ppsspp/GPU/Common/SplineCommon.cpp

880 lines
30 KiB
C++
Raw Normal View History

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <string.h>
#include <algorithm>
#include "profiler/profiler.h"
#include "Common/CPUDetect.h"
#include "Common/MemoryUtil.h"
#include "Core/Config.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/Common/SplineCommon.h"
2015-04-08 21:44:54 +02:00
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h" // only needed for UVScale stuff
static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) {
if (type == GE_PATCHPRIM_LINES) {
*(indices++) = idx0;
*(indices++) = idx2;
*(indices++) = idx1;
*(indices++) = idx3;
*(indices++) = idx1;
*(indices++) = idx2;
} else {
*(indices++) = idx0;
*(indices++) = idx2;
*(indices++) = idx1;
*(indices++) = idx1;
*(indices++) = idx2;
*(indices++) = idx3;
}
}
static void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total = 0) {
for (int v = 0; v < num_v; ++v) {
for (int u = 0; u < num_u; ++u) {
int idx0 = v * (num_u + 1) + u + total; // Top left
int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left
CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1);
count += 6;
}
}
}
struct Weight {
float weights[4], derivs[4];
};
class Bezier3DWeight {
private:
void CalcWeights(float t, Weight &w) {
// Bernstein 3D basis polynomial
w.weights[0] = (1 - t) * (1 - t) * (1 - t);
w.weights[1] = 3 * t * (1 - t) * (1 - t);
w.weights[2] = 3 * t * t * (1 - t);
w.weights[3] = t * t * t;
// Derivative
w.derivs[0] = -3 * (1 - t) * (1 - t);
w.derivs[1] = 9 * t * t - 12 * t + 3;
w.derivs[2] = 3 * (2 - 3 * t) * t;
w.derivs[3] = 3 * t * t;
}
public:
Weight *CalcWeightsAll(u32 key) {
int tess = (int)key;
Weight *weights = new Weight[tess + 1];
const float inv_u = 1.0f / (float)tess;
for (int i = 0; i < tess + 1; ++i) {
const float t = (float)i * inv_u;
CalcWeights(t, weights[i]);
}
return weights;
}
};
class Spline3DWeight {
private:
struct KnotDiv {
float _3_0 = 1.0f / 3.0f;
float _4_1 = 1.0f / 3.0f;
float _5_2 = 1.0f / 3.0f;
float _3_1 = 1.0f / 2.0f;
float _4_2 = 1.0f / 2.0f;
float _3_2 = 1.0f; // Always 1
};
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void CalcKnots(int n, int type, float *knots, KnotDiv *divs) {
// Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0)
// for (int i = 0; i < n + 5; ++i) {
for (int i = 0; i < n + 2; ++i) {
knots[i] = (float)i - 2;
}
2018-01-31 20:25:07 +09:00
// The first edge is open
if ((type & 1) != 0) {
knots[0] = 0;
knots[1] = 0;
2018-01-31 20:25:07 +09:00
divs[0]._3_0 = 1.0f;
divs[0]._4_1 = 1.0f / 2.0f;
divs[0]._3_1 = 1.0f;
if (n > 1)
divs[1]._3_0 = 1.0f / 2.0f;
}
// The last edge is open
if ((type & 2) != 0) {
// knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv
divs[n - 1]._4_1 = 1.0f / 2.0f;
divs[n - 1]._5_2 = 1.0f;
divs[n - 1]._4_2 = 1.0f;
if (n > 1)
divs[n - 2]._5_2 = 1.0f / 2.0f;
}
2018-01-31 20:25:07 +09:00
}
void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) {
#ifdef _M_SSE
const __m128 knot012 = _mm_loadu_ps(knots);
const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012);
const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0));
const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2));
const float &f32 = t012.m128_f32[2];
// Following comments are for explains order of the multiply.
// float a = (1-f30)*(1-f31);
// float c = (1-f41)*(1-f42);
// float b = ( f31 * f41);
// float d = ( f42 * f52);
const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0));
const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1));
const __m128 c1_1_0_0 = { 1, 1, 0, 0 };
const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52));
const float &a = acbd.m128_f32[0];
const float &b = acbd.m128_f32[2];
const float &c = acbd.m128_f32[1];
const float &d = acbd.m128_f32[3];
// For derivative
const float &f31 = f30_41_31_42.m128_f32[2];
const float &f42 = f30_41_31_42.m128_f32[3];
#else
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
float t0 = (t - knots[0]);
float t1 = (t - knots[1]);
float t2 = (t - knots[2]);
float f30 = t0 * div._3_0;
float f41 = t1 * div._4_1;
float f52 = t2 * div._5_2;
float f31 = t1 * div._3_1;
float f42 = t2 * div._4_2;
float f32 = t2 * div._3_2;
float a = (1 - f30) * (1 - f31);
float b = (f31 * f41);
float c = (1 - f41) * (1 - f42);
float d = (f42 * f52);
#endif
w.weights[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32)
w.weights[1] = 1 - a - b + ((a + b + c - 1) * f32);
w.weights[2] = b + ((1 - b - c - d) * f32);
w.weights[3] = d * f32; // f32*f42*f52
// Derivative
float i1 = (1 - f31) * (1 - f32);
float i2 = f31 * (1 - f32) + (1 - f42) * f32;
float i3 = f42 * f32;
float f130 = i1 * div._3_0;
float f241 = i2 * div._4_1;
float f352 = i3 * div._5_2;
w.derivs[0] = 3 * (0 - f130);
w.derivs[1] = 3 * (f130 - f241);
w.derivs[2] = 3 * (f241 - f352);
w.derivs[3] = 3 * (f352 - 0);
}
public:
Weight *CalcWeightsAll(u32 key) {
int tess, count, type;
FromKey(key, tess, count, type);
const int num_patches = count - 3;
Weight *weights = new Weight[tess * num_patches + 1];
// float *knots = new float[num_patches + 5];
float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory
KnotDiv *divs = new KnotDiv[num_patches];
CalcKnots(num_patches, type, knots, divs);
const float inv_tess = 1.0f / (float)tess;
for (int i = 0; i < num_patches; ++i) {
const int _tess = (i == num_patches - 1) ? (tess + 1) : tess;
for (int j = 0; j < _tess; ++j) {
const int index = i * tess + j;
const float t = (float)index * inv_tess;
CalcWeights(t, knots + i, divs[i], weights[index]);
}
}
delete[] knots;
delete[] divs;
return weights;
}
u32 ToKey(int tess, int count, int type) {
return tess | (count << 8) | (type << 16);
}
void FromKey(u32 key, int &tess, int &count, int &type) {
tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF;
}
};
template<class T>
class WeightCache : public T {
private:
std::unordered_map<u32, Weight*> weightsCache;
public:
Weight* operator [] (u32 key) {
Weight *&weights = weightsCache[key];
if (!weights)
weights = CalcWeightsAll(key);
return weights;
}
void Clear() {
for (auto it : weightsCache)
delete[] it.second;
weightsCache.clear();
}
};
static WeightCache<Bezier3DWeight> bezierWeightsCache;
static WeightCache<Spline3DWeight> splineWeightsCache;
struct Weight2D {
const Weight *u, *v;
template<class T>
Weight2D(WeightCache<T> &cache, u32 key_u, u32 key_v) {
u = cache[key_u];
v = (key_u != key_v) ? cache[key_v] : u; // Use same weights if u == v
}
};
void DrawEngineCommon::ClearSplineBezierWeights() {
bezierWeightsCache.Clear();
splineWeightsCache.Clear();
}
bool CanUseHardwareTessellation(GEPatchPrimType prim) {
if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) {
return CanUseHardwareTransform(PatchPrimToPrim(prim));
}
return false;
}
// Prepare mesh of one patch for "Instanced Tessellation".
static void TessellateSplinePatchHardware(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) {
SimpleVertex *&vertices = (SimpleVertex*&)dest;
float inv_u = 1.0f / (float)spatch.tess_u;
float inv_v = 1.0f / (float)spatch.tess_v;
// Generating simple input vertices for the spline-computing vertex shader.
for (int tile_v = 0; tile_v < spatch.tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < spatch.tess_u + 1; ++tile_u) {
SimpleVertex &vert = vertices[tile_v * (spatch.tess_u + 1) + tile_u];
vert.pos.x = (float)tile_u * inv_u;
vert.pos.y = (float)tile_v * inv_v;
// TODO: Move to shader uniform and unify this method spline and bezier if necessary.
// For compute normal
vert.nrm.x = inv_u;
vert.nrm.y = inv_v;
}
}
BuildIndex(indices, count, spatch.tess_u, spatch.tess_v, spatch.primType);
}
template <bool origNrm, bool origCol, bool origTc, bool useSSE4>
static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) {
// Full (mostly) correct tessellation of spline patches.
// Not very fast.
u32 key_u = splineWeightsCache.ToKey(spatch.tess_u, spatch.count_u, spatch.type_u);
u32 key_v = splineWeightsCache.ToKey(spatch.tess_v, spatch.count_v, spatch.type_v);
Weight2D weights(splineWeightsCache, key_u, key_v);
// Increase tessellation based on the size. Should be approximately right?
int patch_div_s = (spatch.count_u - 3) * spatch.tess_u;
int patch_div_t = (spatch.count_v - 3) * spatch.tess_v;
if (quality == 0) {
// Low quality
patch_div_s = (spatch.count_u - 3) * 2;
patch_div_t = (spatch.count_v - 3) * 2;
}
if (quality > 1) {
2016-04-10 17:33:34 -07:00
// Don't cut below 2, though.
if (patch_div_s > 2) {
patch_div_s /= quality;
}
if (patch_div_t > 2) {
patch_div_t /= quality;
}
}
// Downsample until it fits, in case crazy tessellation factors are sent.
while ((patch_div_s + 1) * (patch_div_t + 1) > maxVertices) {
patch_div_s /= 2;
patch_div_t /= 2;
}
2016-04-10 17:33:34 -07:00
if (patch_div_s < 1) patch_div_s = 1;
if (patch_div_t < 1) patch_div_t = 1;
// First compute all the vertices and put them in an array
SimpleVertex *&vertices = (SimpleVertex*&)dest;
2014-12-13 10:35:47 -08:00
float tu_width = (float)spatch.count_u - 3.0f;
float tv_height = (float)spatch.count_v - 3.0f;
// int max_idx = spatch.count_u * spatch.count_v;
bool computeNormals = spatch.computeNormals;
float one_over_patch_div_s = 1.0f / (float)(patch_div_s);
float one_over_patch_div_t = 1.0f / (float)(patch_div_t);
for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
float v = (float)tile_v * (float)(spatch.count_v - 3) * one_over_patch_div_t;
if (v < 0.0f)
v = 0.0f;
for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
float u = (float)tile_u * (float)(spatch.count_u - 3) * one_over_patch_div_s;
if (u < 0.0f)
u = 0.0f;
SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
Vec4f vert_color(0, 0, 0, 0);
Vec3f vert_pos;
vert_pos.SetZero();
Vec3f du, dv;
Vec2f vert_tex;
if (origNrm) {
du.SetZero();
dv.SetZero();
}
if (origCol) {
2014-12-13 10:36:09 -08:00
vert_color.SetZero();
} else {
vert->color_32 = spatch.defcolor;
}
if (origTc) {
vert_tex.SetZero();
2014-12-13 10:36:09 -08:00
} else {
vert->uv[0] = tu_width * ((float)tile_u * one_over_patch_div_s);
vert->uv[1] = tv_height * ((float)tile_v * one_over_patch_div_t);
}
int iu = (int)u;
int iv = (int)v;
// TODO: Would really like to fix the surrounding logic somehow to get rid of these but I can't quite get it right..
// Without the previous epsilons and with large count_u, we will end up doing an out of bounds access later without these.
if (iu >= spatch.count_u - 3) iu = spatch.count_u - 4;
if (iv >= spatch.count_v - 3) iv = spatch.count_v - 4;
const Weight &wu = weights.u[tile_u];
const Weight &wv = weights.v[tile_v];
// Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points.
2015-04-16 18:31:28 +02:00
int patch_w = std::min(spatch.count_u - iu, 4);
int patch_h = std::min(spatch.count_v - iv, 4);
for (int ii = 0; ii < patch_w; ++ii) {
for (int jj = 0; jj < patch_h; ++jj) {
float u_spline = wu.weights[ii];
float v_spline = wv.weights[jj];
float f = u_spline * v_spline;
if (f > 0.0f) {
int idx = spatch.count_u * (iv + jj) + (iu + ii);
/*
if (idx >= max_idx) {
char temp[512];
snprintf(temp, sizeof(temp), "count_u: %d count_v: %d patch_w: %d patch_h: %d ii: %d jj: %d iu: %d iv: %d patch_div_s: %d patch_div_t: %d\n", spatch.count_u, spatch.count_v, patch_w, patch_h, ii, jj, iu, iv, patch_div_s, patch_div_t);
OutputDebugStringA(temp);
2017-02-25 00:25:46 +01:00
Crash();
}*/
vert_pos += spatch.pos[idx] * f;
if (origTc) {
vert_tex += spatch.tex[idx] * f;
}
if (origCol) {
vert_color += spatch.col[idx] * f;
}
if (origNrm) {
du += spatch.pos[idx] * (wu.derivs[ii] * wv.weights[jj]);
dv += spatch.pos[idx] * (wu.weights[ii] * wv.derivs[jj]);
}
}
}
}
vert->pos = vert_pos;
if (origNrm) {
vert->nrm = Cross(du, dv).Normalized(useSSE4);
} else {
vert->nrm.SetZero();
vert->nrm.z = 1.0f;
}
if (origCol) {
2014-12-13 10:36:09 -08:00
vert->color_32 = vert_color.ToRGBA();
}
if (origTc) {
vert_tex.Write(vert->uv);
}
}
}
BuildIndex(indices, count, patch_div_s, patch_div_t, spatch.primType);
}
template <bool origNrm, bool origCol, bool origTc>
static inline void SplinePatchFullQualityDispatch4(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) {
if (cpu_info.bSSE4_1)
SplinePatchFullQuality<origNrm, origCol, origTc, true>(dest, indices, count, spatch, origVertType, quality, maxVertices);
else
SplinePatchFullQuality<origNrm, origCol, origTc, false>(dest, indices, count, spatch, origVertType, quality, maxVertices);
}
template <bool origNrm, bool origCol>
static inline void SplinePatchFullQualityDispatch3(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) {
bool origTc = (origVertType & GE_VTYPE_TC_MASK) != 0;
if (origTc)
SplinePatchFullQualityDispatch4<origNrm, origCol, true>(dest, indices, count, spatch, origVertType, quality, maxVertices);
else
SplinePatchFullQualityDispatch4<origNrm, origCol, false>(dest, indices, count, spatch, origVertType, quality, maxVertices);
}
template <bool origNrm>
static inline void SplinePatchFullQualityDispatch2(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) {
bool origCol = (origVertType & GE_VTYPE_COL_MASK) != 0;
if (origCol)
SplinePatchFullQualityDispatch3<origNrm, true>(dest, indices, count, spatch, origVertType, quality, maxVertices);
else
SplinePatchFullQualityDispatch3<origNrm, false>(dest, indices, count, spatch, origVertType, quality, maxVertices);
}
static void SplinePatchFullQualityDispatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) {
bool origNrm = (origVertType & GE_VTYPE_NRM_MASK) != 0;
if (origNrm)
SplinePatchFullQualityDispatch2<true>(dest, indices, count, spatch, origVertType, quality, maxVertices);
else
SplinePatchFullQualityDispatch2<false>(dest, indices, count, spatch, origVertType, quality, maxVertices);
}
void TessellateSplinePatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int maxVertexCount) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 0, maxVertexCount);
break;
case MEDIUM_QUALITY:
SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 2, maxVertexCount);
break;
case HIGH_QUALITY:
SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 1, maxVertexCount);
break;
}
}
template <typename T>
struct PrecomputedCurves {
PrecomputedCurves(const T *const p[16]) : p(p) {
}
// http://en.wikipedia.org/wiki/Bernstein_polynomial
template<class T>
static T Bernstein3D(const T p[4], const float w[4]) {
if (w[0] == 1) return p[0];
if (w[3] == 1) return p[3];
// Linear combination
return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3];
}
void Bernstein3D_U(const float w[4]) {
horiz[0] = Bernstein3D(p[0], w);
horiz[1] = Bernstein3D(p[4], w);
horiz[2] = Bernstein3D(p[8], w);
horiz[3] = Bernstein3D(p[12], w);
}
T Bernstein3D_V(const float w[4]) {
return Bernstein3D(horiz, w);
}
const T *const *p;
T horiz[4];
};
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float inv_u = 1.0f / (float)tess_u;
const float inv_v = 1.0f / (float)tess_v;
// First compute all the vertices and put them in an array
SimpleVertex *&vertices = (SimpleVertex*&)dest;
const bool computeNormals = patch.computeNormals;
const bool sampleColors = (origVertType & GE_VTYPE_COL_MASK) != 0;
const bool sampleTexcoords = (origVertType & GE_VTYPE_TC_MASK) != 0;
Weight2D weights(bezierWeightsCache, tess_u, tess_v);
int num_patches_u = (patch.count_u - 1) / 3;
int num_patches_v = (patch.count_v - 1) / 3;
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
// Precompute the horizontal curves to we only have to evaluate the vertical ones.
Vec3f *_pos[16];
Vec4f *_col[16];
Vec2f *_tex[16];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * patch.count_u;
_pos[point] = &patch.pos[idx];
_col[point] = &patch.col[idx];
_tex[point] = &patch.tex[idx];
}
PrecomputedCurves<Vec3f> prepos(_pos);
PrecomputedCurves<Vec4f> precol(_col);
PrecomputedCurves<Vec2f> pretex(_tex);
PrecomputedCurves<Vec3f> prederivU(_pos);
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
const Weight &wu = weights.u[tile_u];
2018-02-01 12:02:03 +09:00
prepos.Bernstein3D_U(wu.weights);
if (sampleColors)
precol.Bernstein3D_U(wu.weights);
if (sampleTexcoords)
pretex.Bernstein3D_U(wu.weights);
if (computeNormals)
prederivU.Bernstein3D_U(wu.derivs);
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
2018-02-01 12:02:03 +09:00
const Weight &wv = weights.v[tile_v];
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
2018-02-01 12:02:03 +09:00
vert.pos = prepos.Bernstein3D_V(wv.weights);
if (sampleColors) {
vert.color_32 = precol.Bernstein3D_V(wv.weights).ToRGBA();
} else {
vert.color_32 = patch.defcolor;
}
if (sampleTexcoords) {
pretex.Bernstein3D_V(wv.weights).Write(vert.uv);
} else {
// Generate texcoord
vert.uv[0] = patch_u + tile_u * inv_u;
vert.uv[1] = patch_v + tile_v * inv_v;
}
if (computeNormals) {
const Vec3f derivU = prederivU.Bernstein3D_V(wv.weights);
const Vec3f derivV = prepos.Bernstein3D_V(wv.derivs);
vert.nrm = Cross(derivU, derivV).Normalized();
if (patch.patchFacing)
vert.nrm *= -1.0f;
} else {
vert.nrm.SetZero();
}
}
}
int patch_index = patch_v * num_patches_u + patch_u;
int total = patch_index * (tess_u + 1) * (tess_v + 1);
BuildIndex(indices + count, count, tess_u, tess_v, patch.primType, total);
dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex);
}
}
}
// Prepare mesh of one patch for "Instanced Tessellation".
static void TessellateBezierPatchHardware(u8 *&dest, u16 *indices, int &count, int tess_u, int tess_v, GEPatchPrimType primType) {
SimpleVertex *&vertices = (SimpleVertex*&)dest;
float inv_u = 1.0f / (float)tess_u;
float inv_v = 1.0f / (float)tess_v;
// Generating simple input vertices for the bezier-computing vertex shader.
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
vert.pos.x = (float)tile_u * inv_u;
vert.pos.y = (float)tile_v * inv_v;
}
}
BuildIndex(indices, count, tess_u, tess_v, primType);
}
void TessellateBezierPatch(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
_BezierPatchHighQuality(dest, indices, count, 2, 2, patch, origVertType);
break;
case MEDIUM_QUALITY:
2018-07-05 15:29:40 +08:00
_BezierPatchHighQuality(dest, indices, count, std::max(tess_u / 2, 1), std::max(tess_v / 2, 1), patch, origVertType);
break;
case HIGH_QUALITY:
_BezierPatchHighQuality(dest, indices, count, tess_u, tess_v, patch, origVertType);
break;
}
}
2015-04-08 21:44:54 +02:00
static void CopyControlPoints(const SimpleVertex *const *points, float *pos, float *tex, float *col, int posStride, int texStride, int colStride, int size, bool hasColor, bool hasTexCoords) {
for (int idx = 0; idx < size; idx++) {
memcpy(pos, points[idx]->pos.AsArray(), 3 * sizeof(float));
pos += posStride;
if (hasTexCoords) {
memcpy(tex, points[idx]->uv, 2 * sizeof(float));
tex += texStride;
}
if (hasColor) {
memcpy(col, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float));
col += colStride;
}
}
if (!hasColor)
memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float));
}
class SimpleBufferManager {
private:
u8 *buf_;
size_t totalSize, maxSize_;
public:
SimpleBufferManager(u8 *buf, size_t maxSize)
: buf_(buf), totalSize(0), maxSize_(maxSize) {}
u8 *Allocate(size_t size) {
size = (size + 15) & ~15; // Align for 16 bytes
if ((totalSize + size) > maxSize_)
return nullptr; // No more memory
size_t tmp = totalSize;
totalSize += size;
return buf_ + tmp;
}
};
// This maps GEPatchPrimType to GEPrimitiveType.
const GEPrimitiveType primType[] = { GE_PRIM_TRIANGLES, GE_PRIM_LINES, GE_PRIM_POINTS, GE_PRIM_POINTS };
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
PROFILE_THIS_SCOPE("spline");
2015-04-08 21:44:54 +02:00
DispatchFlush();
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
if (count_u < 4 || count_v < 4)
return;
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
IndexConverter ConvertIndex(vertType, indices);
2015-04-08 21:44:54 +02:00
if (indices)
GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound);
2015-04-08 21:44:54 +02:00
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
2018-01-30 18:10:11 +09:00
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++)
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
2015-04-08 21:44:54 +02:00
int count = 0;
u8 *dest = splineBuffer;
SplinePatchLocal patch;
patch.tess_u = tess_u;
patch.tess_v = tess_v;
2015-04-08 21:44:54 +02:00
patch.type_u = type_u;
patch.type_v = type_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.computeNormals = computeNormals;
patch.primType = prim_type;
patch.patchFacing = patchFacing;
patch.defcolor = points[0]->color_32;
2015-04-08 21:44:54 +02:00
if (CanUseHardwareTessellation(prim_type)) {
tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType);
TessellateSplinePatchHardware(dest, quadIndices_, count, patch);
numPatches = (count_u - 3) * (count_v - 3);
} else {
patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v);
patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v);
patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++) {
patch.pos[idx] = Vec3f(points[idx]->pos);
patch.tex[idx] = Vec2f(points[idx]->uv);
patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32);
}
int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);
}
2015-04-08 21:44:54 +02:00
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0.0f;
gstate_c.uv.vOff = 0.0f;
2015-04-08 21:44:54 +02:00
}
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
int generatedBytesRead;
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
2015-04-08 21:44:54 +02:00
DispatchFlush();
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
2015-04-08 21:44:54 +02:00
gstate_c.uv = prevUVScale;
}
}
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
PROFILE_THIS_SCOPE("bezier");
2015-04-08 21:44:54 +02:00
DispatchFlush();
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
// This would result in num_patches_u / num_patches_v being 0.
if (count_u < 4 || count_v < 4)
return;
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
IndexConverter ConvertIndex(vertType, indices);
2015-04-08 21:44:54 +02:00
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
2018-01-30 18:10:11 +09:00
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
2018-01-30 14:41:39 +09:00
// If specified as 0, uses 1.
if (tess_u < 1) tess_u = 1;
if (tess_v < 1) tess_v = 1;
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++)
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
2018-01-30 14:41:39 +09:00
int count = 0;
u8 *dest = splineBuffer;
u16 *inds = quadIndices_;
2015-04-08 21:44:54 +02:00
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = (count_u - 1) / 3;
int num_patches_v = (count_v - 1) / 3;
if (CanUseHardwareTessellation(prim_type)) {
tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType);
2018-01-30 14:41:39 +09:00
TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type);
numPatches = num_patches_u * num_patches_v;
} else {
BezierPatch patch;
patch.count_u = count_u;
patch.count_v = count_v;
patch.primType = prim_type;
patch.computeNormals = computeNormals;
patch.patchFacing = patchFacing;
patch.defcolor = points[0]->color_32;
patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v);
patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v);
patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++) {
patch.pos[idx] = Vec3f(points[idx]->pos);
patch.tex[idx] = Vec2f(points[idx]->uv);
patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32);
2015-04-08 21:44:54 +02:00
}
int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
// Downsample until it fits, in case crazy tessellation factors are sent.
while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) {
tess_u /= 2;
tess_v /= 2;
}
TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType);
2015-04-08 21:44:54 +02:00
}
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if (origVertType & GE_VTYPE_TC_MASK) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0;
gstate_c.uv.vOff = 0;
}
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
int generatedBytesRead;
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
2015-04-08 21:44:54 +02:00
DispatchFlush();
if (origVertType & GE_VTYPE_TC_MASK) {
2015-04-08 21:44:54 +02:00
gstate_c.uv = prevUVScale;
}
}