oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/ov13850.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

1631 lines
38 KiB
C
Executable file

/*
* A V4L2 driver for ov13850 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for ov13850 camera sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 1
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[ov13850]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[ov13850]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[ov13850]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x13850
int ov13850_sensor_vts;
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The ov13850 sits on i2c with ID 0x6c or 0x20
*/
//#define I2C_ADDR 0x6c
#define SENSOR_NAME "ov13850"
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
//#define 4k_video
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
};
//for capture
static struct regval_list sensor_13mega_regs[] = {
// ;XVCLK=24Mhz, SCLK=4x120Mhz, MIPI 640Mbps, DACCLK=240Mhz
{0x0103,0x01}, // ; software reset
{0x0300,0x01}, //; PLL
{0x0301,0x00}, //; PLL
{0x0302,0x28}, //; PLL
{0x0303,0x00}, // ; PLL
{0x030a,0x00}, // ; PLL
//{//0xffff, 50},
{0x300f,0x11}, // ; MIPI 10-bit mode
{0x3010,0x01}, // ; MIPI PHY
{0x3011,0x76}, // ; MIPI PHY
{0x3012,0x41}, // ; MIPI 4 lane
{0x3013,0x12}, // ; MIPI control
{0x3014,0x11}, // ; MIPI control
{0x301f,0x03}, //
{0x3106,0x00}, //
{0x3210,0x47}, //
{0x3500,0x00}, // ; exposure HH
{0x3501,0x67}, // ; exposure H
{0x3502,0x80}, // ; exposure L
{0x3506,0x00}, // ; short exposure HH
{0x3507,0x02}, // ; short exposure H
{0x3508,0x00}, // ; shour exposure L
{0x3509,0x10},//00},//8},
{0x350a,0x00}, // ; gain H
{0x350b,0x10}, // ; gain L
{0x350e,0x00}, // ; short gain H
{0x350f,0x10}, // ; short gain L
{0x3600,0x40}, // ; analog control
{0x3601,0xfc}, // ; analog control
{0x3602,0x02}, // ; analog control
{0x3603,0x48}, // ; analog control
{0x3604,0xa5}, // ; analog control
{0x3605,0x9f}, // ; analog control
{0x3607,0x00}, // ; analog control
{0x360a,0x40}, // ; analog control
{0x360b,0x91}, // ; analog control
{0x360c,0x49}, // ; analog control
{0x360f,0x8a}, //
{0x3611,0x10}, // ; PLL2
//{0x3612,0x23}, // ; PLL2
{0x3612,0x13}, // ; PLL2
//{0x3613,0x33}, // ; PLL2
{0x3613,0x22}, // ; PLL2
{0x3615,0x08}, //
{0x3641,0x02},
{0x3660,0x82},
{0x3668,0x54},
{0x3669,0x40},
{0x3667,0xa0},
{0x3702,0x40},
{0x3703,0x44},
{0x3704,0x2c},
{0x3705,0x24},
{0x3706,0x50},
{0x3707,0x44},
{0x3708,0x3c},
{0x3709,0x1f},
{0x370a,0x26},
{0x370b,0x3c},
{0x3720,0x66},
{0x3722,0x84},
{0x3728,0x40},
{0x372a,0x00},
{0x372f,0x90},
{0x3710,0x28},
{0x3716,0x03},
{0x3718,0x10},
{0x3719,0x08},
{0x371c,0xfc},
{0x3760,0x13},
{0x3761,0x34},
{0x3767,0x24},
{0x3768,0x06},
{0x3769,0x45},
{0x376c,0x23},
{0x3d84,0x00}, // ; OTP program disable
{0x3d85,0x17}, // ; OTP power up load data enable, power load setting enable, software load setting
{0x3d8c,0x73}, // ; OTP start address H
{0x3d8d,0xbf}, // ; OTP start address L
{0x3800,0x00}, // ; H crop start H
{0x3801,0x08}, // ; H crop start L
{0x3802,0x00}, // ; V crop start H
{0x3803,0x04}, // ; V crop start L
{0x3804,0x10}, // ; H crop end H
{0x3805,0x97}, // ; H crop end L
{0x3806,0x0c}, // ; V crop end H
{0x3807,0x4b}, // ; V crop end L
{0x3808,0x08}, // ; H output size H
{0x3809,0x40}, // ; H output size L
{0x380a,0x06}, // ; V output size H
{0x380b,0x20}, // ; V output size L
{0x380c,0x25}, // ; HTS H
{0x380d,0x80}, // ; HTS L
{0x380e,0x06}, // ; VTS H
{0x380f,0x80}, // ; VTS L
{0x3810,0x00}, // ; H win off H
{0x3811,0x04}, // ; H win off L
{0x3812,0x00}, // ; V win off H
{0x3813,0x02}, // ; V win off L
{0x3814,0x31}, // ; H inc
{0x3815,0x31}, // ; V inc
{0x3820,0x02}, // ; V flip off, V bin on
{0x3821,0x05}, // ; H mirror on, H bin on
{0x3834,0x00}, //
{0x3835,0x1c}, // ; cut_en, vts_auto, blk_col_dis
{0x3836,0x08}, //
{0x3837,0x02}, //
{0x4000,0xf1},//c1}, // ; BLC offset trig en, format change trig en, gain trig en, exp trig en, median en
{0x4001,0x00}, // ; BLC
{0x400b,0x0c}, // ; BLC
{0x4011,0x00}, // ; BLC
{0x401a,0x00}, // ; BLC
{0x401b,0x00}, // ; BLC
{0x401c,0x00}, // ; BLC
{0x401d,0x00}, // ; BLC
{0x4020,0x00}, // ; BLC
{0x4021,0xe4}, // ; BLC
{0x4022,0x07}, // ; BLC
{0x4023,0x5f}, // ; BLC
{0x4024,0x08}, // ; BLC
{0x4025,0x44}, // ; BLC
{0x4026,0x08}, // ; BLC
{0x4027,0x47}, // ; BLC
{0x4028,0x00}, // ; BLC
{0x4029,0x02}, // ; BLC
{0x402a,0x04}, // ; BLC
{0x402b,0x08}, // ; BLC
{0x402c,0x02}, // ; BLC
{0x402d,0x02}, // ; BLC
{0x402e,0x0c}, // ; BLC
{0x402f,0x08}, // ; BLC
{0x403d,0x2c}, //
{0x403f,0x7f}, //
{0x4500,0x82}, // ; BLC
{0x4501,0x38}, // ; BLC
{0x4601,0x04}, //
{0x4602,0x22}, //
{0x4603,0x01}, //; VFIFO
{0x4837,0x19}, //; MIPI global timing
{0x4d00,0x04}, // ; temperature monitor
{0x4d01,0x42}, // ; temperature monitor
{0x4d02,0xd1}, // ; temperature monitor
{0x4d03,0x90}, // ; temperature monitor
{0x4d04,0x66}, // ; temperature monitor
{0x4d05,0x65}, // ; temperature monitor
{0x5000,0x0e}, // ; windowing enable, BPC on, WPC on, Lenc on
{0x5001,0x03}, // ; BLC enable, MWB on
{0x5002,0x07}, //
{0x5013,0x40},
{0x501c,0x00},
{0x501d,0x10},
//{0x5057,0x56},//add
{0x5242,0x00},
{0x5243,0xb8},
{0x5244,0x00},
{0x5245,0xf9},
{0x5246,0x00},
{0x5247,0xf6},
{0x5248,0x00},
{0x5249,0xa6},
{0x5300,0xfc},
{0x5301,0xdf},
{0x5302,0x3f},
{0x5303,0x08},
{0x5304,0x0c},
{0x5305,0x10},
{0x5306,0x20},
{0x5307,0x40},
{0x5308,0x08},
{0x5309,0x08},
{0x530a,0x02},
{0x530b,0x01},
{0x530c,0x01},
{0x530d,0x0c},
{0x530e,0x02},
{0x530f,0x01},
{0x5310,0x01},
{0x5400,0x00},
{0x5401,0x61},
{0x5402,0x00},
{0x5403,0x00},
{0x5404,0x00},
{0x5405,0x40},
{0x540c,0x05},
{0x5b00,0x00},
{0x5b01,0x00},
{0x5b02,0x01},
{0x5b03,0xff},
{0x5b04,0x02},
{0x5b05,0x6c},
{0x5b09,0x02}, //
{0x5e00,0x00}, // ; test pattern disable
{0x5e10,0x1c}, // ; ISP test disable
/*above for init*/
{0x0300,0x01},// ; PLL
{0x0302,0x38},// ; PLL
{0xffff, 50},
{0x3501,0xcf},// ; Exposure H
{0x370a,0x24},//
{0x372a,0x04},//
{0x372f,0xa0},//
{0x3801,0x14},// ; H crop start L
{0x3803,0x0c},// ; V crop start L
{0x3805,0x8b},// ; H crop end L
{0x3807,0x43},// ; V crop end L
{0x3808,0x10}, //; H output size H
{0x3809,0x70}, //; H output size L
{0x380a,0x0c}, //; V output size H
{0x380b,0x30}, //; V output size L
{0x380c,0x25}, //; HTS H
{0x380d,0x80}, //; HTS L
{0x380e,0x0d},//6}, //; VTS H
{0x380f,0x00},//80}, //; VTS L
{0x3813,0x04}, //; V win off
{0x3814,0x11}, //; H inc
{0x3815,0x11}, //; V inc
{0x3820,0x00}, //; V flip off, V bin off
{0x3821,0x04}, //; H mirror on, H bin off
{0x3836,0x04},
{0x3837,0x01},
{0x4020,0x02},
{0x4021,0x3c},
{0x4022,0x0e},
{0x4023,0x37},
{0x4024,0x0f},
{0x4025,0x1c},
{0x4026,0x0f},
{0x4027,0x1f},
{0x4603,0x01},// ; VFIFO
{0x4837,0x19},// ; MIPI global timing
{0x4826,0x12}, //default 0x32 trail
{0x5401,0x71},//
{0x5405,0x80},//
{0x0100,0x01},// ; wake up, streaming
};
//for video
static struct regval_list sensor_4k_videos[]=
{
{0x0103,0x01}, // ; software reset
{0x030a,0x00}, // ; PLL
//{//0xffff, 50},
{0x300f,0x11}, // ; MIPI 10-bit mode
{0x3010,0x01}, // ; MIPI PHY
{0x3011,0x76}, // ; MIPI PHY
{0x3012,0x41}, // ; MIPI 4 lane
{0x3013,0x12}, // ; MIPI control
{0x3014,0x11}, // ; MIPI control
{0x301f,0x03}, //
{0x3106,0x00}, //
{0x3210,0x47}, //
{0x3500,0x00}, // ; exposure HH
{0x3501,0x67}, // ; exposure H
{0x3502,0x80}, // ; exposure L
{0x3506,0x00}, // ; short exposure HH
{0x3507,0x02}, // ; short exposure H
{0x3508,0x00}, // ; shour exposure L
{0x3509,0x10},//00},//8},
{0x350a,0x00}, // ; gain H
{0x350b,0x10}, // ; gain L
{0x350e,0x00}, // ; short gain H
{0x350f,0x10}, // ; short gain L
{0x3600,0x40}, // ; analog control
{0x3601,0xfc}, // ; analog control
{0x3602,0x02}, // ; analog control
{0x3603,0x48}, // ; analog control
{0x3604,0xa5}, // ; analog control
{0x3605,0x9f}, // ; analog control
{0x3607,0x00}, // ; analog control
{0x360a,0x40}, // ; analog control
{0x360b,0x91}, // ; analog control
{0x360c,0x49}, // ; analog control
{0x360f,0x8a}, //
{0x3611,0x10}, // ; PLL2
//{0x3612,0x13}, // ; PLL2
{0x3613,0x11}, // ; PLL2
{0xffff, 50},
{0x3615,0x08}, //
{0x3641,0x02},
{0x3660,0x82},
{0x3668,0x54},
{0x3669,0x40},
{0x3667,0xa0},
{0x3702,0x40},
{0x3703,0x44},
{0x3704,0x2c},
{0x3705,0x24},
{0x3706,0x50},
{0x3707,0x44},
{0x3708,0x3c},
{0x3709,0x1f},
{0x370a,0x26},
{0x370b,0x3c},
{0x3720,0x66},
{0x3722,0x84},
{0x3728,0x40},
{0x372a,0x00},
{0x372f,0x90},
{0x3710,0x28},
{0x3716,0x03},
{0x3718,0x10},
{0x3719,0x08},
{0x371c,0xfc},
{0x3760,0x13},
{0x3761,0x34},
{0x3767,0x24},
{0x3768,0x06},
{0x3769,0x45},
{0x376c,0x23},
{0x3d84,0x00}, // ; OTP program disable
{0x3d85,0x17}, // ; OTP power up load data enable, power load setting enable, software load setting
{0x3d8c,0x73}, // ; OTP start address H
{0x3d8d,0xbf}, // ; OTP start address L
{0x3800,0x00}, // ; H crop start H
{0x3801,0x08}, // ; H crop start L
{0x3802,0x00}, // ; V crop start H
{0x3803,0x04}, // ; V crop start L
{0x3804,0x10}, // ; H crop end H
{0x3805,0x97}, // ; H crop end L
{0x3806,0x0c}, // ; V crop end H
{0x3807,0x4b}, // ; V crop end L
{0x3808,0x08}, // ; H output size H
{0x3809,0x40}, // ; H output size L
{0x380a,0x06}, // ; V output size H
{0x380b,0x20}, // ; V output size L
{0x380c,0x25}, // ; HTS H
{0x380d,0x80}, // ; HTS L
{0x380e,0x06}, // ; VTS H
{0x380f,0x80}, // ; VTS L
{0x3810,0x00}, // ; H win off H
{0x3811,0x04}, // ; H win off L
{0x3812,0x00}, // ; V win off H
{0x3813,0x02}, // ; V win off L
{0x3814,0x31}, // ; H inc
{0x3815,0x31}, // ; V inc
{0x3820,0x02}, // ; V flip off, V bin on
{0x3821,0x05}, // ; H mirror on, H bin on
{0x3834,0x00}, //
{0x3835,0x1c}, // ; cut_en, vts_auto, blk_col_dis
{0x3836,0x08}, //
{0x3837,0x02}, //
{0x4000,0xf1},//c1}, // ; BLC offset trig en, format change trig en, gain trig en, exp trig en, median en
{0x4001,0x00}, // ; BLC
{0x400b,0x0c}, // ; BLC
{0x4011,0x00}, // ; BLC
{0x401a,0x00}, // ; BLC
{0x401b,0x00}, // ; BLC
{0x401c,0x00}, // ; BLC
{0x401d,0x00}, // ; BLC
{0x4020,0x00}, // ; BLC
{0x4021,0xe4}, // ; BLC
{0x4022,0x07}, // ; BLC
{0x4023,0x5f}, // ; BLC
{0x4024,0x08}, // ; BLC
{0x4025,0x44}, // ; BLC
{0x4026,0x08}, // ; BLC
{0x4027,0x47}, // ; BLC
{0x4028,0x00}, // ; BLC
{0x4029,0x02}, // ; BLC
{0x402a,0x04}, // ; BLC
{0x402b,0x08}, // ; BLC
{0x402c,0x02}, // ; BLC
{0x402d,0x02}, // ; BLC
{0x402e,0x0c}, // ; BLC
{0x402f,0x08}, // ; BLC
{0x403d,0x2c}, //
{0x403f,0x7f}, //
{0x4500,0x82}, // ; BLC
{0x4501,0x38}, // ; BLC
{0x4601,0x04}, //
{0x4602,0x22}, //
{0x4603,0x01}, //; VFIFO
{0x4837,0x19}, //; MIPI global timing
{0x4800,0x04},
{0x4802,0x42}, //default 0x00
{0x481a,0x00},
{0x481b,0x1c}, //default 0x3c prepare
{0x4826,0x12}, //default 0x32 trail
{0x4d00,0x04}, // ; temperature monitor
{0x4d01,0x42}, // ; temperature monitor
{0x4d02,0xd1}, // ; temperature monitor
{0x4d03,0x90}, // ; temperature monitor
{0x4d04,0x66}, // ; temperature monitor
{0x4d05,0x65}, // ; temperature monitor
{0x5000,0x0e}, // ; windowing enable, BPC on, WPC on, Lenc on
{0x5001,0x03}, // ; BLC enable, MWB on
{0x5002,0x07}, //
{0x5013,0x40},
{0x501c,0x00},
{0x501d,0x10},
{0x5242,0x00},
{0x5243,0xb8},
{0x5244,0x00},
{0x5245,0xf9},
{0x5246,0x00},
{0x5247,0xf6},
{0x5248,0x00},
{0x5249,0xa6},
{0x5300,0xfc},
{0x5301,0xdf},
{0x5302,0x3f},
{0x5303,0x08},
{0x5304,0x0c},
{0x5305,0x10},
{0x5306,0x20},
{0x5307,0x40},
{0x5308,0x08},
{0x5309,0x08},
{0x530a,0x02},
{0x530b,0x01},
{0x530c,0x01},
{0x530d,0x0c},
{0x530e,0x02},
{0x530f,0x01},
{0x5310,0x01},
{0x5400,0x00},
{0x5401,0x61},
{0x5402,0x00},
{0x5403,0x00},
{0x5404,0x00},
{0x5405,0x40},
{0x540c,0x05},
{0x5b00,0x00},
{0x5b01,0x00},
{0x5b02,0x01},
{0x5b03,0xff},
{0x5b04,0x02},
{0x5b05,0x6c},
{0x5b09,0x02}, //
{0x5e00,0x00}, // ; test pattern disable
{0x5e10,0x1c}, // ; ISP test disable
{0x3813,0x04}, //; V win off
{0x3814,0x11}, //; H inc
{0x3815,0x11}, //; V inc
{0x3820,0x00}, //; V flip off, V bin off
{0x3821,0x04}, //; H mirror on, H bin off
{0x3836,0x04},
{0x3837,0x01},
{0x4837,0x0a},// ; MIPI global timing
{0x4826,0x12}, //default 0x32 trail
{0x5401,0x71},//
{0x5405,0x80},//
{0x3612,0x07},
{0x0300,0x00},
{0x0301,0x00},
{0x0302,0x20},//8},//28 OK!},//1e},
{0x0303,0x00},
{0x4837,0x0d},//8},//13},
{0x370a,0x24},//
{0x372a,0x04},//
{0x372f,0xa0},//
{0x3800,0x01},//0}, // ; H crop start H
{0x3801,0x4c},//CC}, // ; H crop start L
{0x3802,0x02},//1}, // ; V crop start H
{0x3803,0x8C}, // ; V crop start L
{0x3804,0x10},//0F}, // ; H crop end H
{0x3805,0x53},//D3}, // ; H crop end L
{0x3806,0x0B},//A}, // ; V crop end H
{0x3807,0x03}, // ; V crop end L
{0x3808,0x0F}, // ; H output size H
{0x3809,0x0 }, // ; H output size L
{0x380A,0x08},
{0x380B,0x70},
{0x380C,0x1a},
{0x380D,0x90},
{0x380E,0x0b},
{0x380F,0xb0},
{0x3810,0x00},
{0x3811,0x04},
{0x3812,0x00},
{0x3813,0x04},
{0x3836,0x04},
{0x3837,0x01},
{0x4020,0x0 },
{0x4021,0xE6},
{0x4022,0xE },
{0x4023,0x1E},
{0x4024,0xF },
{0x4025,0x0 },
{0x4026,0xF },
{0x4027,0x6 },
{0x0100,0x01},
};
static struct regval_list sensor_1080p_regs[] = {
//;XVCLK=24Mhz, SCLK=4x120Mhz, MIPI 640Mbps, DACCLK=240Mhz
/*
* using quarter size to scale down
*/
{0x0103,0x01}, // ; software reset
{0x0300,0x01}, //; PLL
{0x0301,0x00}, //; PLL
{0x0302,0x28}, //; PLL
{0x0303,0x00}, // ; PLL
{0x030a,0x00}, // ; PLL
//{0xffff, 20},
{0x300f,0x11}, // ; MIPI 10-bit mode
{0x3010,0x01}, // ; MIPI PHY
{0x3011,0x76}, // ; MIPI PHY
{0x3012,0x41}, // ; MIPI 4 lane
{0x3013,0x12}, // ; MIPI control
{0x3014,0x11}, // ; MIPI control
{0x301f,0x03}, //
{0x3106,0x00}, //
{0x3210,0x47}, //
{0x3500,0x00}, // ; exposure HH
{0x3501,0x67}, // ; exposure H
{0x3502,0x80}, // ; exposure L
{0x3506,0x00}, // ; short exposure HH
{0x3507,0x02}, // ; short exposure H
{0x3508,0x00}, // ; shour exposure L
{0x3509,0x10},//00},//8},
{0x350a,0x00}, // ; gain H
{0x350b,0x10}, // ; gain L
{0x350e,0x00}, // ; short gain H
{0x350f,0x10}, // ; short gain L
{0x3600,0x40}, // ; analog control
{0x3601,0xfc}, // ; analog control
{0x3602,0x02}, // ; analog control
{0x3603,0x48}, // ; analog control
{0x3604,0xa5}, // ; analog control
{0x3605,0x9f}, // ; analog control
{0x3607,0x00}, // ; analog control
{0x360a,0x40}, // ; analog control
{0x360b,0x91}, // ; analog control
{0x360c,0x49}, // ; analog control
{0x360f,0x8a}, //
{0x3611,0x10}, // ; PLL2
//{0x3612,0x23}, // ; PLL2
{0x3612,0x13}, // ; PLL2
//{0x3613,0x33}, // ; PLL2
{0x3613,0x22}, // ; PLL2
//{0xffff, 50},
{0x3615,0x08}, //
{0x3641,0x02},
{0x3660,0x82},
{0x3668,0x54},
{0x3669,0x40},
{0x3667,0xa0},
{0x3702,0x40},
{0x3703,0x44},
{0x3704,0x2c},
{0x3705,0x24},
{0x3706,0x50},
{0x3707,0x44},
{0x3708,0x3c},
{0x3709,0x1f},
{0x370a,0x26},
{0x370b,0x3c},
{0x3720,0x66},
{0x3722,0x84},
{0x3728,0x40},
{0x372a,0x00},
{0x372f,0x90},
{0x3710,0x28},
{0x3716,0x03},
{0x3718,0x10},
{0x3719,0x08},
{0x371c,0xfc},
{0x3760,0x13},
{0x3761,0x34},
{0x3767,0x24},
{0x3768,0x06},
{0x3769,0x45},
{0x376c,0x23},
{0x3d84,0x00}, // ; OTP program disable
{0x3d85,0x17}, // ; OTP power up load data enable, power load setting enable, software load setting
{0x3d8c,0x73}, // ; OTP start address H
{0x3d8d,0xbf}, // ; OTP start address L
{0x3800,0x00}, // ; H crop start H
{0x3801,0x08}, // ; H crop start L
{0x3802,0x00}, // ; V crop start H
{0x3803,0x04}, // ; V crop start L
{0x3804,0x10}, // ; H crop end H
{0x3805,0x97}, // ; H crop end L
{0x3806,0x0c}, // ; V crop end H
{0x3807,0x4b}, // ; V crop end L
{0x3808,0x08}, // ; H output size H
{0x3809,0x40}, // ; H output size L
{0x380a,0x06}, // ; V output size H
{0x380b,0x20}, // ; V output size L
{0x380c,0x25}, // ; HTS H
{0x380d,0x80}, // ; HTS L
{0x380e,0x06}, // ; VTS H
{0x380f,0x80}, // ; VTS L
{0x3810,0x00}, // ; H win off H
{0x3811,0x04}, // ; H win off L
{0x3812,0x00}, // ; V win off H
{0x3813,0x02}, // ; V win off L
{0x3814,0x31}, // ; H inc
{0x3815,0x31}, // ; V inc
{0x3820,0x02}, // ; V flip off, V bin on
{0x3821,0x05}, // ; H mirror on, H bin on
{0x3834,0x00}, //
{0x3835,0x1c}, // ; cut_en, vts_auto, blk_col_dis
{0x3836,0x08}, //
{0x3837,0x02}, //
{0x4000,0xf1},//c1}, // ; BLC offset trig en, format change trig en, gain trig en, exp trig en, median en
{0x4001,0x00}, // ; BLC
{0x400b,0x0c}, // ; BLC
{0x4011,0x00}, // ; BLC
{0x401a,0x00}, // ; BLC
{0x401b,0x00}, // ; BLC
{0x401c,0x00}, // ; BLC
{0x401d,0x00}, // ; BLC
{0x4020,0x00}, // ; BLC
{0x4021,0xe4}, // ; BLC
{0x4022,0x07}, // ; BLC
{0x4023,0x5f}, // ; BLC
{0x4024,0x08}, // ; BLC
{0x4025,0x44}, // ; BLC
{0x4026,0x08}, // ; BLC
{0x4027,0x47}, // ; BLC
{0x4028,0x00}, // ; BLC
{0x4029,0x02}, // ; BLC
{0x402a,0x04}, // ; BLC
{0x402b,0x08}, // ; BLC
{0x402c,0x02}, // ; BLC
{0x402d,0x02}, // ; BLC
{0x402e,0x0c}, // ; BLC
{0x402f,0x08}, // ; BLC
{0x403d,0x2c}, //
{0x403f,0x7f}, //
{0x4500,0x82}, // ; BLC
{0x4501,0x38}, // ; BLC
{0x4601,0x04}, //
{0x4602,0x22}, //
{0x4603,0x01}, //; VFIFO
{0x4837,0x19}, //; MIPI global timing
{0x4d00,0x04}, // ; temperature monitor
{0x4d01,0x42}, // ; temperature monitor
{0x4d02,0xd1}, // ; temperature monitor
{0x4d03,0x90}, // ; temperature monitor
{0x4d04,0x66}, // ; temperature monitor
{0x4d05,0x65}, // ; temperature monitor
{0x5000,0x0e}, // ; windowing enable, BPC on, WPC on, Lenc on
{0x5001,0x03}, // ; BLC enable, MWB on
{0x5002,0x07}, //
{0x5013,0x40},
{0x501c,0x00},
{0x501d,0x10},
//{0x5057,0x56},//add
{0x5056,0x08},
{0x5058,0x08},
{0x505a,0x08},
{0x5242,0x00},
{0x5243,0xb8},
{0x5244,0x00},
{0x5245,0xf9},
{0x5246,0x00},
{0x5247,0xf6},
{0x5248,0x00},
{0x5249,0xa6},
{0x5300,0xfc},
{0x5301,0xdf},
{0x5302,0x3f},
{0x5303,0x08},
{0x5304,0x0c},
{0x5305,0x10},
{0x5306,0x20},
{0x5307,0x40},
{0x5308,0x08},
{0x5309,0x08},
{0x530a,0x02},
{0x530b,0x01},
{0x530c,0x01},
{0x530d,0x0c},
{0x530e,0x02},
{0x530f,0x01},
{0x5310,0x01},
{0x5400,0x00},
{0x5401,0x61},
{0x5402,0x00},
{0x5403,0x00},
{0x5404,0x00},
{0x5405,0x40},
{0x540c,0x05},
{0x5b00,0x00},
{0x5b01,0x00},
{0x5b02,0x01},
{0x5b03,0xff},
{0x5b04,0x02},
{0x5b05,0x6c},
{0x5b09,0x02}, //
{0x5e00,0x00}, // ; test pattern disable
{0x5e10,0x1c}, // ; ISP test disable
{0x0300,0x01},// ; PLL
{0x0302,0x28},// ; PLL
{0xffff, 50},
{0x3501,0x67},// ; Exposure H
{0x370a,0x26},//
{0x372a,0x00},
{0x372f,0x90},
{0x3801,0x08}, //; H crop start L
{0x3803,0x04}, //; V crop start L
{0x3805,0x97}, //; H crop end L
{0x3807,0x4b}, //; V crop end L
{0x3808,0x08}, //; H output size H
{0x3809,0x40}, //; H output size L
{0x380a,0x06}, //; V output size H
{0x380b,0x20}, //; V output size L
{0x380c,0x25}, //; HTS H
{0x380d,0x80}, //; HTS L
{0x380e,0x0a},//6}, //; VTS H
{0x380f,0x80}, //; VTS L
{0x3813,0x02}, //; V win off
{0x3814,0x31}, //; H inc
{0x3815,0x31}, //; V inc
{0x3820,0x02}, //; V flip off, V bin on
{0x3821,0x05}, //; H mirror on, H bin on
{0x3836,0x08}, //
{0x3837,0x02}, //
{0x4020,0x00}, //
{0x4021,0xe4}, //
{0x4022,0x07}, //
{0x4023,0x5f}, //
{0x4024,0x08}, //
{0x4025,0x44}, //
{0x4026,0x08}, //
{0x4027,0x47}, //
{0x4603,0x01}, //; VFIFO
{0x4837,0x19}, //; MIPI global timing
{0x4802,0x42}, //default 0x00
{0x481a,0x00},
{0x481b,0x1c}, //default 0x3c prepare
{0x4826,0x12}, //default 0x32 trail
{0x5401,0x61}, //
{0x5405,0x40}, //
{0x0100,0x01}, //; wake up, streaming
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val,frame_length,shutter;
unsigned char explow=0,expmid=0,exphigh=0;
unsigned short gainlow=0,gainhigh=0;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
// printk("exp_val = %d,gain_val = %d %x%x\n",exp_val,gain_val, tmp3, tmp2);
if(exp_val>0xfffff)
exp_val=0xfffff;
//gain_val =256;
if(gain_val<1*16)
gain_val=16;
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0x3);
exp_val >>=4;
exphigh = (unsigned char) ( (0xffff&exp_val)>>12);
expmid = (unsigned char) ( (0xfff&exp_val)>>4);
explow = (unsigned char) ( (0x0f&exp_val)<<4 );
shutter = exp_val;
if(shutter > ov13850_sensor_vts - 6)
frame_length = shutter + 6;
else
frame_length = ov13850_sensor_vts;
sensor_write(sd, 0x3208, 0x00);//enter group write
sensor_write(sd, 0x380f, (frame_length & 0xff));
sensor_write(sd, 0x380e, (frame_length >> 8));
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
sensor_write(sd, 0x3208, 0x10);//end group write
sensor_write(sd, 0x3208, 0xa0);//init group write
info->gain = gain_val;
info->exp = exp_val;
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,expmid,exphigh;
struct sensor_info *info = to_state(sd);
if(exp_val>0xfffff)
exp_val=0xfffff;
exp_val >>=4;
exphigh = (unsigned char) ( (0xffff&exp_val)>>12);
expmid = (unsigned char) ( (0xfff&exp_val)>>4);
explow = (unsigned char) ( (0x0f&exp_val)<<4 );
sensor_write(sd, 0x3208, 0x00);//enter group write
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
// printk("ov13850 sensor_set_exp = %d\n", tmp);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow=0;
unsigned char gainhigh=0;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
vfe_dev_dbg("sensor_set_gain = %d\n", gain_val);
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0x3);
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
sensor_write(sd, 0x3208, 0x10);//end group write
sensor_write(sd, 0x3208, 0xa0);//init group write
//printk("ov13850 sensor_set_gain = %d, Done!\n", gain_val);
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0x0100, &rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_LOW)//sw stby on
{
ret=sensor_write(sd, 0x0100, rdval&0xfe);
}
else//sw stby off
{
ret=sensor_write(sd, 0x0100, rdval|0x01);
}
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
usleep_range(10000,12000);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
ret = sensor_s_sw_stby(sd, CSI_GPIO_HIGH);
if(ret < 0)
vfe_dev_err("soft stby off falied!\n");
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(1000,1200);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
usleep_range(10000,12000);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
usleep_range(10000,12000);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(30000,31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd,OFF);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_set_pmu_channel(sd,DVDD,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
usleep_range(10000,12000);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x300a, &rdval))
if(rdval != 0xD8)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x300b, &rdval))
if(rdval != 0x50)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
// info->width = 4608;
// info->height = 3456;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 15; /* 30fps */
ret = sensor_write_array(sd,sensor_default_regs, 0/*ARRAY_SIZE(sensor_default_regs)*/);
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SBGGR10_10X1,//V4L2_MBUS_FMT_SGRBG10_10X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
#if 1
/* Fullsize: 4208*3120 */
{
.width = 4208,
.height = 3120,
.hoffset = 0,
.voffset = 0,
.hts = 9600/16,
.vts = 3328-6,
.pclk = (637*1000*1000+800*1000)/16,
.mipi_bps = 850*1000*1000,
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (3328-6)<<4,
.gain_min = 20,
.gain_max = (16<<4)-1,
.regs = sensor_13mega_regs,
.regs_size = ARRAY_SIZE(sensor_13mega_regs),
.set_size = NULL,
},
#endif
#if 1
/*4k video*/
{
.width = 3840,
.height = 2160,
.hoffset = 0,
.voffset = 0,
.hts = 6800/16,
.vts = 2992,
.pclk = 468*1000*1000/16,
.mipi_bps = 850*1000*1000,
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 16,
.intg_max = 2992<<4,
.gain_min = 20,
.gain_max = (8<<4)-1,
.regs = sensor_4k_videos,
.regs_size = ARRAY_SIZE(sensor_4k_videos),
.set_size = NULL,
},
/* 2112*1568 */
{
.width = 1920,
.height = 1080,
.hoffset = (2112-1920)/2,
.voffset = (1568-1080)/2,
.hts = 9600/16,
.vts = 1664,
.pclk = 639*1000*1000/16,
.mipi_bps = 640*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 16,
.intg_max = 1664<<4,
.gain_min = 20,
.gain_max = (16<<4)-1,
.regs = sensor_1080p_regs,
.regs_size = ARRAY_SIZE(sensor_1080p_regs),
.set_size = NULL,
},
#endif
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
info->current_wins = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_4_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
//sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs));
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
ov13850_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
//sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
vfe_dev_print("s_fmt end\n");
usleep_range(100000,101000);
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 64*16-1, 1, 1*16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 0);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 120);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);