2014-09-13 15:13:34 +02:00
// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
# include <string.h>
# include <algorithm>
2015-05-13 22:28:02 +02:00
# include "profiler/profiler.h"
2015-02-25 19:24:12 -08:00
# include "Common/CPUDetect.h"
2016-10-12 17:32:52 +02:00
# include "Common/MemoryUtil.h"
2014-09-13 15:13:34 +02:00
# include "Core/Config.h"
2018-06-28 19:47:33 -07:00
# include "GPU/Common/GPUStateUtils.h"
2014-09-13 15:13:34 +02:00
# include "GPU/Common/SplineCommon.h"
2015-04-08 21:44:54 +02:00
# include "GPU/Common/DrawEngineCommon.h"
2014-09-13 15:13:34 +02:00
# include "GPU/ge_constants.h"
2015-07-29 12:04:52 +02:00
# include "GPU/GPUState.h" // only needed for UVScale stuff
2014-09-13 15:13:34 +02:00
2014-12-14 01:08:00 +09:00
static void CopyQuadIndex ( u16 * & indices , GEPatchPrimType type , const int idx0 , const int idx1 , const int idx2 , const int idx3 ) {
if ( type = = GE_PATCHPRIM_LINES ) {
* ( indices + + ) = idx0 ;
* ( indices + + ) = idx2 ;
* ( indices + + ) = idx1 ;
* ( indices + + ) = idx3 ;
* ( indices + + ) = idx1 ;
* ( indices + + ) = idx2 ;
2018-01-30 17:42:41 +09:00
} else {
2014-12-14 01:08:00 +09:00
* ( indices + + ) = idx0 ;
* ( indices + + ) = idx2 ;
* ( indices + + ) = idx1 ;
* ( indices + + ) = idx1 ;
* ( indices + + ) = idx2 ;
* ( indices + + ) = idx3 ;
}
}
2018-01-30 17:42:41 +09:00
static void BuildIndex ( u16 * indices , int & count , int num_u , int num_v , GEPatchPrimType prim_type , int total = 0 ) {
for ( int v = 0 ; v < num_v ; + + v ) {
for ( int u = 0 ; u < num_u ; + + u ) {
int idx0 = v * ( num_u + 1 ) + u + total ; // Top left
int idx2 = ( v + 1 ) * ( num_u + 1 ) + u + total ; // Bottom left
CopyQuadIndex ( indices , prim_type , idx0 , idx0 + 1 , idx2 , idx2 + 1 ) ;
count + = 6 ;
}
}
}
2014-09-13 15:13:34 +02:00
2018-01-31 20:18:47 +09:00
struct Weight {
float weights [ 4 ] , derivs [ 4 ] ;
} ;
2014-09-13 15:13:34 +02:00
2018-01-31 20:18:47 +09:00
class Bezier3DWeight {
private :
void CalcWeights ( float t , Weight & w ) {
// Bernstein 3D basis polynomial
w . weights [ 0 ] = ( 1 - t ) * ( 1 - t ) * ( 1 - t ) ;
w . weights [ 1 ] = 3 * t * ( 1 - t ) * ( 1 - t ) ;
w . weights [ 2 ] = 3 * t * t * ( 1 - t ) ;
w . weights [ 3 ] = t * t * t ;
// Derivative
w . derivs [ 0 ] = - 3 * ( 1 - t ) * ( 1 - t ) ;
w . derivs [ 1 ] = 9 * t * t - 12 * t + 3 ;
w . derivs [ 2 ] = 3 * ( 2 - 3 * t ) * t ;
w . derivs [ 3 ] = 3 * t * t ;
}
public :
2018-01-31 21:42:39 +09:00
Weight * CalcWeightsAll ( u32 key ) {
int tess = ( int ) key ;
2018-01-31 20:18:47 +09:00
Weight * weights = new Weight [ tess + 1 ] ;
const float inv_u = 1.0f / ( float ) tess ;
for ( int i = 0 ; i < tess + 1 ; + + i ) {
const float t = ( float ) i * inv_u ;
CalcWeights ( t , weights [ i ] ) ;
}
return weights ;
}
} ;
2014-09-13 15:13:34 +02:00
2018-01-31 20:59:41 +09:00
class Spline3DWeight {
private :
struct KnotDiv {
float _3_0 = 1.0f / 3.0f ;
float _4_1 = 1.0f / 3.0f ;
float _5_2 = 1.0f / 3.0f ;
float _3_1 = 1.0f / 2.0f ;
float _4_2 = 1.0f / 2.0f ;
float _3_2 = 1.0f ; // Always 1
} ;
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void CalcKnots ( int n , int type , float * knots , KnotDiv * divs ) {
// Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0)
// for (int i = 0; i < n + 5; ++i) {
for ( int i = 0 ; i < n + 2 ; + + i ) {
knots [ i ] = ( float ) i - 2 ;
}
2018-01-31 20:25:07 +09:00
2018-01-31 20:59:41 +09:00
// The first edge is open
if ( ( type & 1 ) ! = 0 ) {
knots [ 0 ] = 0 ;
knots [ 1 ] = 0 ;
2018-01-31 20:25:07 +09:00
2018-01-31 20:59:41 +09:00
divs [ 0 ] . _3_0 = 1.0f ;
divs [ 0 ] . _4_1 = 1.0f / 2.0f ;
divs [ 0 ] . _3_1 = 1.0f ;
if ( n > 1 )
divs [ 1 ] . _3_0 = 1.0f / 2.0f ;
}
// The last edge is open
if ( ( type & 2 ) ! = 0 ) {
// knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv
divs [ n - 1 ] . _4_1 = 1.0f / 2.0f ;
divs [ n - 1 ] . _5_2 = 1.0f ;
divs [ n - 1 ] . _4_2 = 1.0f ;
if ( n > 1 )
divs [ n - 2 ] . _5_2 = 1.0f / 2.0f ;
}
2018-01-31 20:25:07 +09:00
}
2018-01-31 20:59:41 +09:00
void CalcWeights ( float t , const float * knots , const KnotDiv & div , Weight & w ) {
2015-02-25 19:51:10 -08:00
# ifdef _M_SSE
2018-01-31 20:59:41 +09:00
const __m128 knot012 = _mm_loadu_ps ( knots ) ;
const __m128 t012 = _mm_sub_ps ( _mm_set_ps1 ( t ) , knot012 ) ;
const __m128 f30_41_52 = _mm_mul_ps ( t012 , _mm_loadu_ps ( & div . _3_0 ) ) ;
const __m128 f52_31_42 = _mm_mul_ps ( t012 , _mm_loadu_ps ( & div . _5_2 ) ) ;
const float & f32 = t012 . m128_f32 [ 2 ] ;
// Following comments are for explains order of the multiply.
// float a = (1-f30)*(1-f31);
// float c = (1-f41)*(1-f42);
// float b = ( f31 * f41);
// float d = ( f42 * f52);
const __m128 f30_41_31_42 = _mm_shuffle_ps ( f30_41_52 , f52_31_42 , _MM_SHUFFLE ( 2 , 1 , 1 , 0 ) ) ;
const __m128 f31_42_41_52 = _mm_shuffle_ps ( f52_31_42 , f30_41_52 , _MM_SHUFFLE ( 2 , 1 , 2 , 1 ) ) ;
const __m128 c1_1_0_0 = { 1 , 1 , 0 , 0 } ;
const __m128 acbd = _mm_mul_ps ( _mm_sub_ps ( c1_1_0_0 , f30_41_31_42 ) , _mm_sub_ps ( c1_1_0_0 , f31_42_41_52 ) ) ;
const float & a = acbd . m128_f32 [ 0 ] ;
const float & b = acbd . m128_f32 [ 2 ] ;
const float & c = acbd . m128_f32 [ 1 ] ;
const float & d = acbd . m128_f32 [ 3 ] ;
// For derivative
const float & f31 = f30_41_31_42 . m128_f32 [ 2 ] ;
const float & f42 = f30_41_31_42 . m128_f32 [ 3 ] ;
2015-02-25 19:51:10 -08:00
# else
2018-01-31 20:59:41 +09:00
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
float t0 = ( t - knots [ 0 ] ) ;
float t1 = ( t - knots [ 1 ] ) ;
float t2 = ( t - knots [ 2 ] ) ;
float f30 = t0 * div . _3_0 ;
float f41 = t1 * div . _4_1 ;
float f52 = t2 * div . _5_2 ;
float f31 = t1 * div . _3_1 ;
float f42 = t2 * div . _4_2 ;
float f32 = t2 * div . _3_2 ;
float a = ( 1 - f30 ) * ( 1 - f31 ) ;
float b = ( f31 * f41 ) ;
float c = ( 1 - f41 ) * ( 1 - f42 ) ;
float d = ( f42 * f52 ) ;
2018-01-29 18:25:38 +09:00
# endif
2018-01-31 20:59:41 +09:00
w . weights [ 0 ] = a * ( 1 - f32 ) ; // (1-f30)*(1-f31)*(1-f32)
w . weights [ 1 ] = 1 - a - b + ( ( a + b + c - 1 ) * f32 ) ;
w . weights [ 2 ] = b + ( ( 1 - b - c - d ) * f32 ) ;
w . weights [ 3 ] = d * f32 ; // f32*f42*f52
2014-09-13 15:13:34 +02:00
2018-01-31 20:59:41 +09:00
// Derivative
float i1 = ( 1 - f31 ) * ( 1 - f32 ) ;
float i2 = f31 * ( 1 - f32 ) + ( 1 - f42 ) * f32 ;
float i3 = f42 * f32 ;
float f130 = i1 * div . _3_0 ;
float f241 = i2 * div . _4_1 ;
float f352 = i3 * div . _5_2 ;
w . derivs [ 0 ] = 3 * ( 0 - f130 ) ;
w . derivs [ 1 ] = 3 * ( f130 - f241 ) ;
w . derivs [ 2 ] = 3 * ( f241 - f352 ) ;
w . derivs [ 3 ] = 3 * ( f352 - 0 ) ;
}
public :
2018-01-31 21:42:39 +09:00
Weight * CalcWeightsAll ( u32 key ) {
int tess , count , type ;
FromKey ( key , tess , count , type ) ;
2018-01-31 20:59:41 +09:00
const int num_patches = count - 3 ;
Weight * weights = new Weight [ tess * num_patches + 1 ] ;
// float *knots = new float[num_patches + 5];
float * knots = new float [ num_patches + 2 ] ; // Optimized with KnotDiv, must use +5 in theory
KnotDiv * divs = new KnotDiv [ num_patches ] ;
CalcKnots ( num_patches , type , knots , divs ) ;
const float inv_tess = 1.0f / ( float ) tess ;
for ( int i = 0 ; i < num_patches ; + + i ) {
const int _tess = ( i = = num_patches - 1 ) ? ( tess + 1 ) : tess ;
for ( int j = 0 ; j < _tess ; + + j ) {
const int index = i * tess + j ;
const float t = ( float ) index * inv_tess ;
CalcWeights ( t , knots + i , divs [ i ] , weights [ index ] ) ;
}
}
2018-01-29 19:24:42 +09:00
2018-01-31 20:59:41 +09:00
delete [ ] knots ;
delete [ ] divs ;
2018-01-29 19:24:42 +09:00
2018-01-31 20:59:41 +09:00
return weights ;
}
2018-01-31 21:42:39 +09:00
u32 ToKey ( int tess , int count , int type ) {
return tess | ( count < < 8 ) | ( type < < 16 ) ;
}
void FromKey ( u32 key , int & tess , int & count , int & type ) {
tess = key & 0xFF ; count = ( key > > 8 ) & 0xFF ; type = ( key > > 16 ) & 0xFF ;
}
} ;
template < class T >
class WeightCache : public T {
private :
std : : unordered_map < u32 , Weight * > weightsCache ;
public :
Weight * operator [ ] ( u32 key ) {
Weight * & weights = weightsCache [ key ] ;
if ( ! weights )
weights = CalcWeightsAll ( key ) ;
return weights ;
}
void Clear ( ) {
for ( auto it : weightsCache )
delete [ ] it . second ;
weightsCache . clear ( ) ;
}
2018-01-31 20:59:41 +09:00
} ;
2014-09-13 15:13:34 +02:00
2018-01-31 21:42:39 +09:00
static WeightCache < Bezier3DWeight > bezierWeightsCache ;
static WeightCache < Spline3DWeight > splineWeightsCache ;
struct Weight2D {
const Weight * u , * v ;
template < class T >
Weight2D ( WeightCache < T > & cache , u32 key_u , u32 key_v ) {
u = cache [ key_u ] ;
v = ( key_u ! = key_v ) ? cache [ key_v ] : u ; // Use same weights if u == v
}
} ;
void DrawEngineCommon : : ClearSplineBezierWeights ( ) {
bezierWeightsCache . Clear ( ) ;
splineWeightsCache . Clear ( ) ;
}
2018-06-28 19:47:33 -07:00
bool CanUseHardwareTessellation ( GEPatchPrimType prim ) {
if ( g_Config . bHardwareTessellation & & ! g_Config . bSoftwareRendering ) {
return CanUseHardwareTransform ( PatchPrimToPrim ( prim ) ) ;
}
return false ;
}
2017-01-22 23:57:47 +09:00
// Prepare mesh of one patch for "Instanced Tessellation".
2017-01-08 22:14:35 +09:00
static void TessellateSplinePatchHardware ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch ) {
SimpleVertex * & vertices = ( SimpleVertex * & ) dest ;
2017-01-22 23:57:47 +09:00
float inv_u = 1.0f / ( float ) spatch . tess_u ;
float inv_v = 1.0f / ( float ) spatch . tess_v ;
// Generating simple input vertices for the spline-computing vertex shader.
2017-01-08 22:14:35 +09:00
for ( int tile_v = 0 ; tile_v < spatch . tess_v + 1 ; + + tile_v ) {
for ( int tile_u = 0 ; tile_u < spatch . tess_u + 1 ; + + tile_u ) {
SimpleVertex & vert = vertices [ tile_v * ( spatch . tess_u + 1 ) + tile_u ] ;
2017-01-22 23:57:47 +09:00
vert . pos . x = ( float ) tile_u * inv_u ;
vert . pos . y = ( float ) tile_v * inv_v ;
2017-01-08 22:14:35 +09:00
2017-01-22 23:57:47 +09:00
// TODO: Move to shader uniform and unify this method spline and bezier if necessary.
2017-01-08 22:14:35 +09:00
// For compute normal
2017-01-22 23:57:47 +09:00
vert . nrm . x = inv_u ;
vert . nrm . y = inv_v ;
2017-01-08 22:14:35 +09:00
}
}
2018-01-30 17:42:41 +09:00
BuildIndex ( indices , count , spatch . tess_u , spatch . tess_v , spatch . primType ) ;
2017-01-08 22:14:35 +09:00
}
2015-02-25 19:24:12 -08:00
template < bool origNrm , bool origCol , bool origTc , bool useSSE4 >
2015-02-22 13:08:08 -08:00
static void SplinePatchFullQuality ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int quality , int maxVertices ) {
2014-09-13 15:13:34 +02:00
// Full (mostly) correct tessellation of spline patches.
// Not very fast.
2018-01-31 21:42:39 +09:00
u32 key_u = splineWeightsCache . ToKey ( spatch . tess_u , spatch . count_u , spatch . type_u ) ;
u32 key_v = splineWeightsCache . ToKey ( spatch . tess_v , spatch . count_v , spatch . type_v ) ;
Weight2D weights ( splineWeightsCache , key_u , key_v ) ;
2014-09-13 15:13:34 +02:00
2017-03-09 18:04:16 +09:00
// Increase tessellation based on the size. Should be approximately right?
2015-07-29 11:38:42 +02:00
int patch_div_s = ( spatch . count_u - 3 ) * spatch . tess_u ;
int patch_div_t = ( spatch . count_v - 3 ) * spatch . tess_v ;
2018-01-31 12:44:05 +09:00
if ( quality = = 0 ) {
// Low quality
patch_div_s = ( spatch . count_u - 3 ) * 2 ;
patch_div_t = ( spatch . count_v - 3 ) * 2 ;
}
2015-01-29 14:12:24 +01:00
if ( quality > 1 ) {
2016-04-10 17:33:34 -07:00
// Don't cut below 2, though.
if ( patch_div_s > 2 ) {
patch_div_s / = quality ;
}
if ( patch_div_t > 2 ) {
patch_div_t / = quality ;
}
2015-01-29 14:12:24 +01:00
}
2014-09-13 15:13:34 +02:00
2017-03-09 18:04:16 +09:00
// Downsample until it fits, in case crazy tessellation factors are sent.
2015-01-29 14:12:24 +01:00
while ( ( patch_div_s + 1 ) * ( patch_div_t + 1 ) > maxVertices ) {
patch_div_s / = 2 ;
patch_div_t / = 2 ;
}
2016-04-10 17:33:34 -07:00
if ( patch_div_s < 1 ) patch_div_s = 1 ;
if ( patch_div_t < 1 ) patch_div_t = 1 ;
2015-04-16 18:18:49 +02:00
2014-09-13 15:13:34 +02:00
// First compute all the vertices and put them in an array
2014-12-14 01:08:00 +09:00
SimpleVertex * & vertices = ( SimpleVertex * & ) dest ;
2014-09-13 15:13:34 +02:00
2014-12-13 10:35:47 -08:00
float tu_width = ( float ) spatch . count_u - 3.0f ;
float tv_height = ( float ) spatch . count_v - 3.0f ;
2014-09-13 15:13:34 +02:00
2015-04-16 18:22:08 +02:00
// int max_idx = spatch.count_u * spatch.count_v;
2015-07-29 11:38:42 +02:00
bool computeNormals = spatch . computeNormals ;
2015-04-16 18:29:50 +02:00
float one_over_patch_div_s = 1.0f / ( float ) ( patch_div_s ) ;
float one_over_patch_div_t = 1.0f / ( float ) ( patch_div_t ) ;
2014-09-13 15:13:34 +02:00
for ( int tile_v = 0 ; tile_v < patch_div_t + 1 ; tile_v + + ) {
2015-04-16 18:29:50 +02:00
float v = ( float ) tile_v * ( float ) ( spatch . count_v - 3 ) * one_over_patch_div_t ;
2014-09-13 15:13:34 +02:00
if ( v < 0.0f )
v = 0.0f ;
for ( int tile_u = 0 ; tile_u < patch_div_s + 1 ; tile_u + + ) {
2015-04-16 18:29:50 +02:00
float u = ( float ) tile_u * ( float ) ( spatch . count_u - 3 ) * one_over_patch_div_s ;
2014-09-13 15:13:34 +02:00
if ( u < 0.0f )
u = 0.0f ;
SimpleVertex * vert = & vertices [ tile_v * ( patch_div_s + 1 ) + tile_u ] ;
2014-12-13 18:36:28 -08:00
Vec4f vert_color ( 0 , 0 , 0 , 0 ) ;
2015-02-22 13:08:08 -08:00
Vec3f vert_pos ;
vert_pos . SetZero ( ) ;
2018-01-29 19:24:42 +09:00
Vec3f du , dv ;
2018-01-31 11:34:37 +09:00
Vec2f vert_tex ;
2015-02-22 13:08:08 -08:00
if ( origNrm ) {
2018-01-31 16:38:11 +09:00
du . SetZero ( ) ;
dv . SetZero ( ) ;
2014-09-13 15:13:34 +02:00
}
2015-02-22 13:08:08 -08:00
if ( origCol ) {
2014-12-13 10:36:09 -08:00
vert_color . SetZero ( ) ;
} else {
2018-01-31 12:44:05 +09:00
vert - > color_32 = spatch . defcolor ;
2014-09-13 15:13:34 +02:00
}
2015-02-22 13:08:08 -08:00
if ( origTc ) {
2018-01-31 11:34:37 +09:00
vert_tex . SetZero ( ) ;
2014-12-13 10:36:09 -08:00
} else {
2015-04-16 18:29:50 +02:00
vert - > uv [ 0 ] = tu_width * ( ( float ) tile_u * one_over_patch_div_s ) ;
vert - > uv [ 1 ] = tv_height * ( ( float ) tile_v * one_over_patch_div_t ) ;
2014-09-13 15:13:34 +02:00
}
int iu = ( int ) u ;
int iv = ( int ) v ;
2015-04-16 18:29:50 +02:00
// TODO: Would really like to fix the surrounding logic somehow to get rid of these but I can't quite get it right..
// Without the previous epsilons and with large count_u, we will end up doing an out of bounds access later without these.
if ( iu > = spatch . count_u - 3 ) iu = spatch . count_u - 4 ;
if ( iv > = spatch . count_v - 3 ) iv = spatch . count_v - 4 ;
2018-01-31 21:42:39 +09:00
const Weight & wu = weights . u [ tile_u ] ;
const Weight & wv = weights . v [ tile_v ] ;
2014-09-13 15:13:34 +02:00
// Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points.
2015-04-16 18:31:28 +02:00
int patch_w = std : : min ( spatch . count_u - iu , 4 ) ;
int patch_h = std : : min ( spatch . count_v - iv , 4 ) ;
2014-09-13 15:13:34 +02:00
for ( int ii = 0 ; ii < patch_w ; + + ii ) {
for ( int jj = 0 ; jj < patch_h ; + + jj ) {
2018-01-31 20:59:41 +09:00
float u_spline = wu . weights [ ii ] ;
float v_spline = wv . weights [ jj ] ;
2014-09-13 15:13:34 +02:00
float f = u_spline * v_spline ;
if ( f > 0.0f ) {
int idx = spatch . count_u * ( iv + jj ) + ( iu + ii ) ;
2015-04-16 18:22:08 +02:00
/*
if ( idx > = max_idx ) {
char temp [ 512 ] ;
snprintf ( temp , sizeof ( temp ) , " count_u: %d count_v: %d patch_w: %d patch_h: %d ii: %d jj: %d iu: %d iv: %d patch_div_s: %d patch_div_t: %d \n " , spatch . count_u , spatch . count_v , patch_w , patch_h , ii , jj , iu , iv , patch_div_s , patch_div_t ) ;
OutputDebugStringA ( temp ) ;
2017-02-25 00:25:46 +01:00
Crash ( ) ;
2015-04-16 18:22:08 +02:00
} */
2018-01-31 16:38:11 +09:00
vert_pos + = spatch . pos [ idx ] * f ;
2015-02-22 13:08:08 -08:00
if ( origTc ) {
2018-01-31 16:38:11 +09:00
vert_tex + = spatch . tex [ idx ] * f ;
2014-09-13 15:13:34 +02:00
}
2015-02-22 13:08:08 -08:00
if ( origCol ) {
2018-01-31 16:38:11 +09:00
vert_color + = spatch . col [ idx ] * f ;
2014-09-13 15:13:34 +02:00
}
2015-02-22 13:08:08 -08:00
if ( origNrm ) {
2018-01-31 20:59:41 +09:00
du + = spatch . pos [ idx ] * ( wu . derivs [ ii ] * wv . weights [ jj ] ) ;
dv + = spatch . pos [ idx ] * ( wu . weights [ ii ] * wv . derivs [ jj ] ) ;
2014-09-13 15:13:34 +02:00
}
}
}
}
2015-02-22 13:08:08 -08:00
vert - > pos = vert_pos ;
if ( origNrm ) {
2018-01-31 16:38:11 +09:00
vert - > nrm = Cross ( du , dv ) . Normalized ( useSSE4 ) ;
2015-02-22 13:08:08 -08:00
} else {
vert - > nrm . SetZero ( ) ;
vert - > nrm . z = 1.0f ;
2014-09-13 15:13:34 +02:00
}
2015-02-22 13:08:08 -08:00
if ( origCol ) {
2014-12-13 10:36:09 -08:00
vert - > color_32 = vert_color . ToRGBA ( ) ;
}
2018-01-31 11:34:37 +09:00
if ( origTc ) {
vert_tex . Write ( vert - > uv ) ;
}
2014-09-13 15:13:34 +02:00
}
}
2018-01-30 17:42:41 +09:00
BuildIndex ( indices , count , patch_div_s , patch_div_t , spatch . primType ) ;
2014-09-13 15:13:34 +02:00
}
2015-02-25 19:24:12 -08:00
template < bool origNrm , bool origCol , bool origTc >
static inline void SplinePatchFullQualityDispatch4 ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int quality , int maxVertices ) {
if ( cpu_info . bSSE4_1 )
SplinePatchFullQuality < origNrm , origCol , origTc , true > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
else
SplinePatchFullQuality < origNrm , origCol , origTc , false > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
}
2015-02-22 13:08:08 -08:00
template < bool origNrm , bool origCol >
static inline void SplinePatchFullQualityDispatch3 ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int quality , int maxVertices ) {
bool origTc = ( origVertType & GE_VTYPE_TC_MASK ) ! = 0 ;
if ( origTc )
2015-02-25 19:24:12 -08:00
SplinePatchFullQualityDispatch4 < origNrm , origCol , true > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
2015-02-22 13:08:08 -08:00
else
2015-02-25 19:24:12 -08:00
SplinePatchFullQualityDispatch4 < origNrm , origCol , false > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
2015-02-22 13:08:08 -08:00
}
template < bool origNrm >
static inline void SplinePatchFullQualityDispatch2 ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int quality , int maxVertices ) {
bool origCol = ( origVertType & GE_VTYPE_COL_MASK ) ! = 0 ;
if ( origCol )
SplinePatchFullQualityDispatch3 < origNrm , true > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
else
SplinePatchFullQualityDispatch3 < origNrm , false > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
}
static void SplinePatchFullQualityDispatch ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int quality , int maxVertices ) {
bool origNrm = ( origVertType & GE_VTYPE_NRM_MASK ) ! = 0 ;
if ( origNrm )
SplinePatchFullQualityDispatch2 < true > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
else
SplinePatchFullQualityDispatch2 < false > ( dest , indices , count , spatch , origVertType , quality , maxVertices ) ;
}
2017-03-09 18:04:16 +09:00
void TessellateSplinePatch ( u8 * & dest , u16 * indices , int & count , const SplinePatchLocal & spatch , u32 origVertType , int maxVertexCount ) {
2014-09-13 15:13:34 +02:00
switch ( g_Config . iSplineBezierQuality ) {
case LOW_QUALITY :
2018-01-31 12:44:05 +09:00
SplinePatchFullQualityDispatch ( dest , indices , count , spatch , origVertType , 0 , maxVertexCount ) ;
2014-09-13 15:13:34 +02:00
break ;
case MEDIUM_QUALITY :
2015-02-22 13:08:08 -08:00
SplinePatchFullQualityDispatch ( dest , indices , count , spatch , origVertType , 2 , maxVertexCount ) ;
2014-09-13 15:13:34 +02:00
break ;
case HIGH_QUALITY :
2015-02-22 13:08:08 -08:00
SplinePatchFullQualityDispatch ( dest , indices , count , spatch , origVertType , 1 , maxVertexCount ) ;
2014-09-13 15:13:34 +02:00
break ;
}
}
2016-04-09 22:20:57 -07:00
template < typename T >
struct PrecomputedCurves {
2018-02-01 12:27:29 +09:00
PrecomputedCurves ( const T * const p [ 16 ] ) : p ( p ) {
2016-04-09 22:20:57 -07:00
}
2018-02-01 11:46:46 +09:00
// http://en.wikipedia.org/wiki/Bernstein_polynomial
template < class T >
static T Bernstein3D ( const T p [ 4 ] , const float w [ 4 ] ) {
if ( w [ 0 ] = = 1 ) return p [ 0 ] ;
if ( w [ 3 ] = = 1 ) return p [ 3 ] ;
// Linear combination
return p [ 0 ] * w [ 0 ] + p [ 1 ] * w [ 1 ] + p [ 2 ] * w [ 2 ] + p [ 3 ] * w [ 3 ] ;
}
2018-02-01 12:27:29 +09:00
void Bernstein3D_U ( const float w [ 4 ] ) {
2018-02-01 11:46:46 +09:00
horiz [ 0 ] = Bernstein3D ( p [ 0 ] , w ) ;
horiz [ 1 ] = Bernstein3D ( p [ 4 ] , w ) ;
horiz [ 2 ] = Bernstein3D ( p [ 8 ] , w ) ;
horiz [ 3 ] = Bernstein3D ( p [ 12 ] , w ) ;
}
T Bernstein3D_V ( const float w [ 4 ] ) {
return Bernstein3D ( horiz , w ) ;
2016-04-09 22:20:57 -07:00
}
2018-02-01 12:27:29 +09:00
const T * const * p ;
2018-02-01 11:21:58 +09:00
T horiz [ 4 ] ;
2016-04-09 22:20:57 -07:00
} ;
2017-03-09 17:56:19 +09:00
static void _BezierPatchHighQuality ( u8 * & dest , u16 * & indices , int & count , int tess_u , int tess_v , const BezierPatch & patch , u32 origVertType ) {
2018-02-01 11:51:58 +09:00
const float inv_u = 1.0f / ( float ) tess_u ;
const float inv_v = 1.0f / ( float ) tess_v ;
2014-09-13 15:13:34 +02:00
// First compute all the vertices and put them in an array
2014-12-14 01:08:00 +09:00
SimpleVertex * & vertices = ( SimpleVertex * & ) dest ;
2014-09-13 15:13:34 +02:00
2016-04-09 21:24:19 -07:00
const bool computeNormals = patch . computeNormals ;
2016-04-09 22:05:48 -07:00
const bool sampleColors = ( origVertType & GE_VTYPE_COL_MASK ) ! = 0 ;
const bool sampleTexcoords = ( origVertType & GE_VTYPE_TC_MASK ) ! = 0 ;
2014-12-10 01:41:02 +09:00
2018-01-31 21:42:39 +09:00
Weight2D weights ( bezierWeightsCache , tess_u , tess_v ) ;
2018-01-31 20:18:47 +09:00
2018-01-31 18:39:43 +09:00
int num_patches_u = ( patch . count_u - 1 ) / 3 ;
int num_patches_v = ( patch . count_v - 1 ) / 3 ;
for ( int patch_u = 0 ; patch_u < num_patches_u ; + + patch_u ) {
for ( int patch_v = 0 ; patch_v < num_patches_v ; + + patch_v ) {
// Precompute the horizontal curves to we only have to evaluate the vertical ones.
Vec3f * _pos [ 16 ] ;
Vec4f * _col [ 16 ] ;
Vec2f * _tex [ 16 ] ;
for ( int point = 0 ; point < 16 ; + + point ) {
int idx = ( patch_u * 3 + point % 4 ) + ( patch_v * 3 + point / 4 ) * patch . count_u ;
_pos [ point ] = & patch . pos [ idx ] ;
_col [ point ] = & patch . col [ idx ] ;
_tex [ point ] = & patch . tex [ idx ] ;
}
2018-02-01 12:27:29 +09:00
PrecomputedCurves < Vec3f > prepos ( _pos ) ;
PrecomputedCurves < Vec4f > precol ( _col ) ;
PrecomputedCurves < Vec2f > pretex ( _tex ) ;
PrecomputedCurves < Vec3f > prederivU ( _pos ) ;
2018-02-01 11:21:58 +09:00
for ( int tile_u = 0 ; tile_u < tess_u + 1 ; + + tile_u ) {
const Weight & wu = weights . u [ tile_u ] ;
2018-02-01 12:02:03 +09:00
2018-02-01 12:27:29 +09:00
prepos . Bernstein3D_U ( wu . weights ) ;
2018-02-01 11:46:46 +09:00
if ( sampleColors )
2018-02-01 12:27:29 +09:00
precol . Bernstein3D_U ( wu . weights ) ;
2018-02-01 11:46:46 +09:00
if ( sampleTexcoords )
2018-02-01 12:27:29 +09:00
pretex . Bernstein3D_U ( wu . weights ) ;
2018-02-01 11:46:46 +09:00
if ( computeNormals )
2018-02-01 12:27:29 +09:00
prederivU . Bernstein3D_U ( wu . derivs ) ;
2014-09-13 15:13:34 +02:00
2018-02-01 11:21:58 +09:00
for ( int tile_v = 0 ; tile_v < tess_v + 1 ; + + tile_v ) {
2018-02-01 12:02:03 +09:00
const Weight & wv = weights . v [ tile_v ] ;
2014-09-13 15:13:34 +02:00
2018-01-31 18:39:43 +09:00
SimpleVertex & vert = vertices [ tile_v * ( tess_u + 1 ) + tile_u ] ;
2014-09-13 15:13:34 +02:00
2018-02-01 12:02:03 +09:00
vert . pos = prepos . Bernstein3D_V ( wv . weights ) ;
if ( sampleColors ) {
vert . color_32 = precol . Bernstein3D_V ( wv . weights ) . ToRGBA ( ) ;
} else {
vert . color_32 = patch . defcolor ;
}
if ( sampleTexcoords ) {
pretex . Bernstein3D_V ( wv . weights ) . Write ( vert . uv ) ;
} else {
// Generate texcoord
vert . uv [ 0 ] = patch_u + tile_u * inv_u ;
vert . uv [ 1 ] = patch_v + tile_v * inv_v ;
}
2018-01-31 18:39:43 +09:00
if ( computeNormals ) {
2018-02-01 11:46:46 +09:00
const Vec3f derivU = prederivU . Bernstein3D_V ( wv . weights ) ;
const Vec3f derivV = prepos . Bernstein3D_V ( wv . derivs ) ;
2014-09-13 15:13:34 +02:00
2018-01-31 18:39:43 +09:00
vert . nrm = Cross ( derivU , derivV ) . Normalized ( ) ;
if ( patch . patchFacing )
vert . nrm * = - 1.0f ;
} else {
vert . nrm . SetZero ( ) ;
}
}
2014-09-13 15:13:34 +02:00
}
2018-01-31 18:39:43 +09:00
int patch_index = patch_v * num_patches_u + patch_u ;
int total = patch_index * ( tess_u + 1 ) * ( tess_v + 1 ) ;
BuildIndex ( indices + count , count , tess_u , tess_v , patch . primType , total ) ;
dest + = ( tess_u + 1 ) * ( tess_v + 1 ) * sizeof ( SimpleVertex ) ;
2014-09-13 15:13:34 +02:00
}
}
}
2017-01-22 23:57:47 +09:00
// Prepare mesh of one patch for "Instanced Tessellation".
2017-03-09 18:04:16 +09:00
static void TessellateBezierPatchHardware ( u8 * & dest , u16 * indices , int & count , int tess_u , int tess_v , GEPatchPrimType primType ) {
2017-01-08 22:14:35 +09:00
SimpleVertex * & vertices = ( SimpleVertex * & ) dest ;
2017-01-22 23:57:47 +09:00
float inv_u = 1.0f / ( float ) tess_u ;
float inv_v = 1.0f / ( float ) tess_v ;
// Generating simple input vertices for the bezier-computing vertex shader.
2017-01-08 22:14:35 +09:00
for ( int tile_v = 0 ; tile_v < tess_v + 1 ; + + tile_v ) {
for ( int tile_u = 0 ; tile_u < tess_u + 1 ; + + tile_u ) {
SimpleVertex & vert = vertices [ tile_v * ( tess_u + 1 ) + tile_u ] ;
2017-01-22 23:57:47 +09:00
vert . pos . x = ( float ) tile_u * inv_u ;
vert . pos . y = ( float ) tile_v * inv_v ;
2017-01-08 22:14:35 +09:00
}
}
2018-01-30 17:42:41 +09:00
BuildIndex ( indices , count , tess_u , tess_v , primType ) ;
2017-01-08 22:14:35 +09:00
}
2017-03-09 18:04:16 +09:00
void TessellateBezierPatch ( u8 * & dest , u16 * & indices , int & count , int tess_u , int tess_v , const BezierPatch & patch , u32 origVertType ) {
2014-09-13 15:13:34 +02:00
switch ( g_Config . iSplineBezierQuality ) {
case LOW_QUALITY :
2018-01-31 12:44:05 +09:00
_BezierPatchHighQuality ( dest , indices , count , 2 , 2 , patch , origVertType ) ;
2014-09-13 15:13:34 +02:00
break ;
case MEDIUM_QUALITY :
2018-07-05 15:29:40 +08:00
_BezierPatchHighQuality ( dest , indices , count , std : : max ( tess_u / 2 , 1 ) , std : : max ( tess_v / 2 , 1 ) , patch , origVertType ) ;
2014-11-26 12:23:02 +09:00
break ;
2014-09-13 15:13:34 +02:00
case HIGH_QUALITY :
2017-03-09 17:56:19 +09:00
_BezierPatchHighQuality ( dest , indices , count , tess_u , tess_v , patch , origVertType ) ;
2014-09-13 15:13:34 +02:00
break ;
}
}
2015-04-08 21:44:54 +02:00
2018-01-30 16:16:25 +09:00
static void CopyControlPoints ( const SimpleVertex * const * points , float * pos , float * tex , float * col , int posStride , int texStride , int colStride , int size , bool hasColor , bool hasTexCoords ) {
for ( int idx = 0 ; idx < size ; idx + + ) {
memcpy ( pos , points [ idx ] - > pos . AsArray ( ) , 3 * sizeof ( float ) ) ;
pos + = posStride ;
if ( hasTexCoords ) {
memcpy ( tex , points [ idx ] - > uv , 2 * sizeof ( float ) ) ;
tex + = texStride ;
}
if ( hasColor ) {
memcpy ( col , Vec4f : : FromRGBA ( points [ idx ] - > color_32 ) . AsArray ( ) , 4 * sizeof ( float ) ) ;
col + = colStride ;
}
}
if ( ! hasColor )
memcpy ( col , Vec4f : : FromRGBA ( points [ 0 ] - > color_32 ) . AsArray ( ) , 4 * sizeof ( float ) ) ;
}
2018-01-30 10:31:48 +09:00
class SimpleBufferManager {
private :
u8 * buf_ ;
size_t totalSize , maxSize_ ;
public :
SimpleBufferManager ( u8 * buf , size_t maxSize )
: buf_ ( buf ) , totalSize ( 0 ) , maxSize_ ( maxSize ) { }
u8 * Allocate ( size_t size ) {
size = ( size + 15 ) & ~ 15 ; // Align for 16 bytes
if ( ( totalSize + size ) > maxSize_ )
return nullptr ; // No more memory
size_t tmp = totalSize ;
totalSize + = size ;
return buf_ + tmp ;
}
} ;
// This maps GEPatchPrimType to GEPrimitiveType.
const GEPrimitiveType primType [ ] = { GE_PRIM_TRIANGLES , GE_PRIM_LINES , GE_PRIM_POINTS , GE_PRIM_POINTS } ;
2016-04-10 17:12:48 -07:00
void DrawEngineCommon : : SubmitSpline ( const void * control_points , const void * indices , int tess_u , int tess_v , int count_u , int count_v , int type_u , int type_v , GEPatchPrimType prim_type , bool computeNormals , bool patchFacing , u32 vertType , int * bytesRead ) {
2015-05-13 22:28:02 +02:00
PROFILE_THIS_SCOPE ( " spline " ) ;
2015-04-08 21:44:54 +02:00
DispatchFlush ( ) ;
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
if ( count_u < 4 | | count_v < 4 )
return ;
2018-01-30 10:31:48 +09:00
SimpleBufferManager managedBuf ( decoded , DECODED_VERTEX_BUFFER_SIZE ) ;
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0 ;
u16 index_upper_bound = count_u * count_v - 1 ;
2018-01-30 18:17:54 +09:00
IndexConverter ConvertIndex ( vertType , indices ) ;
2015-04-08 21:44:54 +02:00
if ( indices )
2016-04-10 01:52:51 -07:00
GetIndexBounds ( indices , count_u * count_v , vertType , & index_lower_bound , & index_upper_bound ) ;
2015-04-08 21:44:54 +02:00
2016-04-10 17:12:48 -07:00
VertexDecoder * origVDecoder = GetVertexDecoder ( ( vertType & 0xFFFFFF ) | ( gstate . getUVGenMode ( ) < < 24 ) ) ;
* bytesRead = count_u * count_v * origVDecoder - > VertexSize ( ) ;
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
2018-01-30 18:10:11 +09:00
SimpleVertex * simplified_control_points = ( SimpleVertex * ) managedBuf . Allocate ( sizeof ( SimpleVertex ) * ( index_upper_bound + 1 ) ) ;
2018-01-30 10:31:48 +09:00
u8 * temp_buffer = managedBuf . Allocate ( sizeof ( SimpleVertex ) * count_u * count_v ) ;
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType ;
vertType = NormalizeVertices ( ( u8 * ) simplified_control_points , temp_buffer , ( u8 * ) control_points , index_lower_bound , index_upper_bound , vertType ) ;
VertexDecoder * vdecoder = GetVertexDecoder ( vertType ) ;
int vertexSize = vdecoder - > VertexSize ( ) ;
if ( vertexSize ! = sizeof ( SimpleVertex ) ) {
ERROR_LOG ( G3D , " Something went really wrong, vertex size: %i vs %i " , vertexSize , ( int ) sizeof ( SimpleVertex ) ) ;
}
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex * * points = ( const SimpleVertex * * ) managedBuf . Allocate ( sizeof ( SimpleVertex * ) * count_u * count_v ) ;
2018-01-30 14:53:03 +09:00
for ( int idx = 0 ; idx < count_u * count_v ; idx + + )
2018-01-30 18:17:54 +09:00
points [ idx ] = simplified_control_points + ( indices ? ConvertIndex ( idx ) : idx ) ;
2015-04-08 21:44:54 +02:00
int count = 0 ;
u8 * dest = splineBuffer ;
SplinePatchLocal patch ;
2015-07-29 11:38:42 +02:00
patch . tess_u = tess_u ;
patch . tess_v = tess_v ;
2015-04-08 21:44:54 +02:00
patch . type_u = type_u ;
patch . type_v = type_v ;
patch . count_u = count_u ;
patch . count_v = count_v ;
2015-07-29 11:38:42 +02:00
patch . computeNormals = computeNormals ;
2015-07-29 12:04:52 +02:00
patch . primType = prim_type ;
patch . patchFacing = patchFacing ;
2018-01-31 12:44:05 +09:00
patch . defcolor = points [ 0 ] - > color_32 ;
2015-04-08 21:44:54 +02:00
2018-06-28 19:47:33 -07:00
if ( CanUseHardwareTessellation ( prim_type ) ) {
2018-06-28 01:41:16 +09:00
tessDataTransfer - > SendDataToShader ( points , count_u * count_v , origVertType ) ;
2017-01-08 22:14:35 +09:00
TessellateSplinePatchHardware ( dest , quadIndices_ , count , patch ) ;
numPatches = ( count_u - 3 ) * ( count_v - 3 ) ;
} else {
2018-01-31 11:34:37 +09:00
patch . pos = ( Vec3f * ) managedBuf . Allocate ( sizeof ( Vec3f ) * count_u * count_v ) ;
patch . tex = ( Vec2f * ) managedBuf . Allocate ( sizeof ( Vec2f ) * count_u * count_v ) ;
patch . col = ( Vec4f * ) managedBuf . Allocate ( sizeof ( Vec4f ) * count_u * count_v ) ;
for ( int idx = 0 ; idx < count_u * count_v ; idx + + ) {
patch . pos [ idx ] = Vec3f ( points [ idx ] - > pos ) ;
patch . tex [ idx ] = Vec2f ( points [ idx ] - > uv ) ;
patch . col [ idx ] = Vec4f : : FromRGBA ( points [ idx ] - > color_32 ) ;
}
2017-01-08 22:14:35 +09:00
int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize ;
2017-03-09 18:04:16 +09:00
TessellateSplinePatch ( dest , quadIndices_ , count , patch , origVertType , maxVertexCount ) ;
2017-01-08 22:14:35 +09:00
}
2015-04-08 21:44:54 +02:00
u32 vertTypeWithIndex16 = ( vertType & ~ GE_VTYPE_IDX_MASK ) | GE_VTYPE_IDX_16BIT ;
UVScale prevUVScale ;
2016-12-20 13:27:44 +01:00
if ( ( origVertType & GE_VTYPE_TC_MASK ) ! = 0 ) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c . uv ;
gstate_c . uv . uScale = 1.0f ;
gstate_c . uv . vScale = 1.0f ;
2016-12-20 13:27:44 +01:00
gstate_c . uv . uOff = 0.0f ;
gstate_c . uv . vOff = 0.0f ;
2015-04-08 21:44:54 +02:00
}
2018-03-05 12:24:02 +01:00
uint32_t vertTypeID = GetVertTypeID ( vertTypeWithIndex16 , gstate . getUVGenMode ( ) ) ;
2016-04-10 17:12:48 -07:00
int generatedBytesRead ;
2018-06-28 19:47:33 -07:00
DispatchSubmitPrim ( splineBuffer , quadIndices_ , PatchPrimToPrim ( prim_type ) , count , vertTypeID , & generatedBytesRead ) ;
2015-04-08 21:44:54 +02:00
DispatchFlush ( ) ;
2016-12-20 13:27:44 +01:00
if ( ( origVertType & GE_VTYPE_TC_MASK ) ! = 0 ) {
2015-04-08 21:44:54 +02:00
gstate_c . uv = prevUVScale ;
}
}
2016-04-10 12:59:06 -07:00
void DrawEngineCommon : : SubmitBezier ( const void * control_points , const void * indices , int tess_u , int tess_v , int count_u , int count_v , GEPatchPrimType prim_type , bool computeNormals , bool patchFacing , u32 vertType , int * bytesRead ) {
2015-05-13 22:28:02 +02:00
PROFILE_THIS_SCOPE ( " bezier " ) ;
2015-04-08 21:44:54 +02:00
DispatchFlush ( ) ;
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
// This would result in num_patches_u / num_patches_v being 0.
if ( count_u < 4 | | count_v < 4 )
return ;
2018-01-30 10:31:48 +09:00
SimpleBufferManager managedBuf ( decoded , DECODED_VERTEX_BUFFER_SIZE ) ;
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0 ;
u16 index_upper_bound = count_u * count_v - 1 ;
2018-01-30 18:17:54 +09:00
IndexConverter ConvertIndex ( vertType , indices ) ;
2015-04-08 21:44:54 +02:00
if ( indices )
GetIndexBounds ( indices , count_u * count_v , vertType , & index_lower_bound , & index_upper_bound ) ;
2016-04-10 12:59:06 -07:00
VertexDecoder * origVDecoder = GetVertexDecoder ( ( vertType & 0xFFFFFF ) | ( gstate . getUVGenMode ( ) < < 24 ) ) ;
* bytesRead = count_u * count_v * origVDecoder - > VertexSize ( ) ;
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
2018-01-30 18:10:11 +09:00
SimpleVertex * simplified_control_points = ( SimpleVertex * ) managedBuf . Allocate ( sizeof ( SimpleVertex ) * ( index_upper_bound + 1 ) ) ;
2018-01-30 10:31:48 +09:00
u8 * temp_buffer = managedBuf . Allocate ( sizeof ( SimpleVertex ) * count_u * count_v ) ;
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType ;
vertType = NormalizeVertices ( ( u8 * ) simplified_control_points , temp_buffer , ( u8 * ) control_points , index_lower_bound , index_upper_bound , vertType ) ;
VertexDecoder * vdecoder = GetVertexDecoder ( vertType ) ;
int vertexSize = vdecoder - > VertexSize ( ) ;
if ( vertexSize ! = sizeof ( SimpleVertex ) ) {
ERROR_LOG ( G3D , " Something went really wrong, vertex size: %i vs %i " , vertexSize , ( int ) sizeof ( SimpleVertex ) ) ;
}
2018-01-30 14:41:39 +09:00
// If specified as 0, uses 1.
if ( tess_u < 1 ) tess_u = 1 ;
if ( tess_v < 1 ) tess_v = 1 ;
2018-01-30 14:53:03 +09:00
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex * * points = ( const SimpleVertex * * ) managedBuf . Allocate ( sizeof ( SimpleVertex * ) * count_u * count_v ) ;
2018-01-30 14:53:03 +09:00
for ( int idx = 0 ; idx < count_u * count_v ; idx + + )
2018-01-30 18:17:54 +09:00
points [ idx ] = simplified_control_points + ( indices ? ConvertIndex ( idx ) : idx ) ;
2018-01-30 14:53:03 +09:00
2018-01-30 14:41:39 +09:00
int count = 0 ;
u8 * dest = splineBuffer ;
u16 * inds = quadIndices_ ;
2017-01-08 22:14:35 +09:00
2015-04-08 21:44:54 +02:00
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = ( count_u - 1 ) / 3 ;
int num_patches_v = ( count_v - 1 ) / 3 ;
2018-06-28 19:47:33 -07:00
if ( CanUseHardwareTessellation ( prim_type ) ) {
2018-06-28 01:41:16 +09:00
tessDataTransfer - > SendDataToShader ( points , count_u * count_v , origVertType ) ;
2018-01-30 14:41:39 +09:00
TessellateBezierPatchHardware ( dest , inds , count , tess_u , tess_v , prim_type ) ;
numPatches = num_patches_u * num_patches_v ;
2017-01-08 22:14:35 +09:00
} else {
2018-01-31 18:39:43 +09:00
BezierPatch patch ;
patch . count_u = count_u ;
patch . count_v = count_v ;
patch . primType = prim_type ;
patch . computeNormals = computeNormals ;
patch . patchFacing = patchFacing ;
patch . defcolor = points [ 0 ] - > color_32 ;
patch . pos = ( Vec3f * ) managedBuf . Allocate ( sizeof ( Vec3f ) * count_u * count_v ) ;
patch . tex = ( Vec2f * ) managedBuf . Allocate ( sizeof ( Vec2f ) * count_u * count_v ) ;
patch . col = ( Vec4f * ) managedBuf . Allocate ( sizeof ( Vec4f ) * count_u * count_v ) ;
for ( int idx = 0 ; idx < count_u * count_v ; idx + + ) {
patch . pos [ idx ] = Vec3f ( points [ idx ] - > pos ) ;
patch . tex [ idx ] = Vec2f ( points [ idx ] - > uv ) ;
patch . col [ idx ] = Vec4f : : FromRGBA ( points [ idx ] - > color_32 ) ;
2015-04-08 21:44:54 +02:00
}
2017-01-08 22:14:35 +09:00
int maxVertices = SPLINE_BUFFER_SIZE / vertexSize ;
2017-03-09 18:04:16 +09:00
// Downsample until it fits, in case crazy tessellation factors are sent.
2017-03-09 17:56:19 +09:00
while ( ( tess_u + 1 ) * ( tess_v + 1 ) * num_patches_u * num_patches_v > maxVertices ) {
tess_u / = 2 ;
tess_v / = 2 ;
}
2018-01-31 18:39:43 +09:00
TessellateBezierPatch ( dest , inds , count , tess_u , tess_v , patch , origVertType ) ;
2015-04-08 21:44:54 +02:00
}
u32 vertTypeWithIndex16 = ( vertType & ~ GE_VTYPE_IDX_MASK ) | GE_VTYPE_IDX_16BIT ;
UVScale prevUVScale ;
2016-12-20 13:27:44 +01:00
if ( origVertType & GE_VTYPE_TC_MASK ) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c . uv ;
gstate_c . uv . uScale = 1.0f ;
gstate_c . uv . vScale = 1.0f ;
gstate_c . uv . uOff = 0 ;
gstate_c . uv . vOff = 0 ;
}
2018-03-05 12:24:02 +01:00
uint32_t vertTypeID = GetVertTypeID ( vertTypeWithIndex16 , gstate . getUVGenMode ( ) ) ;
2016-04-10 12:59:06 -07:00
int generatedBytesRead ;
2018-06-28 19:47:33 -07:00
DispatchSubmitPrim ( splineBuffer , quadIndices_ , PatchPrimToPrim ( prim_type ) , count , vertTypeID , & generatedBytesRead ) ;
2015-04-08 21:44:54 +02:00
DispatchFlush ( ) ;
2016-12-20 13:27:44 +01:00
if ( origVertType & GE_VTYPE_TC_MASK ) {
2015-04-08 21:44:54 +02:00
gstate_c . uv = prevUVScale ;
}
}