oleavr-rgl-a500-mini-linux-.../drivers/media/rc/sunxi-ir-dev.c
Ole André Vadla Ravnås 169c65d57e Initial commit
2022-05-07 01:01:45 +02:00

653 lines
17 KiB
C

/* Copyright (C) 2014 ALLWINNERTECH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/irq.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <media/rc-core.h>
#include <linux/arisc/arisc.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <asm/uaccess.h>
#include "sunxi-ir-rx.h"
#define SUNXI_IR_DRIVER_NAME "sunxi-rc-recv"
#define SUNXI_IR_DEVICE_NAME "sunxi-ir"
#define RC5_UNIT 889000 /* ns */
#define NEC 0
#define RC5 1
static struct proc_dir_entry *sunxi_ir_protocol;
static u32 threshold_low = RC5_UNIT + RC5_UNIT/2;
static u32 threshold_high = 2*RC5_UNIT + RC5_UNIT/2;
DEFINE_IR_RAW_EVENT(rawir);
static struct sunxi_ir_data *ir_data;
static struct rc_dev *sunxi_rcdev;
static u32 is_receiving = 0;
static bool pluse_pre = 0;
static char ir_dev_name[] = "s_cir_rx";
static int debug_mask = 0;
#define dprintk(level_mask, fmt, arg...) if (unlikely(debug_mask & level_mask)) \
printk(fmt , ## arg)
#define IR_BASE (ir_data->reg_base)
static inline u8 ir_get_data(void)
{
return (u8)(readl(IR_BASE + IR_RXDAT_REG) & 0xff);
}
static inline u32 ir_get_intsta(void)
{
return (readl(IR_BASE + IR_RXINTS_REG));
}
static inline void ir_clr_intsta(u32 bitmap)
{
u32 tmp = readl(IR_BASE + IR_RXINTS_REG);
tmp &= ~0xff;
tmp |= bitmap&0xff;
writel(tmp, IR_BASE + IR_RXINTS_REG);
}
#ifdef CONFIG_OF
/* Translate OpenFirmware node properties into platform_data */
static struct of_device_id sunxi_ir_recv_of_match[] = {
{ .compatible = "allwinner,s_cir", },
{ .compatible = "allwinner,ir", },
{ },
};
MODULE_DEVICE_TABLE(of, sunxi_ir_recv_of_match);
#else /* !CONFIG_OF */
#endif
static void sunxi_ir_recv(u32 reg_data)
{
bool pluse_now = 0;
u32 ir_duration = 0;
pluse_now = reg_data >> 7; /* get the polarity */
ir_duration = reg_data & 0x7f; /* get duration, number of clocks */
if (pluse_pre == pluse_now) {
/* the signal sunperposition */
rawir.duration += ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d\n", pluse_now, ir_duration);
} else {
if (ir_data->ir_protocol_used == RC5) {
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns\n",
rawir.pulse, rawir.duration);
if ((rawir.duration > threshold_low) &&
(rawir.duration < threshold_high)) {
rawir.duration = rawir.duration/2;
ir_raw_event_store(sunxi_rcdev, &rawir);
ir_raw_event_store(sunxi_rcdev, &rawir);
} else
ir_raw_event_store(sunxi_rcdev, &rawir);
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d\n", pluse_now, ir_duration);
}
if (ir_data->ir_protocol_used == NEC) {
if (is_receiving) {
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns\n",
rawir.pulse, rawir.duration);
ir_raw_event_store(sunxi_rcdev, &rawir);
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d\n", pluse_now, ir_duration);
} else {
/* get the first pluse signal */
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
/* Since IR hardware will cut Active Threshold time,
* So just add comeback */
rawir.duration += ((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1);
is_receiving = 1;
dprintk(DEBUG_INT, "get frist pulse,add head %d !!\n",
((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1));
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d\n",
pluse_now, ir_duration);
}
}
pluse_pre = pluse_now;
}
}
static irqreturn_t sunxi_ir_recv_irq(int irq, void *dev_id)
{
u32 intsta,dcnt;
u32 i = 0;
u32 reg_data;
dprintk(DEBUG_INT, "IR RX IRQ Serve\n");
intsta = ir_get_intsta();
ir_clr_intsta(intsta);
/* get ther count of signal */
dcnt = (intsta>>8) & 0x7f;
dprintk(DEBUG_INT, "receive cnt :%d \n", dcnt);
/* Read FIFO and fill the raw event */
for (i=0; i<dcnt; i++) {
/* get the data from fifo */
reg_data = ir_get_data();
sunxi_ir_recv(reg_data);
}
if (intsta & IR_RXINTS_RXPE){
if(rawir.duration){
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT,"pusle :%d, dur: %u ns\n",rawir.pulse,rawir.duration );
ir_raw_event_store(sunxi_rcdev, &rawir);
}
dprintk(DEBUG_INT, "handle raw data.\n");
/* handle ther decoder theread */
ir_raw_event_handle(sunxi_rcdev);
is_receiving = 0;
pluse_pre = false;
}
if (intsta & IR_RXINTS_RXOF) {
/* FIFO Overflow */
pr_err("ir_rx_irq_service: Rx FIFO Overflow!!\n");
is_receiving = 0;
pluse_pre = false;
}
return IRQ_HANDLED;
}
static void ir_mode_set(enum ir_mode set_mode)
{
u32 ctrl_reg = 0;
switch (set_mode) {
case CIR_MODE_ENABLE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_CIR_MODE;
break;
case IR_MODULE_ENABLE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_ENTIRE_ENABLE;
break;
case IR_BOTH_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_BOTH_PULSE;
break;
case IR_LOW_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_LOW_PULSE;
break;
case IR_HIGH_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_HIGH_PULSE;
break;
default:
pr_err("ir_mode_set error!!\n");
return;
}
writel(ctrl_reg, IR_BASE+IR_CTRL_REG);
}
static void ir_sample_config(enum ir_sample_config set_sample)
{
u32 sample_reg = 0;
sample_reg = readl(IR_BASE+IR_SPLCFG_REG);
switch (set_sample) {
case IR_SAMPLE_REG_CLEAR:
sample_reg = 0;
break;
case IR_CLK_SAMPLE:
sample_reg |= IR_SAMPLE_DEV;
break;
case IR_FILTER_TH_NEC:
sample_reg |= IR_RXFILT_VAL;
break;
case IR_FILTER_TH_RC5:
sample_reg |= IR_RXFILT_VAL_RC5;
case IR_IDLE_TH:
sample_reg |= IR_RXIDLE_VAL;
break;
case IR_ACTIVE_TH:
sample_reg |= IR_ACTIVE_T;
sample_reg |= IR_ACTIVE_T_C;
break;
case IR_ACTIVE_TH_SAMPLE:
sample_reg |= IR_ACTIVE_T_SAMPLE;
sample_reg &= ~IR_ACTIVE_T_C;
break;
default:
return;
}
writel(sample_reg, IR_BASE+IR_SPLCFG_REG);
}
static void ir_signal_invert(void)
{
u32 reg_value;
reg_value = 0x1<<2;
writel(reg_value, IR_BASE+IR_RXCFG_REG);
}
static void ir_irq_config(enum ir_irq_config set_irq)
{
u32 irq_reg = 0;
switch (set_irq) {
case IR_IRQ_STATUS_CLEAR:
writel(0xef, IR_BASE+IR_RXINTS_REG);
return;
case IR_IRQ_ENABLE:
irq_reg = readl(IR_BASE+IR_RXINTE_REG);
irq_reg |= IR_IRQ_STATUS;
break;
case IR_IRQ_FIFO_SIZE:
irq_reg = readl(IR_BASE+IR_RXINTE_REG);
irq_reg |= IR_FIFO_32;
break;
default:
return;
}
writel(irq_reg, IR_BASE+IR_RXINTE_REG);
}
static void ir_reg_cfg(void)
{
/* Enable IR Mode */
ir_mode_set(CIR_MODE_ENABLE);
/* Config IR Smaple Register */
ir_sample_config(IR_SAMPLE_REG_CLEAR);
ir_sample_config(IR_CLK_SAMPLE);
ir_sample_config(IR_IDLE_TH); /* Set Idle Threshold */
if (ir_data->ir_protocol_used == RC5) {
ir_sample_config(IR_ACTIVE_TH_SAMPLE); /* rc5 Set Active Threshold */
ir_sample_config(IR_FILTER_TH_RC5); /* Set Filter Threshold */
}
if (ir_data->ir_protocol_used == NEC) {
ir_sample_config(IR_ACTIVE_TH); /* Set Active Threshold */
ir_sample_config(IR_FILTER_TH_NEC); /* Set Filter Threshold */
}
/* Invert Input Signal */
ir_signal_invert();
/* Clear All Rx Interrupt Status */
ir_irq_config(IR_IRQ_STATUS_CLEAR);
/* Set Rx Interrupt Enable */
ir_irq_config(IR_IRQ_ENABLE);
ir_irq_config(IR_IRQ_FIFO_SIZE); /* Rx FIFO Threshold = FIFOsz/2; */
ir_mode_set(IR_BOTH_PULSE_MODE);
/* Enable IR Module */
ir_mode_set(IR_MODULE_ENABLE);
return;
}
static void ir_clk_cfg(void)
{
unsigned long rate = 0;
rate = clk_get_rate(ir_data->pclk);
dprintk(DEBUG_INIT, "%s: get ir_clk_source rate %dHZ\n", __func__, (__u32)rate);
if(clk_set_parent(ir_data->mclk, ir_data->pclk))
pr_err("%s: set ir_clk parent to ir_clk_source failed!\n", __func__);
if (clk_set_rate(ir_data->mclk, IR_CLK)) {
pr_err("set ir clock freq to 4M failed!\n");
}
rate = clk_get_rate(ir_data->mclk);
dprintk(DEBUG_INIT, "%s: get ir_clk rate %dHZ\n", __func__, (__u32)rate);
if (clk_prepare_enable(ir_data->mclk)) {
pr_err("try to enable ir_clk failed!\n");
}
return;
}
static void ir_clk_uncfg(void)
{
if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
pr_err("ir_clk handle is invalid, just return!\n");
return;
} else {
clk_disable_unprepare(ir_data->mclk);
clk_put(ir_data->mclk);
ir_data->mclk = NULL;
}
if(NULL == ir_data->pclk || IS_ERR(ir_data->pclk)) {
pr_err("ir_clk_source handle is invalid, just return!\n");
return;
} else {
clk_put(ir_data->pclk);
ir_data->pclk = NULL;
}
return;
}
static void ir_setup(void)
{
dprintk(DEBUG_INIT, "ir_rx_setup: ir setup start!!\n");
ir_clk_cfg();
ir_reg_cfg();
dprintk(DEBUG_INIT, "ir_rx_setup: ir setup end!!\n");
return;
}
static ssize_t sunxi_ir_protocol_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
if (size != sizeof(unsigned int)) {
dprintk(DEBUG_INIT, "size != sizeof(unsigned int) \n");
return -1;
}
if (copy_to_user((void __user *)buf, &ir_data->ir_protocol_used, size))
return -1;
return size;
}
static const struct file_operations sunxi_ir_proc_fops = {
.read = sunxi_ir_protocol_read,
};
static bool ir_protocol_judge(void)
{
dprintk(DEBUG_INIT, "sunxi ir_protocol_judge\n");
sunxi_ir_protocol = proc_create("sunxi_ir_protocol", S_IRUSR, NULL, &sunxi_ir_proc_fops);
if (!sunxi_ir_protocol)
return true;
return false;
}
static int sunxi_ir_startup(struct platform_device *pdev)
{
struct device_node *np =NULL;
int i = 0, ret = 0;
char addr_name[32];
const char *name = NULL;
ir_data = kzalloc(sizeof(*ir_data), GFP_KERNEL);
if (IS_ERR_OR_NULL(ir_data)) {
pr_err("ir_data: not enough memory for ir data\n");
return -ENOMEM;
}
np = pdev->dev.of_node;
ir_data->reg_base= of_iomap(np, 0);
if (NULL == ir_data->reg_base) {
pr_err("%s:Failed to ioremap() io memory region.\n",__func__);
ret = -EBUSY;
}else
dprintk(DEBUG_INIT, "ir base: %p !\n",ir_data->reg_base);
ir_data->irq_num= irq_of_parse_and_map(np, 0);
if (0 == ir_data->irq_num) {
pr_err("%s:Failed to map irq.\n", __func__);
ret = -EBUSY;
}else
dprintk(DEBUG_INIT, "ir irq num: %d !\n",ir_data->irq_num);
ir_data->pclk = of_clk_get(np, 0);
ir_data->mclk = of_clk_get(np, 1);
if (NULL==ir_data->pclk||IS_ERR(ir_data->pclk)
||NULL==ir_data->mclk||IS_ERR(ir_data->mclk)) {
pr_err("%s:Failed to get clk.\n", __func__);
ret = -EBUSY;
}
if (of_property_read_u32(np, "ir_protocol_used", &ir_data->ir_protocol_used)) {
dprintk(DEBUG_INIT, "Can not get ir_protocol_used node , defualt to NEC\n");
ir_data->ir_protocol_used = NEC;
}
if (ir_data->ir_protocol_used == NEC) {
for (i = 0; i < MAX_ADDR_NUM; i++) {
sprintf(addr_name, "ir_addr_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_addr[i])) {
pr_err("node %s get failed!\n", addr_name);
break;
}
}
ir_data->ir_addr_cnt = i;
for (i = 0; i < ir_data->ir_addr_cnt; i++) {
sprintf(addr_name, "ir_power_key_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_powerkey[i])) {
pr_err("node %s get failed!\n", addr_name);
break;
}
}
} else if (ir_data->ir_protocol_used == RC5) {
for (i = 0; i < MAX_ADDR_NUM; i++) {
sprintf(addr_name, "rc5_ir_addr_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_addr[i])) {
pr_err("node %s get failed!\n", addr_name);
break;
}
}
ir_data->ir_addr_cnt = i;
for (i = 0; i < ir_data->ir_addr_cnt; i++) {
sprintf(addr_name, "rc5_ir_power_key_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_powerkey[i])) {
pr_err("node %s get failed!\n", addr_name);
break;
}
}
}
if (of_property_read_u32(np, "supply_vol", &ir_data->suply_vol)) {
pr_err("%s: get cir supply_vol failed", __func__);
}
if (of_property_read_string(np, "supply", &name)) {
pr_err("%s: cir have no power supply\n", __func__);
ir_data->suply = NULL;
} else {
ir_data->suply = regulator_get(NULL, name);
if(IS_ERR(ir_data->suply)){
pr_err("%s: cir get supply err\n", __func__);
ir_data->suply = NULL;
}
}
/* Creat file node for android to show which protocol to used. */
if (ir_protocol_judge()) {
pr_err("%s: Failed to creat file node for android.\n", __func__);
}
return ret;
}
static int sunxi_ir_recv_probe(struct platform_device *pdev)
{
int rc = 0;
dprintk(DEBUG_INIT, "sunxi-ir probe start !\n");
if (pdev->dev.of_node) {
/* get dt and sysconfig */
rc = sunxi_ir_startup(pdev);
}else{
pr_err("sunxi ir device tree err!\n");
return -EBUSY;
}
if (rc < 0) {
goto err_allocate_device;
}
sunxi_rcdev = rc_allocate_device();
if (!sunxi_rcdev) {
rc = -ENOMEM;
pr_err("rc dev allocate fail !\n");
goto err_allocate_device;
}
sunxi_rcdev->driver_type = RC_DRIVER_IR_RAW;
sunxi_rcdev->input_name = SUNXI_IR_DEVICE_NAME;
sunxi_rcdev->input_phys = SUNXI_IR_DEVICE_NAME "/input0";
sunxi_rcdev->input_id.bustype = BUS_HOST;
sunxi_rcdev->input_id.vendor = 0x0001;
sunxi_rcdev->input_id.product = 0x0001;
sunxi_rcdev->input_id.version = 0x0100;
sunxi_rcdev->dev.parent = &pdev->dev;
sunxi_rcdev->driver_name = SUNXI_IR_DRIVER_NAME;
if (ir_data->ir_protocol_used == RC5) {
sunxi_rcdev->allowed_protos = (u64)RC_BIT_RC5;
} else{
sunxi_rcdev->allowed_protos = (u64)RC_BIT_NEC;
}
sunxi_rcdev->map_name = RC_MAP_SUNXI;
init_rc_map_sunxi(ir_data->ir_addr, ir_data->ir_addr_cnt);
rc = rc_register_device(sunxi_rcdev);
if (rc < 0) {
dev_err(&pdev->dev, "failed to register rc device\n");
goto err_register_rc_device;
}
sunxi_rcdev->enabled_protocols = sunxi_rcdev->allowed_protos;;
sunxi_rcdev->input_dev->dev.init_name = &ir_dev_name[0];
if (0 != rc) {
pr_err("%s: config ir rx pin err.\n", __func__);
goto err_platfrom_device;
}
platform_set_drvdata(pdev, sunxi_rcdev);
ir_data->rcdev = sunxi_rcdev;
if(ir_data->suply){
rc = regulator_set_voltage(ir_data->suply, ir_data->suply_vol, ir_data->suply_vol);
rc |= regulator_enable(ir_data->suply);
}
ir_setup();
if (request_irq(ir_data->irq_num, sunxi_ir_recv_irq, IRQF_DISABLED, "RemoteIR_RX",
sunxi_rcdev)) {
pr_err("%s: request irq fail.\n", __func__);
rc = -EBUSY;
goto err_request_irq;
}
/* enable here */
dprintk(DEBUG_INIT, "ir probe end!\n");
return 0;
err_request_irq:
platform_set_drvdata(pdev, NULL);
rc_unregister_device(sunxi_rcdev);
sunxi_rcdev = NULL;
ir_clk_uncfg();
if(ir_data->suply){
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
err_platfrom_device:
exit_rc_map_sunxi();
err_register_rc_device:
rc_free_device(sunxi_rcdev);
err_allocate_device:
if(ir_data)
kfree(ir_data);
return rc;
}
static int sunxi_ir_recv_remove(struct platform_device *pdev)
{
free_irq(ir_data->irq_num, sunxi_rcdev);
ir_clk_uncfg();
platform_set_drvdata(pdev, NULL);
if(ir_data->suply){
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
rc_unregister_device(sunxi_rcdev);
exit_rc_map_sunxi();
if(ir_data)
kfree(ir_data);
proc_remove(sunxi_ir_protocol);
return 0;
}
#ifdef CONFIG_PM
static int sunxi_ir_recv_suspend(struct device *dev)
{
dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_suspend. \n");
disable_irq_nosync(ir_data->irq_num);
if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
pr_err("ir_clk handle is invalid, just return!\n");
return -1;
} else {
clk_disable_unprepare(ir_data->mclk);
}
return 0;
}
static int sunxi_ir_recv_resume(struct device *dev)
{
int wakeup_event = 0;
dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_resume. \n");
#if defined(CONFIG_SUNXI_ARISC)
arisc_query_wakeup_source(&wakeup_event);
#endif
if (wakeup_event & CPUS_WAKEUP_IR) {
rc_keydown(sunxi_rcdev, (ir_data->ir_addr[0] << 8) | ir_data->ir_powerkey[0], 0);
msleep(1);
rc_keyup(sunxi_rcdev);
}
if (wakeup_event & CPUS_WAKEUP_HDMI_CEC) {
pr_debug("wakeup source is hdmi_cec_standby\n");
rc_keydown(sunxi_rcdev, (ir_data->ir_addr[0] << 8) | ir_data->ir_powerkey[0], 0);
msleep(1);
rc_keyup(sunxi_rcdev);
}
clk_prepare_enable(ir_data->mclk);
ir_reg_cfg();
enable_irq(ir_data->irq_num);
return 0;
}
static const struct dev_pm_ops sunxi_ir_recv_pm_ops = {
.suspend = sunxi_ir_recv_suspend,
.resume = sunxi_ir_recv_resume,
};
#endif
static struct platform_driver sunxi_ir_recv_driver = {
.probe = sunxi_ir_recv_probe,
.remove = sunxi_ir_recv_remove,
.driver = {
.name = SUNXI_IR_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sunxi_ir_recv_of_match),
#ifdef CONFIG_PM
.pm = &sunxi_ir_recv_pm_ops,
#endif
},
};
module_platform_driver(sunxi_ir_recv_driver);
module_param_named(debug_mask, debug_mask, int, 0644);
MODULE_DESCRIPTION("SUNXI IR Receiver driver");
MODULE_AUTHOR("QIn");
MODULE_LICENSE("GPL v2");