oleavr-rgl-a500-mini-linux-.../drivers/media/platform/sunxi-vfe/device/ov5648.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

1225 lines
29 KiB
C
Executable file

/*
* A V4L2 driver for OV5648 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("lwj");
MODULE_DESCRIPTION("A low-level driver for OV5648 sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 0
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[OV5648]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[OV5648]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[OV5648]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x5648
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The ov5648 sits on i2c with ID 0x6c
*/
#define I2C_ADDR 0x6c
#define SENSOR_NAME "ov5648"
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
//2lane initial
// Slave_ID=0x6c//
{0x0100, 0x00}, // Software Standy
{0x0103, 0x01}, // Software Reset
// delay(5ms)
{REG_DLY,0x05}, //must delay
{0x3001, 0x00}, // D[7:0] set to input
{0x3002, 0x00}, // D[11:8] set to input
{0x3011, 0x02}, // Drive strength 2x
{0x3013, 0x08}, //extend dvdd
{0x3018, 0x4c}, // MIPI 2 lane
{0x3022, 0x00},
{0x3034, 0x1a}, // 10-bit mode
{0x3035, 0x21}, // PLL
{0x3036, 0x69}, // PLL
{0x3037, 0x03}, // PLL
{0x3038, 0x00}, // PLL
{0x3039, 0x00}, // PLL
{0x303a, 0x00}, // PLLS
{0x303b, 0x19}, // PLLS
{0x303c, 0x11}, // PLLS
{0x303d, 0x30}, // PLLS
{0x3105, 0x11},
{0x3106, 0x05}, // PLL
{REG_DLY,0x05},
{0x3013, 0x08}, //disable internal regulator
{0x3304, 0x28},
{0x3305, 0x41},
{0x3306, 0x30},
{0x3308, 0x00},
{0x3309, 0xc8},
{0x330a, 0x01},
{0x330b, 0x90},
{0x330c, 0x02},
{0x330d, 0x58},
{0x330e, 0x03},
{0x330f, 0x20},
{0x3300, 0x00},
{0x3500, 0x00}, // exposure [19:16]
{0x3501, 0x3d}, // exposure [15:8]
{0x3502, 0x00}, // exposure [7:0], exposure = 0x3d0 = 976
{0x3503, 0x07}, // gain has no delay, manual agc/aec
{0x350a, 0x00}, // gain[9:8]
{0x350b, 0x40}, // gain[7:0], gain = 4x
{0x3601, 0x33}, // analog control
{0x3602, 0x00}, // analog control
{0x3611, 0x0e}, // analog control
{0x3612, 0x2b}, // analog control
{0x3614, 0x50}, // analog control
{0x3620, 0x33}, // analog control
{0x3622, 0x00}, // analog control
{0x3630, 0xad}, // analog control
{0x3631, 0x00}, // analog control
{0x3632, 0x94}, // analog control
{0x3633, 0x17}, // analog control
{0x3634, 0x14}, // analog control
{0x3704, 0xc0}, // analog control
{0x3705, 0x2a}, // analog control
{0x3708, 0x66}, // analog control
{0x3709, 0x52}, // analog control
{0x370b, 0x23}, // analog control
{0x370c, 0xc3}, // analog control
{0x370d, 0x00}, // analog control
{0x370e, 0x00}, // analog control
{0x371c, 0x07}, // analog control
{0x3739, 0xd2}, // analog control
{0x373c, 0x00},
{0x3800, 0x00}, // xstart = 0
{0x3801, 0x00}, // xstart
{0x3802, 0x00}, // ystart = 0
{0x3803, 0x00}, // ystart
{0x3804, 0x0a}, // xend = 2623
{0x3805, 0x3f}, // yend
{0x3806, 0x07}, // yend = 1955
{0x3807, 0xa3}, // yend
{0x3808, 0x05}, // x output size = 1296
{0x3809, 0x10}, // x output size
{0x380a, 0x03}, // y output size = 972
{0x380b, 0xcc}, // y output size
{0x380c, 0x0b}, // hts = 2816
{0x380d, 0x00}, // hts
{0x380e, 0x03}, // vts = 992
{0x380f, 0xe0}, // vts
{0x3810, 0x00}, // isp x win = 8
{0x3811, 0x08}, // isp x win
{0x3812, 0x00}, // isp y win = 4
{0x3813, 0x04}, // isp y win
{0x3814, 0x31}, // x inc
{0x3815, 0x31}, // y inc
{0x3817, 0x00}, // hsync start
{0x3820, 0x08}, // flip off, v bin off
{0x3821, 0x07}, // mirror on, h bin on
{0x3826, 0x03},
{0x3829, 0x00},
{0x382b, 0x0b},
{0x3830, 0x00},
{0x3836, 0x00},
{0x3837, 0x00},
{0x3838, 0x00},
{0x3839, 0x04},
{0x383a, 0x00},
{0x383b, 0x01},
{0x3b00, 0x00}, // strobe off
{0x3b02, 0x08}, // shutter delay
{0x3b03, 0x00}, // shutter delay
{0x3b04, 0x04}, // frex_exp
{0x3b05, 0x00}, // frex_exp
{0x3b06, 0x04},
{0x3b07, 0x08}, // frex inv
{0x3b08, 0x00}, // frex exp req
{0x3b09, 0x02}, // frex end option
{0x3b0a, 0x04}, // frex rst length
{0x3b0b, 0x00}, // frex strobe width
{0x3b0c, 0x3d}, // frex strobe width
{0x3f01, 0x0d},
{0x3f0f, 0xf5},
{0x4000, 0x89}, // blc enable
{0x4001, 0x02}, // blc start line
{0x4002, 0x45}, // blc auto, reset frame number = 5
{0x4004, 0x02}, // black line number
{0x4005, 0x18}, // blc normal freeze
{0x4006, 0x08},
{0x4007, 0x10},
{0x4008, 0x00},
{0x4300, 0xf8},
{0x4303, 0xff},
{0x4304, 0x00},
{0x4307, 0xff},
{0x4520, 0x00},
{0x4521, 0x00},
{0x4511, 0x22},
{0x4800, 0x14}, // MIPI line sync enable
{0x481f, 0x3c}, // MIPI clk prepare min
{0x4826, 0x00}, // MIPI hs prepare min
{0x4837, 0x18}, // MIPI global timing
{0x4b00, 0x06},
{0x4b01, 0x0a},
{0x5000, 0xff}, // bpc on, wpc on
{0x5001, 0x00}, // awb disable
{0x5002, 0x41}, // win enable, awb gain enable
{0x5003, 0x0a}, // buf en, bin auto en
{0x5004, 0x00}, // size man off
{0x5043, 0x00},
{0x5013, 0x00},
{0x501f, 0x03}, // ISP output data
{0x503d, 0x00}, // test pattern off
{0x5180, 0x08}, // manual wb gain on
{0x5a00, 0x08},
{0x5b00, 0x01},
{0x5b01, 0x40},
{0x5b02, 0x00},
{0x5b03, 0xf0},
{0x301a, 0xf0},
{0x0100, 0x01}, // wake up from software sleep
{0x4837, 0x17}, // MIPI global timing
};;
//for capture
static struct regval_list sensor_qsxga_regs[] = {
// 2592x1944 15fps 2 lane MIPI 420Mbps/lane
{0x0100, 0x00},
{0x3501, 0x7b}, // exposure
{0x2502, 0x00}, // exposure
{0x3708, 0x63},
{0x3709, 0x12},
{0x370c, 0xc0},
{0x3800, 0x00}, // xstart = 0
{0x3801, 0x00}, // xstart
{0x3802, 0x00}, // ystart = 0
{0x3803, 0x00}, // ystart
{0x3804, 0x0a}, // xend = 2623
{0x3805, 0x3f}, // xend
{0x3806, 0x07}, // yend = 1955
{0x3807, 0xa3}, // yend
{0x3808, 0x0a}, // x output size = 2592
{0x3809, 0x20}, // x output size
{0x380a, 0x07}, // y output size = 1944
{0x380b, 0x98}, // y output size
{0x380c, 0x0b}, // hts = 2816
{0x380d, 0x00}, // hts
{0x380e, 0x07}, // vts = 1984
{0x380f, 0xc0}, // vts
{0x3810, 0x00}, // isp x win = 16
{0x3811, 0x10}, // isp x win
{0x3812, 0x00}, // isp y win = 6
{0x3813, 0x06}, // isp y win
{0x3814, 0x11}, // x inc
{0x3815, 0x11}, // y inc
{0x3817, 0x00}, // hsync start
{0x3820, 0x40}, // flip off, v bin off
{0x3821, 0x06}, // mirror on, v bin off
{0x4004, 0x04}, // black line number
{0x4005, 0x1a}, // blc always update
{0x350b, 0x40}, // gain = 4x
{0x4837, 0x17}, // MIPI global timing
{0x0100, 0x01},
};
//for video
static struct regval_list sensor_1080p_regs[] = {
// 2592x1944 15fps 2 lane MIPI 420Mbps/lane
{0x0100, 0x00},
{0x3501, 0x7b}, // exposure
{0x2502, 0x00}, // exposure
{0x3708, 0x63},
{0x3709, 0x12},
{0x370c, 0xc0},
{0x3800, 0x00}, // xstart = 0
{0x3801, 0x00}, // xstart
{0x3802, 0x00}, // ystart = 0
{0x3803, 0x00}, // ystart
{0x3804, 0x0a}, // xend = 2623
{0x3805, 0x3f}, // xend
{0x3806, 0x07}, // yend = 1955
{0x3807, 0xa3}, // yend
{0x3808, 0x0a}, // x output size = 2592
{0x3809, 0x20}, // x output size
{0x380a, 0x07}, // y output size = 1944
{0x380b, 0x98}, // y output size
{0x380c, 0x0b}, // hts = 2816
{0x380d, 0x00}, // hts
{0x380e, 0x07}, // vts = 1984
{0x380f, 0xc0}, // vts
{0x3810, 0x00}, // isp x win = 16
{0x3811, 0x10}, // isp x win
{0x3812, 0x00}, // isp y win = 6
{0x3813, 0x06}, // isp y win
{0x3814, 0x11}, // x inc
{0x3815, 0x11}, // y inc
{0x3817, 0x00}, // hsync start
{0x3820, 0x40}, // flip off, v bin off
{0x3821, 0x06}, // mirror on, v bin off
{0x4004, 0x04}, // black line number
{0x4005, 0x1a}, // blc always update
{0x350b, 0x40}, // gain = 4x
{0x4837, 0x17}, // MIPI global timing
{0x0100, 0x01},
};
static struct regval_list sensor_sxga_regs[] = {
// 1296x972 30fps 2 lane MIPI 420Mbps/lane
{0x0100, 0x00},
{0x3501, 0x3d}, // exposure
{0x3502, 0x00}, // exposure
{0x3708, 0x66},
{0x3709, 0x52},
{0x370c, 0xcf},
{0x3800, 0x00}, // xstart = 0
{0x3801, 0x00}, // x start
{0x3802, 0x00}, // y start = 0
{0x3803, 0x00}, // y start
{0x3804, 0x0a}, // xend = 2623
{0x3805, 0x3f}, // xend
{0x3806, 0x07}, // yend = 1955
{0x3807, 0xa3}, // yend
{0x3808, 0x05}, // x output size = 1296
{0x3809, 0x10}, // x output size
{0x380a, 0x03}, // y output size = 972
{0x380b, 0xcc}, // y output size
{0x380c, 0x0b}, // preview_HTS = 2816
{0x380d, 0x00}, //
{0x380e, 0x03}, // preview_VTS = 992
{0x380f, 0xe0}, //
{0x3810, 0x00}, // isp x win = 8
{0x3811, 0x08}, // isp x win
{0x3812, 0x00}, // isp y win = 4
{0x3813, 0x04}, // isp y win
{0x3814, 0x31}, // x inc
{0x3815, 0x31}, // y inc
{0x3817, 0x00}, // hsync start
{0x3820, 0x08}, // flip off, v bin off
{0x3821, 0x07}, // mirror on, h bin on
{0x4004, 0x02}, // black line number
{0x4005, 0x18}, // blc level trigger
{0x350b, 0x80}, // gain = 8x
{0x4837, 0x17}, // MIPI global timing
{0x0100, 0x01},
};
static struct regval_list sensor_720p_regs[] = {
// 1280x720 30fps 2 lane MIPI 420Mbps/lane
{0x0100, 0x00},
{0x3501, 0x2d}, // exposure
{0x3502, 0xc0}, // exposure
{0x3708, 0x66},
{0x3709, 0x52},
{0x370c, 0xcf},
{0x3800, 0x00}, // xstart = 16
{0x3801, 0x10}, // xstart
{0x3802, 0x00}, // ystart = 254
{0x3803, 0xfe}, // ystart
{0x3804, 0x0a}, // xend = 2607
{0x3805, 0x2f}, // xend
{0x3806, 0x06}, // yend = 1701
{0x3807, 0xa5}, // yend
{0x3808, 0x05}, // x output size = 12280
{0x3809, 0x00}, // x output size
{0x380a, 0x02}, // y output size = 720
{0x380b, 0xd0}, // y output size
{0x380c, 0x0e}, // preview_HTS = 3780;
{0x380d, 0xc4}, //
{0x380e, 0x02}, // preview_VTS = 742;
{0x380f, 0xe6}, //
{0x3810, 0x00}, // isp x win = 8
{0x3811, 0x08}, // isp x win
{0x3812, 0x00}, // isp y win = 2
{0x3813, 0x02}, // isp y win
{0x3814, 0x31}, // x inc
{0x3815, 0x31}, // y inc
{0x3817, 0x00}, // hsync start
{0x3820, 0x08}, // flip off, v bin off
{0x3821, 0x07}, // mirror on, h bin on
{0x4004, 0x02}, // number of black line
{0x4005, 0x18}, // blc level trigger
{0x3b0b, 0x80}, // gain = 8x
{0x4837, 0x17}, // MIPI global timing
{0x0100, 0x01},
};
//static struct regval_list sensor_vga_regs[] = { //VGA: 640*480
//};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int ov5648_sensor_vts = 0;
static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val,shutter,frame_length;
unsigned char explow=0,expmid=0,exphigh=0;
unsigned char gainlow=0,gainhigh=0;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
if(exp_val>0xfffff)
exp_val=0xfffff;
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0x3);
exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16);
expmid = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) ( (0x0000ff&exp_val) );
shutter = exp_val/16;
if(shutter > ov5648_sensor_vts- 4)
frame_length = shutter + 4;
else
frame_length = ov5648_sensor_vts;
//printk("exp_val = %d,gain_val = %d\n",exp_val,gain_val);
sensor_write(sd, 0x3208, 0x00);//enter group write
sensor_write(sd, 0x3503, 0x07);
sensor_write(sd, 0x380f, (frame_length & 0xff));
sensor_write(sd, 0x380e, (frame_length >> 8));
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
sensor_write(sd, 0x3208, 0x10);//end group write
sensor_write(sd, 0x3208, 0xa0);//init group write
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow,expmid,exphigh;
struct sensor_info *info = to_state(sd);
if(exp_val>0xfffff)
exp_val=0xfffff;
// if(info->exp == exp_val && exp_val <= (1968)*16)
// return 0;
exphigh = (unsigned char) ( (0x0f0000&exp_val)>>16);
expmid = (unsigned char) ( (0x00ff00&exp_val)>>8);
explow = (unsigned char) ( (0x0000ff&exp_val) );
sensor_write(sd, 0x3208, 0x00);//enter group write
sensor_write(sd, 0x3502, explow);
sensor_write(sd, 0x3501, expmid);
sensor_write(sd, 0x3500, exphigh);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow=0;
unsigned char gainhigh=0;
if(gain_val<1*16)
gain_val=16;
if(gain_val>64*16-1)
gain_val=64*16-1;
gainlow=(unsigned char)(gain_val&0xff);
gainhigh=(unsigned char)((gain_val>>8)&0x3);
sensor_write(sd, 0x3503, 0x17);
sensor_write(sd, 0x350b, gainlow);
sensor_write(sd, 0x350a, gainhigh);
sensor_write(sd, 0x3208, 0x10);//end group write
sensor_write(sd, 0x3208, 0xa0);//init group write
printk("5648 sensor_set_gain = %d, Done!\n", gain_val);
info->gain = gain_val;
return 0;
}
static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
{
int ret;
data_type rdval;
ret=sensor_read(sd, 0x0100, &rdval);
if(ret!=0)
return ret;
if(on_off==CSI_GPIO_LOW)//sw stby on
{
ret=sensor_write(sd, 0x0100, rdval&0xfe);
}
else//sw stby off
{
ret=sensor_write(sd, 0x0100, rdval|0x01);
}
return ret;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
ret = sensor_s_sw_stby(sd, CSI_GPIO_LOW);
if(ret < 0)
vfe_dev_err("soft stby falied!\n");
mdelay(10);
cci_lock(sd);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd,OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
mdelay(10);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
mdelay(10);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);//set the gpio to output
vfe_gpio_set_status(sd,RESET,1);//set the gpio to output
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
mdelay(1);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd,IOVDD,ON);
vfe_set_pmu_channel(sd,AFVDD,ON);
vfe_set_pmu_channel(sd,AVDD,ON);
vfe_set_pmu_channel(sd,DVDD,ON);
mdelay(10);
vfe_gpio_write(sd,PWDN,CSI_GPIO_HIGH);
mdelay(5);
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
mdelay(10);
vfe_set_mclk_freq(sd,MCLK);
vfe_set_mclk(sd,ON);
mdelay(10);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
mdelay(5);
vfe_gpio_write(sd,PWDN,CSI_GPIO_LOW);
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
vfe_gpio_write(sd,POWER_EN,CSI_GPIO_LOW);
vfe_set_pmu_channel(sd,DVDD,OFF);
mdelay(1);
vfe_set_mclk(sd,OFF);
vfe_set_pmu_channel(sd,AVDD,OFF);
vfe_set_pmu_channel(sd,IOVDD,OFF);
vfe_set_pmu_channel(sd,AFVDD,OFF);
vfe_gpio_set_status(sd,RESET,0);//set the gpio to input
vfe_gpio_set_status(sd,PWDN,0);//set the gpio to input
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,CSI_GPIO_HIGH);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,CSI_GPIO_LOW);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x300a, &rdval))
if(rdval != 0x56)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x300b, &rdval))
if(rdval != 0x48)
return -ENODEV;
vfe_dev_dbg("!!!!!!!!!!!!sensor_detect\t%d\t\n", rdval);
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = 0;
info->height = 0;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 15; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,
info->current_wins,
sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = V4L2_MBUS_FMT_SBGGR10_10X1,//V4L2_MBUS_FMT_SGRBG10_10X1,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* quxga: 2592*1936 */
{
.width = QSXGA_WIDTH,
.height = QSXGA_HEIGHT,
.hoffset = 0,
.voffset = 4,
.hts = 2816,
.vts = 1984,
.pclk = 84*1000*1000,
.mipi_bps = 420*1000*1000,
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = (1984-4)<<4,
.gain_min = 1<<4,
.gain_max = (12<<4)-2,
.regs = sensor_qsxga_regs,
.regs_size = ARRAY_SIZE(sensor_qsxga_regs),
.set_size = NULL,
},
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 336, //(2592-1920)/2,
.voffset = 432, //(1944-1080)/2,
.hts = 2816,
.vts = 1984,
.pclk = 84*1000*1000,
.mipi_bps = 420*1000*1000,
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = (1984-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_1080p_regs,//
.regs_size = ARRAY_SIZE(sensor_1080p_regs),//
.set_size = NULL,
},
/* SXGA */
{
.width = SXGA_WIDTH,
.height = SXGA_HEIGHT,
.hoffset = 8, //(1296-1280)/2,
.voffset = 6, //(972-960)/2,
.hts = 2816,
.vts = 992,
.pclk = 84*1000*1000,
.mipi_bps = 420*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1,
.intg_max = (992-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_sxga_regs,
.regs_size = ARRAY_SIZE(sensor_sxga_regs),
.set_size = NULL,
},
/* 720p */
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3780,
.vts = 742,
.pclk = 84*1000*1000,
.mipi_bps = 420*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (742-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_720p_regs,//
.regs_size = ARRAY_SIZE(sensor_720p_regs),//
.set_size = NULL,
},
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.hoffset = 8, //(1296-1280)/2,
.voffset = 6, //(972-960)/2,
.hts = 2816,
.vts = 992,
.pclk = 84*1000*1000,
.mipi_bps = 420*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1,
.intg_max = (992-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.width_input = SXGA_WIDTH,
.height_input = SXGA_HEIGHT,
.regs = sensor_sxga_regs,
.regs_size = ARRAY_SIZE(sensor_sxga_regs),
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
//sensor_write_array(sd, sensor_oe_disable_regs, ARRAY_SIZE(sensor_oe_disable_regs));
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
//image
}
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
ov5648_sensor_vts = wsize->vts;
//vfe_dev_print("s_fmt = %d, width = %d, height = %d\n",sensor_fmt,wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
//video
} else {
//capture image
}
//sensor_write_array(sd, sensor_oe_enable_regs, ARRAY_SIZE(sensor_oe_enable_regs));
printk("s_fmt end\n");
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
/* see include/linux/videodev2.h for details */
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 32*16, 1, 16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 65535*16, 1, 0);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
vfe_dev_err("max gain qurery is %d,min gain qurey is %d\n",qc.maximum,qc.minimum);
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);