ppsspp/GPU/GLES/Spline.cpp

527 lines
18 KiB
C++
Raw Normal View History

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "TransformPipeline.h"
#include "Core/MemMap.h"
#include "GPU/Math3D.h"
// PSP compatible format so we can use the end of the pipeline
struct SimpleVertex {
float uv[2];
u8 color[4];
Vec3f nrm;
Vec3f pos;
};
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) {
// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
// implementation of the vertex decoder.
VertexDecoder *dec = GetVertexDecoder(vertType);
dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);
// OK, morphing eliminated but bones still remain to be taken care of.
// Let's do a partial software transform where we only do skinning.
VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);
SimpleVertex *sverts = (SimpleVertex *)outPtr;
const u8 defaultColor[4] = {
gstate.getMaterialAmbientR(),
gstate.getMaterialAmbientG(),
gstate.getMaterialAmbientB(),
gstate.getMaterialAmbientA(),
};
// Let's have two separate loops, one for non skinning and one for skinning.
if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
float nrm[3], pos[3];
float bnrm[3], bpos[3];
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm(nrm);
} else {
nrm[0] = 0;
nrm[1] = 0;
nrm[2] = 1.0f;
}
reader.ReadPos(pos);
// Apply skinning transform directly
float weights[8];
reader.ReadWeights(weights);
// Skinning
Vec3f psum(0,0,0);
Vec3f nsum(0,0,0);
for (int i = 0; i < numBoneWeights; i++) {
if (weights[i] != 0.0f) {
Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12);
Vec3f tpos(bpos);
psum += tpos * weights[i];
Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12);
Vec3f tnorm(bnrm);
nsum += tnorm * weights[i];
}
}
sv.pos = psum;
sv.nrm = nsum;
}
} else {
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
} else {
sv.uv[0] = 0; // This will get filled in during tesselation
sv.uv[1] = 0;
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm((float *)&sv.nrm);
} else {
sv.nrm.x = 0;
sv.nrm.y = 0;
sv.nrm.z = 1.0f;
}
reader.ReadPos((float *)&sv.pos);
}
}
// Okay, there we are! Return the new type (but keep the index bits)
return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK);
}
#define START_OPEN_U 1
#define END_OPEN_U 2
#define START_OPEN_V 4
#define END_OPEN_V 8
static float lerp(float a, float b, float x) {
return a + x * (b - a);
}
static void lerpColor(u8 a[4], u8 b[4], float x, u8 out[4]) {
for (int i = 0; i < 4; i++) {
out[i] = (float)a[i] + x * ((float)b[i] - (float)a[i]);
}
}
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct HWSplinePatch {
SimpleVertex *points[16];
int type;
// These are used to generate UVs.
int u_index, v_index;
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}
};
static void CopyTriangle(u8 *&dest, SimpleVertex *v1, SimpleVertex *v2, SimpleVertex* v3) {
int vertexSize = sizeof(SimpleVertex);
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
}
#undef b2
// Bernstein basis functions
inline float bern0(float x) { return (1 - x) * (1 - x) * (1 - x); }
inline float bern1(float x) { return 3 * x * (1 - x) * (1 - x); }
inline float bern2(float x) { return 3 * x * x * (1 - x); }
inline float bern3(float x) { return x * x * x; }
// Not sure yet if these have any use
inline float bern0deriv(float x) { return -3 * (x - 1) * (x - 1); }
inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; }
inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; }
inline float bern3deriv(float x) { return 3 * x * x; }
// http://en.wikipedia.org/wiki/Bernstein_polynomial
Vec3f Bernstein3D(const Vec3f p0, const Vec3f p1, const Vec3f p2, const Vec3f p3, float x) {
return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x);
}
Vec3f Bernstein3DDerivative(const Vec3f p0, const Vec3f p1, const Vec3f p2, const Vec3f p3, float x) {
return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x);
}
void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
bool realTesselation = false;
if (!realTesselation) {
// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
float u_base = patch.u_index / 3.0f;
float v_base = patch.v_index / 3.0f;
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
int point_index = tile_u + tile_v * 4;
SimpleVertex v0 = *patch.points[point_index];
SimpleVertex v1 = *patch.points[point_index+1];
SimpleVertex v2 = *patch.points[point_index+4];
SimpleVertex v3 = *patch.points[point_index+5];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = u_base + tile_u * third;
float v = v_base + tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyTriangle(dest, &v0, &v2, &v1);
CopyTriangle(dest, &v1, &v2, &v3);
count += 6;
}
}
} else {
// Full tesselation of spline patches.
// TODO: This still has serious bugs, for example in Loco Roco, and there are gaps between patches for unknown reasons.
int tess_u = gstate.getPatchDivisionU();
int tess_v = gstate.getPatchDivisionV();
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : tess_u / 3;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : tess_v / 3;
const int tile_max_u = (patch.type & END_OPEN_U) ? tess_u : (tess_u + 0) * 2 / 3;
const int tile_max_v = (patch.type & END_OPEN_V) ? tess_v : (tess_v + 0) * 2 / 3;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
float bu = u;
float bv = v;
// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
Vec3f pos1 = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3f pos2 = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
Vec3f pos3 = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
Vec3f pos4 = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
if (computeNormals) {
Vec3f derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3f derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
Vec3f derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
Vec3f derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
Vec3f derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);
// TODO: Interpolate normals instead of generating them, if available?
vert.nrm = Cross(derivU, derivV).Normalized(); //.SetZero();
if (gstate.patchfacing & 1)
vert.nrm *= -1.0f;
} else {
vert.nrm.SetZero();
}
vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
// Generate texcoord
vert.uv[0] = u + patch.u_index * third;
vert.uv[1] = v + patch.v_index * third;
} else {
// Sample UV from control points
patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
}
if (origVertType & GE_VTYPE_COL_MASK) {
patch.sampleColor(u, v, vert.color);
} else {
memcpy(vert.color, patch.points[0]->color, 4);
}
}
}
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];
CopyTriangle(dest, v0, v2, v1);
CopyTriangle(dest, v1, v2, v3);
count += 6;
}
}
delete [] vertices;
}
}
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
int num_patches_u = count_u - 3;
int num_patches_v = count_v - 3;
// TODO: Do something less idiotic to manage this buffer
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
if (indices)
patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = simplified_control_points + idx;
}
patch.type = (type_u | (type_v << 2));
if (patch_u != 0) patch.type &= ~START_OPEN_U;
if (patch_v != 0) patch.type &= ~START_OPEN_V;
if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
patch.u_index = patch_u;
patch.v_index = patch_v;
}
}
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
TesselatePatch(dest, count, patch, origVertType);
}
delete[] patches;
u32 vertTypeWithoutIndex = vertType & ~GE_VTYPE_IDX_MASK;
SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
Flush();
2013-08-29 23:19:38 +08:00
}
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = (count_u - 1) / 3;
int num_patches_v = (count_v - 1) / 3;
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
if (indices)
patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = simplified_control_points + idx;
}
patch.u_index = patch_u * 3;
patch.v_index = patch_v * 3;
patch.type = START_OPEN_U | START_OPEN_V | END_OPEN_U | END_OPEN_V;
}
}
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
TesselatePatch(dest, count, patch, origVertType);
}
delete[] patches;
u32 vertTypeWithoutIndex = vertType & ~GE_VTYPE_IDX_MASK;
SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
Flush();
}