ppsspp/Core/MIPS/RiscV/RiscVRegCache.cpp

973 lines
28 KiB
C++
Raw Normal View History

// Copyright (c) 2023- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "Common/CPUDetect.h"
#include "Core/MIPS/RiscV/RiscVRegCache.h"
#include "Core/MIPS/JitCommon/JitState.h"
#include "Core/Reporting.h"
#ifndef offsetof
#include "stddef.h"
#endif
using namespace RiscVGen;
using namespace RiscVJitConstants;
RiscVRegCache::RiscVRegCache(MIPSState *mipsState, MIPSComp::JitOptions *jo)
: mips_(mipsState), jo_(jo) {
}
void RiscVRegCache::Init(RiscVEmitter *emitter) {
emit_ = emitter;
}
void RiscVRegCache::Start() {
for (int i = 0; i < NUM_RVREG; i++) {
ar[i].mipsReg = IRREG_INVALID;
ar[i].isDirty = false;
ar[i].pointerified = false;
ar[i].tempLocked = false;
}
for (int i = 0; i < NUM_MIPSREG; i++) {
mr[i].loc = MIPSLoc::MEM;
mr[i].reg = INVALID_REG;
mr[i].imm = -1;
mr[i].spillLock = false;
mr[i].isStatic = false;
}
int numStatics;
const StaticAllocation *statics = GetStaticAllocations(numStatics);
for (int i = 0; i < numStatics; i++) {
ar[statics[i].ar].mipsReg = statics[i].mr;
ar[statics[i].ar].pointerified = statics[i].pointerified && jo_->enablePointerify;
mr[statics[i].mr].loc = MIPSLoc::RVREG;
mr[statics[i].mr].reg = statics[i].ar;
mr[statics[i].mr].isStatic = true;
mr[statics[i].mr].spillLock = true;
}
// Treat R_ZERO a bit specially, but it's basically static alloc too.
ar[R_ZERO].mipsReg = MIPS_REG_ZERO;
mr[MIPS_REG_ZERO].loc = MIPSLoc::RVREG_IMM;
mr[MIPS_REG_ZERO].reg = R_ZERO;
mr[MIPS_REG_ZERO].imm = 0;
mr[MIPS_REG_ZERO].isStatic = true;
}
const RiscVReg *RiscVRegCache::GetMIPSAllocationOrder(int &count) {
// X8 and X9 are the most ideal for static alloc because they can be used with compression.
// Otherwise we stick to saved regs - might not be necessary.
static const RiscVReg allocationOrder[] = {
X7, X8, X9, X12, X13, X14, X1, X5, X6, X15, X16, X17, X18, X19, X20, X21, X22, X23, X28, X29, X30, X31,
};
static const RiscVReg allocationOrderStaticAlloc[] = {
X7, X12, X13, X14, X1, X5, X6, X15, X16, X17, X21, X22, X23, X28, X29, X30, X31,
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocationOrderStaticAlloc);
return allocationOrderStaticAlloc;
} else {
count = ARRAY_SIZE(allocationOrder);
return allocationOrder;
}
}
const RiscVRegCache::StaticAllocation *RiscVRegCache::GetStaticAllocations(int &count) {
static const StaticAllocation allocs[] = {
{ MIPS_REG_SP, X8, true },
{ MIPS_REG_V0, X9 },
{ MIPS_REG_V1, X18 },
{ MIPS_REG_A0, X19 },
{ MIPS_REG_RA, X20 },
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocs);
return allocs;
} else {
count = 0;
return nullptr;
}
}
void RiscVRegCache::EmitLoadStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
emit_->LWU(allocs[i].ar, CTXREG, offset);
if (allocs[i].pointerified && jo_->enablePointerify) {
emit_->ADD(allocs[i].ar, allocs[i].ar, MEMBASEREG);
}
}
}
void RiscVRegCache::EmitSaveStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
// This only needs to run once (by Asm) so checks don't need to be fast.
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
// TODO: Check dirty?
emit_->SW(allocs[i].ar, CTXREG, offset);
}
}
void RiscVRegCache::FlushBeforeCall() {
// These registers are not preserved by function calls.
for (int i = 5; i <= 7; ++i) {
FlushRiscVReg(RiscVReg(X0 + i));
}
for (int i = 10; i <= 17; ++i) {
FlushRiscVReg(RiscVReg(X0 + i));
}
for (int i = 28; i <= 31; ++i) {
FlushRiscVReg(RiscVReg(X0 + i));
}
}
bool RiscVRegCache::IsInRAM(IRRegIndex reg) {
_dbg_assert_(IsValidReg(reg));
return mr[reg].loc == MIPSLoc::MEM;
}
bool RiscVRegCache::IsMapped(IRRegIndex mipsReg) {
_dbg_assert_(IsValidReg(mipsReg));
return mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM;
}
bool RiscVRegCache::IsMappedAsPointer(IRRegIndex mipsReg) {
_dbg_assert_(IsValidReg(mipsReg));
if (mr[mipsReg].loc == MIPSLoc::RVREG) {
return ar[mr[mipsReg].reg].pointerified;
} else if (mr[mipsReg].loc == MIPSLoc::RVREG_IMM) {
if (ar[mr[mipsReg].reg].pointerified) {
ERROR_LOG(JIT, "Really shouldn't be pointerified here");
}
} else if (mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR) {
return true;
}
return false;
}
void RiscVRegCache::MarkDirty(RiscVReg reg) {
// Can't mark X0 dirty.
_dbg_assert_(reg > X0 && reg <= X31);
ar[reg].isDirty = true;
2023-07-21 20:32:47 -07:00
// If reg is written to, pointerification is lost.
ar[reg].pointerified = false;
if (ar[reg].mipsReg != IRREG_INVALID) {
RegStatusMIPS &m = mr[ar[reg].mipsReg];
if (m.loc == MIPSLoc::RVREG_AS_PTR || m.loc == MIPSLoc::RVREG_IMM) {
m.loc = MIPSLoc::RVREG;
m.imm = -1;
}
_dbg_assert_(m.loc == MIPSLoc::RVREG);
}
}
void RiscVRegCache::MarkPtrDirty(RiscVReg reg) {
// Can't mark X0 dirty.
_dbg_assert_(reg > X0 && reg <= X31);
ar[reg].isDirty = true;
if (ar[reg].mipsReg != IRREG_INVALID) {
_dbg_assert_(mr[ar[reg].mipsReg].loc == MIPSLoc::RVREG_AS_PTR);
} else {
_dbg_assert_(ar[reg].pointerified);
}
}
void RiscVRegCache::SetRegImm(RiscVReg reg, u64 imm) {
_dbg_assert_(reg != R_ZERO || imm == 0);
_dbg_assert_(reg >= X0 && reg <= X31);
// TODO: Could optimize this more for > 32 bit constants.
emit_->LI(reg, imm);
_dbg_assert_(!ar[reg].pointerified);
}
void RiscVRegCache::MapRegTo(RiscVReg reg, IRRegIndex mipsReg, int mapFlags) {
_dbg_assert_(reg > X0 && reg <= X31);
_dbg_assert_(IsValidReg(mipsReg));
_dbg_assert_(!mr[mipsReg].isStatic);
if (mr[mipsReg].isStatic) {
ERROR_LOG(JIT, "Cannot MapRegTo static register %d", mipsReg);
return;
}
ar[reg].isDirty = (mapFlags & MAP_DIRTY) != 0;
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
if (mipsReg == MIPS_REG_ZERO) {
// If we get a request to load the zero register, at least we won't spend
// time on a memory access...
emit_->LI(reg, 0);
// This way, if we SetImm() it, we'll keep it.
mr[mipsReg].loc = MIPSLoc::RVREG_IMM;
mr[mipsReg].imm = 0;
} else {
switch (mr[mipsReg].loc) {
case MIPSLoc::MEM:
emit_->LWU(reg, CTXREG, GetMipsRegOffset(mipsReg));
mr[mipsReg].loc = MIPSLoc::RVREG;
break;
case MIPSLoc::IMM:
SetRegImm(reg, mr[mipsReg].imm);
// IMM is always dirty.
ar[reg].isDirty = true;
// If we are mapping dirty, it means we're gonna overwrite.
// So the imm value is no longer valid.
if (mapFlags & MAP_DIRTY)
mr[mipsReg].loc = MIPSLoc::RVREG;
else
mr[mipsReg].loc = MIPSLoc::RVREG_IMM;
break;
case MIPSLoc::RVREG_IMM:
// If it's not dirty, we can keep it.
if (ar[reg].isDirty)
mr[mipsReg].loc = MIPSLoc::RVREG;
break;
default:
_assert_msg_(mr[mipsReg].loc != MIPSLoc::RVREG_AS_PTR, "MapRegTo with a pointer?");
mr[mipsReg].loc = MIPSLoc::RVREG;
break;
}
}
} else {
_dbg_assert_(mipsReg != MIPS_REG_ZERO);
_dbg_assert_(ar[reg].isDirty);
mr[mipsReg].loc = MIPSLoc::RVREG;
}
ar[reg].mipsReg = mipsReg;
ar[reg].pointerified = false;
mr[mipsReg].reg = reg;
}
RiscVReg RiscVRegCache::AllocateReg() {
int allocCount;
const RiscVReg *allocOrder = GetMIPSAllocationOrder(allocCount);
allocate:
for (int i = 0; i < allocCount; i++) {
RiscVReg reg = allocOrder[i];
if (ar[reg].mipsReg == IRREG_INVALID && !ar[reg].tempLocked) {
return reg;
}
}
// Still nothing. Let's spill a reg and goto 10.
// TODO: Use age or something to choose which register to spill?
// TODO: Spill dirty regs first? or opposite?
bool clobbered;
RiscVReg bestToSpill = FindBestToSpill(true, &clobbered);
if (bestToSpill == INVALID_REG) {
bestToSpill = FindBestToSpill(false, &clobbered);
}
if (bestToSpill != INVALID_REG) {
if (clobbered) {
DiscardR(ar[bestToSpill].mipsReg);
} else {
FlushRiscVReg(bestToSpill);
}
// Now one must be free.
goto allocate;
}
// Uh oh, we have all of them spilllocked....
ERROR_LOG_REPORT(JIT, "Out of spillable registers near PC %08x", mips_->pc);
_assert_(bestToSpill != INVALID_REG);
return INVALID_REG;
}
RiscVReg RiscVRegCache::FindBestToSpill(bool unusedOnly, bool *clobbered) {
int allocCount;
const RiscVReg *allocOrder = GetMIPSAllocationOrder(allocCount);
static const int UNUSED_LOOKAHEAD_OPS = 30;
*clobbered = false;
for (int i = 0; i < allocCount; i++) {
RiscVReg reg = allocOrder[i];
if (ar[reg].mipsReg != IRREG_INVALID && mr[ar[reg].mipsReg].spillLock)
continue;
if (ar[reg].tempLocked)
continue;
// As it's in alloc-order, we know it's not static so we don't need to check for that.
// TODO: Look for clobbering in the IRInst array with index?
// Not awesome. A used reg. Let's try to avoid spilling.
// TODO: Actually check if we'd be spilling.
if (unusedOnly) {
continue;
}
return reg;
}
return INVALID_REG;
}
RiscVReg RiscVRegCache::TryMapTempImm(IRRegIndex r) {
_dbg_assert_(IsValidReg(r));
// If already mapped, no need for a temporary.
if (IsMapped(r)) {
return R(r);
}
if (mr[r].loc == MIPSLoc::IMM) {
if (mr[r].imm == 0) {
return R_ZERO;
}
// Try our luck - check for an exact match in another rvreg.
for (int i = 0; i < NUM_MIPSREG; ++i) {
if (mr[i].loc == MIPSLoc::RVREG_IMM && mr[i].imm == mr[r].imm) {
// Awesome, let's just use this reg.
return mr[i].reg;
}
}
}
return INVALID_REG;
}
RiscVReg RiscVRegCache::GetAndLockTempR() {
RiscVReg reg = AllocateReg();
if (reg != INVALID_REG) {
ar[reg].tempLocked = true;
}
return reg;
}
RiscVReg RiscVRegCache::MapReg(IRRegIndex mipsReg, int mapFlags) {
_dbg_assert_(IsValidReg(mipsReg));
// TODO: Optimization to force HI/LO to be combined?
if (mipsReg == IRREG_INVALID) {
ERROR_LOG(JIT, "Cannot map invalid register");
return INVALID_REG;
}
RiscVReg riscvReg = mr[mipsReg].reg;
if (mr[mipsReg].isStatic) {
_dbg_assert_(riscvReg != INVALID_REG);
if (riscvReg == INVALID_REG) {
ERROR_LOG(JIT, "MapReg on statically mapped reg %d failed - riscvReg got lost", mipsReg);
}
if (mr[mipsReg].loc == MIPSLoc::IMM) {
// Back into the register, with or without the imm value.
// If noinit, the MAP_DIRTY check below will take care of the rest.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
SetRegImm(riscvReg, mr[mipsReg].imm);
mr[mipsReg].loc = MIPSLoc::RVREG_IMM;
ar[riscvReg].pointerified = false;
}
} else if (mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR) {
// Was mapped as pointer, now we want it mapped as a value, presumably to
// add or subtract stuff to it.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
#ifdef MASKED_PSP_MEMORY
_dbg_assert_(!ar[riscvReg].isDirty && (mapFlags & MAP_DIRTY) == 0);
#endif
emit_->SUB(riscvReg, riscvReg, MEMBASEREG);
}
mr[mipsReg].loc = MIPSLoc::RVREG;
}
// Erasing the imm on dirty (necessary since otherwise we will still think it's ML_RVREG_IMM and return
// true for IsImm and calculate crazily wrong things). /unknown
if (mapFlags & MAP_DIRTY) {
// As we are dirty, can't keep RVREG_IMM, we will quickly drift out of sync
mr[mipsReg].loc = MIPSLoc::RVREG;
ar[riscvReg].pointerified = false;
ar[riscvReg].isDirty = true;
}
return mr[mipsReg].reg;
}
// Let's see if it's already mapped. If so we just need to update the dirty flag.
// We don't need to check for ML_NOINIT because we assume that anyone who maps
// with that flag immediately writes a "known" value to the register.
if (mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM) {
_dbg_assert_(riscvReg != INVALID_REG && ar[riscvReg].mipsReg == mipsReg);
if (ar[riscvReg].mipsReg != mipsReg) {
ERROR_LOG_REPORT(JIT, "Register mapping out of sync! %i", mipsReg);
}
if (mapFlags & MAP_DIRTY) {
// Mapping dirty means the old imm value is invalid.
mr[mipsReg].loc = MIPSLoc::RVREG;
ar[riscvReg].isDirty = true;
// If reg is written to, pointerification is lost.
ar[riscvReg].pointerified = false;
}
return mr[mipsReg].reg;
} else if (mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR) {
// Was mapped as pointer, now we want it mapped as a value, presumably to
// add or subtract stuff to it.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
#ifdef MASKED_PSP_MEMORY
_dbg_assert_(!ar[riscvReg].isDirty && (mapFlags & MAP_DIRTY) == 0);
#endif
emit_->SUB(riscvReg, riscvReg, MEMBASEREG);
}
mr[mipsReg].loc = MIPSLoc::RVREG;
if (mapFlags & MAP_DIRTY) {
ar[riscvReg].isDirty = true;
}
return mr[mipsReg].reg;
}
// Okay, not mapped, so we need to allocate an RV register.
RiscVReg reg = AllocateReg();
if (reg != INVALID_REG) {
// Grab it, and load the value into it (if requested).
MapRegTo(reg, mipsReg, mapFlags);
}
return reg;
}
RiscVReg RiscVRegCache::MapRegAsPointer(IRRegIndex reg) {
_dbg_assert_(IsValidRegNoZero(reg));
// Already mapped.
if (mr[reg].loc == MIPSLoc::RVREG_AS_PTR) {
return mr[reg].reg;
}
RiscVReg riscvReg = INVALID_REG;
if (mr[reg].loc != MIPSLoc::RVREG && mr[reg].loc != MIPSLoc::RVREG_IMM) {
riscvReg = MapReg(reg);
} else {
riscvReg = mr[reg].reg;
}
if (mr[reg].loc == MIPSLoc::RVREG || mr[reg].loc == MIPSLoc::RVREG_IMM) {
// If there was an imm attached, discard it.
mr[reg].loc = MIPSLoc::RVREG;
if (!jo_->enablePointerify) {
// Convert to a pointer by adding the base and clearing off the top bits.
// If SP, we can probably avoid the top bit clear, let's play with that later.
AddMemBase(riscvReg);
mr[reg].loc = MIPSLoc::RVREG_AS_PTR;
} else if (!ar[riscvReg].pointerified) {
AddMemBase(riscvReg);
ar[riscvReg].pointerified = true;
}
} else {
ERROR_LOG(JIT, "MapRegAsPointer : MapReg failed to allocate a register?");
}
return riscvReg;
}
void RiscVRegCache::AddMemBase(RiscVGen::RiscVReg reg) {
_assert_(reg >= X0 && reg <= X31);
#ifdef MASKED_PSP_MEMORY
// This destroys the value...
_dbg_assert_(!ar[reg].isDirty);
emit_->SLLIW(reg, reg, 2);
emit_->SRLIW(reg, reg, 2);
emit_->ADD(reg, reg, MEMBASEREG);
#else
// Clear the top bits to be safe.
if (cpu_info.RiscV_Zba) {
emit_->ADD_UW(reg, reg, MEMBASEREG);
} else {
_assert_(XLEN == 64);
emit_->SLLI(reg, reg, 32);
emit_->SRLI(reg, reg, 32);
emit_->ADD(reg, reg, MEMBASEREG);
}
#endif
}
void RiscVRegCache::MapIn(IRRegIndex rs) {
MapReg(rs);
}
void RiscVRegCache::MapInIn(IRRegIndex rd, IRRegIndex rs) {
SpillLock(rd, rs);
MapReg(rd);
MapReg(rs);
ReleaseSpillLock(rd, rs);
}
void RiscVRegCache::MapDirtyIn(IRRegIndex rd, IRRegIndex rs, bool avoidLoad) {
SpillLock(rd, rs);
bool load = !avoidLoad || rd == rs;
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd, rs);
}
void RiscVRegCache::MapDirtyInIn(IRRegIndex rd, IRRegIndex rs, IRRegIndex rt, bool avoidLoad) {
SpillLock(rd, rs, rt);
bool load = !avoidLoad || (rd == rs || rd == rt);
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd, rs, rt);
}
void RiscVRegCache::MapDirtyDirtyIn(IRRegIndex rd1, IRRegIndex rd2, IRRegIndex rs, bool avoidLoad) {
SpillLock(rd1, rd2, rs);
bool load1 = !avoidLoad || rd1 == rs;
bool load2 = !avoidLoad || rd2 == rs;
MapReg(rd1, load1 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rd2, load2 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd1, rd2, rs);
}
void RiscVRegCache::MapDirtyDirtyInIn(IRRegIndex rd1, IRRegIndex rd2, IRRegIndex rs, IRRegIndex rt, bool avoidLoad) {
SpillLock(rd1, rd2, rs, rt);
bool load1 = !avoidLoad || (rd1 == rs || rd1 == rt);
bool load2 = !avoidLoad || (rd2 == rs || rd2 == rt);
MapReg(rd1, load1 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rd2, load2 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd1, rd2, rs, rt);
}
void RiscVRegCache::FlushRiscVReg(RiscVReg r) {
_dbg_assert_(r > X0 && r <= X31);
_dbg_assert_(ar[r].mipsReg != MIPS_REG_ZERO);
_dbg_assert_(!mr[ar[r].mipsReg].isStatic);
if (r == INVALID_REG) {
ERROR_LOG(JIT, "FlushRiscVReg called on invalid register %d", r);
return;
}
if (ar[r].mipsReg == IRREG_INVALID) {
// Nothing to do, reg not mapped.
_dbg_assert_(!ar[r].isDirty);
return;
}
if (mr[ar[r].mipsReg].isStatic) {
ERROR_LOG(JIT, "Cannot FlushRiscVReg a statically mapped register");
return;
}
auto &mreg = mr[ar[r].mipsReg];
if (mreg.loc == MIPSLoc::RVREG_IMM || ar[r].mipsReg == MIPS_REG_ZERO) {
// We know its immediate value, no need to STR now.
mreg.loc = MIPSLoc::IMM;
mreg.reg = INVALID_REG;
} else {
if (mreg.loc == MIPSLoc::IMM || ar[r].isDirty) {
if (mreg.loc == MIPSLoc::RVREG_AS_PTR) {
// Unpointerify, in case dirty.
#ifdef MASKED_PSP_MEMORY
_dbg_assert_(!ar[r].isDirty && (mapFlags & MAP_DIRTY) == 0);
#endif
emit_->SUB(r, r, MEMBASEREG);
mreg.loc = MIPSLoc::RVREG;
}
RiscVReg storeReg = RiscVRegForFlush(ar[r].mipsReg);
if (storeReg != INVALID_REG)
emit_->SW(storeReg, CTXREG, GetMipsRegOffset(ar[r].mipsReg));
}
mreg.loc = MIPSLoc::MEM;
mreg.reg = INVALID_REG;
mreg.imm = -1;
}
ar[r].isDirty = false;
ar[r].mipsReg = IRREG_INVALID;
ar[r].pointerified = false;
}
void RiscVRegCache::DiscardR(IRRegIndex mipsReg) {
_dbg_assert_(IsValidRegNoZero(mipsReg));
if (mr[mipsReg].isStatic) {
// Simply do nothing unless it's an IMM/RVREG_IMM/RVREG_AS_PTR, in case we just switch it over to RVREG, losing the value.
RiscVReg riscvReg = mr[mipsReg].reg;
_dbg_assert_(riscvReg != INVALID_REG);
if (mipsReg == MIPS_REG_ZERO) {
// Shouldn't happen, but in case it does.
mr[mipsReg].loc = MIPSLoc::RVREG_IMM;
mr[mipsReg].reg = R_ZERO;
mr[mipsReg].imm = 0;
} else if (mr[mipsReg].loc == MIPSLoc::RVREG_IMM || mr[mipsReg].loc == MIPSLoc::IMM || mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR) {
// Ignore the imm value, restore sanity
mr[mipsReg].loc = MIPSLoc::RVREG;
ar[riscvReg].pointerified = false;
ar[riscvReg].isDirty = false;
}
return;
}
const MIPSLoc prevLoc = mr[mipsReg].loc;
if (prevLoc == MIPSLoc::RVREG || prevLoc == MIPSLoc::RVREG_IMM || prevLoc == MIPSLoc::RVREG_AS_PTR) {
RiscVReg riscvReg = mr[mipsReg].reg;
_dbg_assert_(riscvReg != INVALID_REG);
ar[riscvReg].mipsReg = IRREG_INVALID;
ar[riscvReg].pointerified = false;
ar[riscvReg].isDirty = false;
mr[mipsReg].reg = INVALID_REG;
mr[mipsReg].loc = MIPSLoc::MEM;
mr[mipsReg].imm = -1;
}
if (prevLoc == MIPSLoc::IMM && mipsReg != MIPS_REG_ZERO) {
mr[mipsReg].loc = MIPSLoc::MEM;
mr[mipsReg].imm = -1;
}
}
RiscVReg RiscVRegCache::RiscVRegForFlush(IRRegIndex r) {
_dbg_assert_(IsValidReg(r));
if (mr[r].isStatic)
return INVALID_REG; // No flushing needed
switch (mr[r].loc) {
case MIPSLoc::IMM:
if (r == MIPS_REG_ZERO) {
return INVALID_REG;
}
// Zero is super easy.
if (mr[r].imm == 0) {
return R_ZERO;
}
// Could we get lucky? Check for an exact match in another rvreg.
for (int i = 0; i < NUM_MIPSREG; ++i) {
if (mr[i].loc == MIPSLoc::RVREG_IMM && mr[i].imm == mr[r].imm) {
// Awesome, let's just store this reg.
return mr[i].reg;
}
}
return INVALID_REG;
case MIPSLoc::RVREG:
case MIPSLoc::RVREG_IMM:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG_REPORT(JIT, "RiscVRegForFlush: MipsReg %d had bad riscvReg", r);
return INVALID_REG;
}
// No need to flush if it's zero or not dirty.
if (r == MIPS_REG_ZERO || !ar[mr[r].reg].isDirty) {
return INVALID_REG;
}
// TODO: Lo/hi optimization?
return mr[r].reg;
case MIPSLoc::RVREG_AS_PTR:
return INVALID_REG;
case MIPSLoc::MEM:
return INVALID_REG;
default:
ERROR_LOG_REPORT(JIT, "RiscVRegForFlush: MipsReg %d with invalid location %d", r, (int)mr[r].loc);
return INVALID_REG;
}
}
void RiscVRegCache::FlushR(IRRegIndex r) {
_dbg_assert_(IsValidRegNoZero(r));
if (mr[r].isStatic) {
ERROR_LOG(JIT, "Cannot flush static reg %d", r);
return;
}
switch (mr[r].loc) {
case MIPSLoc::IMM:
// IMM is always "dirty".
// TODO: HI/LO optimization?
if (r != MIPS_REG_ZERO) {
// Try to optimize using a different reg.
RiscVReg storeReg = RiscVRegForFlush(r);
if (storeReg == INVALID_REG) {
SetRegImm(SCRATCH1, mr[r].imm);
storeReg = SCRATCH1;
}
emit_->SW(storeReg, CTXREG, GetMipsRegOffset(r));
}
break;
case MIPSLoc::RVREG:
case MIPSLoc::RVREG_IMM:
if (ar[mr[r].reg].isDirty) {
RiscVReg storeReg = RiscVRegForFlush(r);
if (storeReg != INVALID_REG) {
emit_->SW(storeReg, CTXREG, GetMipsRegOffset(r));
}
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = IRREG_INVALID;
ar[mr[r].reg].pointerified = false;
break;
case MIPSLoc::RVREG_AS_PTR:
if (ar[mr[r].reg].isDirty) {
#ifdef MASKED_PSP_MEMORY
// This is kinda bad, because we've cleared bits in it.
_dbg_assert_(!ar[mr[r].reg].isDirty);
#endif
emit_->SUB(mr[r].reg, mr[r].reg, MEMBASEREG);
// We set this so RiscVRegForFlush knows it's no longer a pointer.
mr[r].loc = MIPSLoc::RVREG;
RiscVReg storeReg = RiscVRegForFlush(r);
if (storeReg != INVALID_REG) {
emit_->SW(storeReg, CTXREG, GetMipsRegOffset(r));
}
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = IRREG_INVALID;
break;
case MIPSLoc::MEM:
// Already there, nothing to do.
break;
default:
ERROR_LOG_REPORT(JIT, "FlushR: MipsReg %d with invalid location %d", r, (int)mr[r].loc);
break;
}
if (r == MIPS_REG_ZERO) {
mr[r].loc = MIPSLoc::RVREG_IMM;
mr[r].reg = R_ZERO;
mr[r].imm = 0;
} else {
mr[r].loc = MIPSLoc::MEM;
mr[r].reg = INVALID_REG;
mr[r].imm = -1;
}
}
void RiscVRegCache::FlushAll() {
// Note: make sure not to change the registers when flushing:
// Branching code expects the armreg to retain its value.
// TODO: HI/LO optimization?
// Final pass to grab any that were left behind.
for (int i = 1; i < NUM_MIPSREG; i++) {
IRRegIndex mipsReg = IRRegIndex(i);
if (mr[i].isStatic) {
RiscVReg riscvReg = mr[i].reg;
// Cannot leave any IMMs in registers, not even ML_ARMREG_IMM, can confuse the regalloc later if this flush is mid-block
// due to an interpreter fallback that changes the register.
if (mr[i].loc == MIPSLoc::IMM) {
SetRegImm(mr[i].reg, mr[i].imm);
mr[i].loc = MIPSLoc::RVREG;
ar[riscvReg].pointerified = false;
} else if (mr[i].loc == MIPSLoc::RVREG_IMM) {
// The register already contains the immediate.
if (ar[riscvReg].pointerified) {
ERROR_LOG(JIT, "RVREG_IMM but pointerified. Wrong.");
ar[riscvReg].pointerified = false;
}
mr[i].loc = MIPSLoc::RVREG;
} else if (mr[i].loc == MIPSLoc::RVREG_AS_PTR) {
#ifdef MASKED_PSP_MEMORY
_dbg_assert_(!ar[riscvReg].isDirty);
#endif
emit_->SUB(riscvReg, riscvReg, MEMBASEREG);
mr[i].loc = MIPSLoc::RVREG;
}
if (i != MIPS_REG_ZERO && mr[i].reg == INVALID_REG) {
ERROR_LOG(JIT, "RV reg of static %i is invalid", i);
continue;
}
} else if (IsValidRegNoZero(mipsReg)) {
FlushR(mipsReg);
}
}
int count = 0;
const StaticAllocation *allocs = GetStaticAllocations(count);
for (int i = 0; i < count; i++) {
if (allocs[i].pointerified && !ar[allocs[i].ar].pointerified && jo_->enablePointerify) {
// Re-pointerify
AddMemBase(allocs[i].ar);
ar[allocs[i].ar].pointerified = true;
} else {
// If this register got pointerified on the way, mark it as not.
// This is so that after save/reload (like in an interpreter fallback),
// it won't be regarded as such, as it may no longer be.
ar[allocs[i].ar].pointerified = false;
}
}
// Sanity check
for (int i = 0; i < NUM_RVREG; i++) {
if (ar[i].mipsReg != IRREG_INVALID && mr[ar[i].mipsReg].isStatic == false) {
ERROR_LOG_REPORT(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
}
}
}
void RiscVRegCache::SetImm(IRRegIndex r, u64 immVal) {
_dbg_assert_(IsValidReg(r));
if (r == MIPS_REG_ZERO && immVal != 0) {
ERROR_LOG_REPORT(JIT, "Trying to set immediate %08x to r0", (u32)immVal);
return;
}
if (mr[r].loc == MIPSLoc::RVREG_IMM && mr[r].imm == immVal) {
// Already have that value, let's keep it in the reg.
return;
}
// TODO: HI/LO optimization?
// All regs on the PSP are 32 bit, but LO we treat as HI:LO so is 64 full bits.
immVal = immVal & 0xFFFFFFFF;
if (mr[r].isStatic) {
mr[r].loc = MIPSLoc::IMM;
mr[r].imm = immVal;
ar[mr[r].reg].pointerified = false;
// We do not change reg to INVALID_REG for obvious reasons..
} else {
// Zap existing value if cached in a reg
if (mr[r].reg != INVALID_REG) {
ar[mr[r].reg].mipsReg = IRREG_INVALID;
ar[mr[r].reg].isDirty = false;
ar[mr[r].reg].pointerified = false;
}
mr[r].loc = MIPSLoc::IMM;
mr[r].imm = immVal;
mr[r].reg = INVALID_REG;
}
}
bool RiscVRegCache::IsImm(IRRegIndex r) const {
_dbg_assert_(IsValidReg(r));
if (r == MIPS_REG_ZERO)
return true;
else
return mr[r].loc == MIPSLoc::IMM || mr[r].loc == MIPSLoc::RVREG_IMM;
}
bool RiscVRegCache::IsPureImm(IRRegIndex r) const {
_dbg_assert_(IsValidReg(r));
if (r == MIPS_REG_ZERO)
return true;
else
return mr[r].loc == MIPSLoc::IMM;
}
u64 RiscVRegCache::GetImm(IRRegIndex r) const {
_dbg_assert_(IsValidReg(r));
if (r == MIPS_REG_ZERO)
return 0;
if (mr[r].loc != MIPSLoc::IMM && mr[r].loc != MIPSLoc::RVREG_IMM) {
ERROR_LOG_REPORT(JIT, "Trying to get imm from non-imm register %i", r);
}
return mr[r].imm;
}
int RiscVRegCache::GetMipsRegOffset(IRRegIndex r) {
_dbg_assert_(IsValidReg(r));
return r * 4;
}
bool RiscVRegCache::IsValidReg(IRRegIndex r) const {
if (r < 0 || r >= NUM_MIPSREG)
return false;
// See MIPSState for these offsets.
// Don't allow FPU or VFPU regs here.
if (r >= 32 && r < 32 + 32 + 128)
return false;
// Also disallow VFPU temps.
if (r >= 224 && r < 224 + 16)
return false;
// Don't allow nextPC, etc. since it's probably a mistake.
if (r > 245)
return false;
// Don't allow PC either.
if (r == 241)
return false;
return true;
}
bool RiscVRegCache::IsValidRegNoZero(IRRegIndex r) const {
return IsValidReg(r) && r != MIPS_REG_ZERO;
}
void RiscVRegCache::SpillLock(IRRegIndex r1, IRRegIndex r2, IRRegIndex r3, IRRegIndex r4) {
_dbg_assert_(IsValidReg(r1));
_dbg_assert_(r2 == IRREG_INVALID || IsValidReg(r2));
_dbg_assert_(r3 == IRREG_INVALID || IsValidReg(r3));
_dbg_assert_(r4 == IRREG_INVALID || IsValidReg(r4));
mr[r1].spillLock = true;
if (r2 != IRREG_INVALID) mr[r2].spillLock = true;
if (r3 != IRREG_INVALID) mr[r3].spillLock = true;
if (r4 != IRREG_INVALID) mr[r4].spillLock = true;
}
void RiscVRegCache::ReleaseSpillLocksAndDiscardTemps() {
for (int i = 0; i < NUM_MIPSREG; i++) {
if (!mr[i].isStatic)
mr[i].spillLock = false;
}
for (int i = 0; i < NUM_RVREG; i++) {
ar[i].tempLocked = false;
}
}
void RiscVRegCache::ReleaseSpillLock(IRRegIndex r1, IRRegIndex r2, IRRegIndex r3, IRRegIndex r4) {
_dbg_assert_(IsValidReg(r1));
_dbg_assert_(r2 == IRREG_INVALID || IsValidReg(r2));
_dbg_assert_(r3 == IRREG_INVALID || IsValidReg(r3));
_dbg_assert_(r4 == IRREG_INVALID || IsValidReg(r4));
if (!mr[r1].isStatic)
mr[r1].spillLock = false;
if (r2 != IRREG_INVALID && !mr[r2].isStatic)
mr[r2].spillLock = false;
if (r3 != IRREG_INVALID && !mr[r3].isStatic)
mr[r3].spillLock = false;
if (r4 != IRREG_INVALID && !mr[r4].isStatic)
mr[r4].spillLock = false;
}
RiscVReg RiscVRegCache::R(IRRegIndex mipsReg) {
_dbg_assert_(IsValidReg(mipsReg));
_dbg_assert_(mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM);
if (mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM) {
return mr[mipsReg].reg;
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg);
return INVALID_REG; // BAAAD
}
}
RiscVReg RiscVRegCache::RPtr(IRRegIndex mipsReg) {
_dbg_assert_(IsValidReg(mipsReg));
_dbg_assert_(mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM || mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR);
if (mr[mipsReg].loc == MIPSLoc::RVREG_AS_PTR) {
return mr[mipsReg].reg;
} else if (mr[mipsReg].loc == MIPSLoc::RVREG || mr[mipsReg].loc == MIPSLoc::RVREG_IMM) {
int rv = mr[mipsReg].reg;
_dbg_assert_(ar[rv].pointerified);
if (ar[rv].pointerified) {
return mr[mipsReg].reg;
} else {
ERROR_LOG(JIT, "Tried to use a non-pointer register as a pointer");
return INVALID_REG;
}
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg);
return INVALID_REG; // BAAAD
}
}