_GAIN(4.0,4.1,gain_val))
sensor_write(sd,0x0157,194);
else if(ES_GAIN(4.1,4.2,gain_val))
sensor_write(sd,0x0157,195);
else if(ES_GAIN(4.2,4.3,gain_val))
sensor_write(sd,0x0157,197);
else if(ES_GAIN(4.3,4.4,gain_val))
sensor_write(sd,0x0157,198);
else if(ES_GAIN(4.4,4.5,gain_val))
sensor_write(sd,0x0157,200);
else if(ES_GAIN(4.5,4.6,gain_val))
sensor_write(sd,0x0157,201);
else if(ES_GAIN(4.6,4.7,gain_val))
sensor_write(sd,0x0157,202);
else if(ES_GAIN(4.7,4.8,gain_val))
sensor_write(sd,0x0157,203);
else if(ES_GAIN(4.8,4.9,gain_val))
sensor_write(sd,0x0157,204);
else if(ES_GAIN(4.9,5.0,gain_val))
sensor_write(sd,0x0157,205);
else if(ES_GAIN(5.0,5.1,gain_val))
sensor_write(sd,0x0157,206);
else if(ES_GAIN(5.1,5.2,gain_val))
sensor_write(sd,0x0157,207);
else if(ES_GAIN(5.2,5.3,gain_val))
sensor_write(sd,0x0157,208);
else if(ES_GAIN(5.3,5.4,gain_val))
sensor_write(sd,0x0157,209);
else if(ES_GAIN(5.4,5.5,gain_val))
sensor_write(sd,0x0157,210);
else if(ES_GAIN(5.5,5.7,gain_val))
sensor_write(sd,0x0157,211);
else if(ES_GAIN(5.7,5.8,gain_val))
sensor_write(sd,0x0157,212);
else if(ES_GAIN(5.8,5.9,gain_val))
sensor_write(sd,0x0157,213);
else if(ES_GAIN(5.9,6.2,gain_val))
sensor_write(sd,0x0157,215);
else if(ES_GAIN(6.2,6.4,gain_val))
sensor_write(sd,0x0157,216);
else if(ES_GAIN(6.4,6.5,gain_val))
sensor_write(sd,0x0157,217);
else if(ES_GAIN(6.5,6.7,gain_val))
sensor_write(sd,0x0157,218);
else if(ES_GAIN(6.7,6.9,gain_val))
sensor_write(sd,0x0157,219);
else if(ES_GAIN(6.9,7.1,gain_val))
sensor_write(sd,0x0157,220);
else if(ES_GAIN(7.1,7.3,gain_val))
sensor_write(sd,0x0157,221);
else if(ES_GAIN(7.3,7.5,gain_val))
sensor_write(sd,0x0157,222);
else if(ES_GAIN(7.5,7.7,gain_val))
sensor_write(sd,0x0157,223);
else if(ES_GAIN(7.7,8.0,gain_val))
sensor_write(sd,0x0157,224);
else if(ES_GAIN(8.0,8.3,gain_val))
sensor_write(sd,0x0157,225);
else if(ES_GAIN(8.3,8.5,gain_val))
sensor_write(sd,0x0157,226);
else if(ES_GAIN(8.5,8.8,gain_val))
sensor_write(sd,0x0157,227);
else if(ES_GAIN(8.8,9.1,gain_val))
sensor_write(sd,0x0157,228);
else if(ES_GAIN(9.1,9.4,gain_val))
sensor_write(sd,0x0157,228);
else if(ES_GAIN(9.4,9.8,gain_val))
sensor_write(sd,0x0157,230);
else if(ES_GAIN(9.8,10.2,gain_val))
sensor_write(sd,0x0157,231);
else if(ES_GAIN(10.0,10.6,gain_val))
sensor_write(sd,0x0157,232);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,exphigh;
struct sensor_info *info = to_state(sd);
if(exp_val>0xfffff)
exp_val=0xfffff;
exp_val >>=4;
exphigh = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) ( (0x0000ff&exp_val) );
sensor_write(sd, 0x015b, explow);
sensor_write(sd, 0x015a, exphigh);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
if(gain_val<1*16)
gain_val=16;
if(gain_val > 0x1ff)
gain_val = 0x1ff;
if (gain_val ==16)
sensor_write(sd,0x0157,0x01);
if(ES_GAIN(1.0,1.1,gain_val))
sensor_write(sd,0x0157,24);
else if(ES_GAIN(1.1,1.2,gain_val))
sensor_write(sd,0x0157,42);
else if(ES_GAIN(1.2,1.3,gain_val))
sensor_write(sd,0x0157,60);
else if(ES_GAIN(1.3,1.4,gain_val))
sensor_write(sd,0x0157,73);
else if(ES_GAIN(1.4,1.5,gain_val))
sensor_write(sd,0x0157,85);
else if(ES_GAIN(1.5,1.6,gain_val))
sensor_write(sd,0x0157,96);
else if(ES_GAIN(1.6,1.7,gain_val))
sensor_write(sd,0x0157,105);
else if(ES_GAIN(1.7,1.8,gain_val))
sensor_write(sd,0x0157,114);
else if(ES_GAIN(1.8,1.9,gain_val))
sensor_write(sd,0x0157,122);
else if(ES_GAIN(1.9,2.0,gain_val))
sensor_write(sd,0x0157,0x80);
else if(ES_GAIN(2.0,2.1,gain_val))
sensor_write(sd,0x0157,134);
else if(ES_GAIN(2.1,2.2,gain_val))
sensor_write(sd,0x0157,140);
else if(ES_GAIN(2.2,2.3,gain_val))
sensor_write(sd,0x0157,145);
else if(ES_GAIN(2.3,2.4,gain_val))
sensor_write(sd,0x0157,150);
else if(ES_GAIN(2.4,2.5,gain_val))
sensor_write(sd,0x0157,154);
else if(ES_GAIN(2.5,2.6,gain_val))
sensor_write(sd,0x0157,158);
else if(ES_GAIN(2.6,2.7,gain_val))
sensor_write(sd,0x0157,162);
else if(ES_GAIN(2.7,2.8,gain_val))
sensor_write(sd,0x0157,165);
else if(ES_GAIN(2.8,2.9,gain_val))
sensor_write(sd,0x0157,168);
else if(ES_GAIN(2.9,3.0,gain_val))
sensor_write(sd,0x0157,0xab);
else if(ES_GAIN(3.0,3.1,gain_val))
sensor_write(sd,0x0157,174);
else if(ES_GAIN(3.1,3.2,gain_val))
sensor_write(sd,0x0157,176);
else if(ES_GAIN(3.2,3.3,gain_val))
sensor_write(sd,0x0157,179);
else if(ES_GAIN(3.3,3.4,gain_val))
sensor_write(sd,0x0157,181);
else if(ES_GAIN(3.4,3.5,gain_val))
sensor_write(sd,0x0157,183);
else if(ES_GAIN(3.5,3.6,gain_val))
sensor_write(sd,0x0157,185);
else if(ES_GAIN(3.6,3.7,gain_val))
sensor_write(sd,0x0157,187);
else if(ES_GAIN(3.7,3.8,gain_val))
sensor_write(sd,0x0157,189);
else if(ES_GAIN(3.8,3.9,gain_val))
sensor_write(sd,0x0157,191);
else if(ES_GAIN(3.9,4.0,gain_val))
sensor_write(sd,0x0157,192);
else if(ES_GAIN(4.0,4.1,gain_val))
sensor_write(sd,0x0157,194);
else if(ES_GAIN(4.1,4.2,gain_val))
sensor_write(sd,0x0157,195);
else if(ES_GAIN(4.2,4.3,gain_val))
sensor_write(sd,0x0157,197);
else if(ES_GAIN(4.3,4.4,gain_val))
sensor_write(sd,0x0157,198);
else if(ES_GAIN(4.4,4.5,gain_val))
sensor_write(sd,0x0157,200);
else if(ES_GAIN(4.5,4.6,gain_val))
sensor_write(sd,0x0157,201);
else if(ES_GAIN(4.6,4.7,gain_val))
sensor_write(sd,0x0157,202);
else if(ES_GAIN(4.7,4.8,gain_val))
sensor_write(sd,0x0157,203);
else if(ES_GAIN(4.8,4.9,gain_val))
sensor_write(sd,0x0157,204);
else if(ES_GAIN(4.9,5.0,gain_val))
sensor_write(sd,0x0157,205);
else if(ES_GAIN(5.0,5.1,gain_val))
sensor_write(sd,0x0157,206);
else if(ES_GAIN(5.1,5.2,gain_val))
sensor_write(sd,0x0157,207);
else if(ES_GAIN(5.2,5.3,gain_val))
sensor_write(sd,0x0157,208);
else if(ES_GAIN(5.3,5.4,gain_val))
sensor_write(sd,0x0157,209);
else if(ES_GAIN(5.4,5.5,gain_val))
sensor_write(sd,0x0157,210);
else if(ES_GAIN(5.5,5.7,gain_val))
sensor_write(sd,0x0157,211);
else if(ES_GAIN(5.7,5.8,gain_val))
sensor_write(sd,0x0157,212);
else if(ES_GAIN(5.8,5.9,gain_val))
sensor_write(sd,0x0157,213);
else if(ES_GAIN(5.9,6.2,gain_val))
sensor_write(sd,0x0157,215);
else if(ES_GAIN(6.2,6.4,gain_val))
sensor_write(sd,0x0157,216);
else if(ES_GAIN(6.4,6.5,gain_val))
sensor_write(sd,0x0157,217);
else if(ES_GAIN(6.5,6.7,gain_val))
sensor_write(sd,0x0157,218);
else if(ES_GAIN(6.7,6.9,gain_val))
sensor_write(sd,0x0157,219);
else if(ES_GAIN(6.9,7.1,gain_val))
sensor_write(sd,0x0157,220);
else if(ES_GAIN(7.1,7.3,gain_val))
sensor_write(sd,0x0157,221);
else if(ES_GAIN(7.3,7.5,gain_val))
sensor_write(sd,0x0157,222);
else if(ES_GAIN(7.5,7.7,gain_val))
sensor_write(sd,0x0157,223);
else if(ES_GAIN(7.7,8.0,gain_val))
sensor_write(sd,0x0157,224);
else if(ES_GAIN(8.0,8.3,gain_val))
sensor_write(sd,0x0157,225);
else if(ES_GAIN(8.3,8.5,gain_val))
sensor_write(sd,0x0157,226);
else if(ES_GAIN(8.5,8.8,gain_val))
sensor_write(sd,0x0157,227);
else if(ES_GAIN(8.8,9.1,gain_val))
sensor_write(sd,0x0157,228);
else if(ES_GAIN(9.1,9.4,gain_val))
sensor_write(sd,0x0157,228);
else if(ES_GAIN(9.4,9.8,gain_val))
sensor_write(sd,0x0157,230);
else if(ES_GAIN(9.8,10.2,gain_val))
sensor_write(sd,0x0157,231);
else if(ES_GAIN(10.0,10.6,gain_val))
sensor_write(sd,0x0157,232);
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0x0100, &rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_LOW)//sw stby on
{
ret=sensor_write(sd, 0x0100, rdval&0xfe);
}
else//sw stby off
{
ret=sensor_write(sd, 0x0100, rdval|0x01);
}
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
cci_lock(sd);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
msleep(20);
cci_unlock(sd);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x0000, &rdval))
if((rdval&0x0f) != 0x02)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x0001, &rdval))
if(rdval != 0x19)
return -ENODEV;
printk("find the sony IMX219 ***********\n");
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = HXGA_WIDTH;
info->height = HXGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SRGGB10_10X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* 3280*2464 */
{
.width = 3264,//3280,
.height = 2448,//2464,
.hoffset = (3280-3264)/2,//0,
.voffset = (2464-2448)/2,//0,
.hts = 3448,//4352,//3448,//4037,
.vts = 4037,//2757,//4037,
.pclk = (278*1000*1000),//252*1000*1000,
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = (4037-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_hxga_regs,
.regs_size = ARRAY_SIZE(sensor_hxga_regs),
.set_size = NULL,
},
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3560,
.vts = 2607,
.pclk = (278*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = (2607-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
/* SXGA */
{
.width = SXGA_WIDTH,
.height = SXGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3560,
.vts = 2607,
.pclk = (278*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = 2607<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_sxga_regs,
.regs_size = ARRAY_SIZE(sensor_sxga_regs),
.set_size = NULL,
},
/* 720p */
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2560,
.vts = 1303,//735 106fps
.pclk = (200*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = (1303-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_720p_regs,//
.regs_size = ARRAY_SIZE(sensor_720p_regs),//
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_4_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
imx219_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 11*16, 1, 1*16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 16);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);