// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // NEON VFPU // This is where we will create an alternate implementation of the VFPU emulation // that uses NEON Q registers to cache pairs/tris/quads, and so on. // Will require major extensions to the reg cache and other things. // ARM NEON can only do pairs and quads, not tris and scalars. // We can do scalars, though, for many operations if all the operands // are below Q8 (D16, S32) using regular VFP instructions but really not sure // if it's worth it. #include "ppsspp_config.h" #if PPSSPP_ARCH(ARM) #include #include "Common/Data/Convert/SmallDataConvert.h" #include "Common/Math/math_util.h" #include "Common/CPUDetect.h" #include "Core/MemMap.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/MIPSVFPUUtils.h" #include "Core/Config.h" #include "Core/Reporting.h" #include "Core/MIPS/ARM/ArmJit.h" #include "Core/MIPS/ARM/ArmRegCache.h" #include "Core/MIPS/ARM/ArmRegCacheFPU.h" #include "Core/MIPS/ARM/ArmCompVFPUNEONUtil.h" // TODO: Somehow #ifdef away on ARMv5eabi, without breaking the linker. // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. // #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } #define CONDITIONAL_DISABLE(flag) if (jo.Disabled(JitDisable::flag)) { Comp_Generic(op); return; } #define DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } #define DISABLE_UNKNOWN_PREFIX { WARN_LOG(JIT, "DISABLE: Unknown Prefix in %s", __FUNCTION__); fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM16 (signed short)(op & 0xFFFF) #define _IMM26 (op & 0x03FFFFFF) namespace MIPSComp { using namespace ArmGen; using namespace ArmJitConstants; static const float minus_one = -1.0f; static const float one = 1.0f; static const float zero = 0.0f; void ArmJit::CompNEON_VecDo3(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); MappedRegs r = NEONMapDirtyInIn(op, sz, sz, sz); ARMReg temp = MatchSize(Q0, r.vs); // TODO: Special case for scalar switch (op >> 26) { case 24: //VFPU0 switch ((op >> 23) & 7) { case 0: VADD(F_32, r.vd, r.vs, r.vt); break; // vadd case 1: VSUB(F_32, r.vd, r.vs, r.vt); break; // vsub case 7: // vdiv // vdiv THERE IS NO NEON SIMD VDIV :( There's a fast reciprocal iterator thing though. { // Implement by falling back to VFP VMOV(D0, D_0(r.vs)); VMOV(D1, D_0(r.vt)); VDIV(S0, S0, S2); if (sz >= V_Pair) VDIV(S1, S1, S3); VMOV(D_0(r.vd), D0); if (sz >= V_Triple) { VMOV(D0, D_1(r.vs)); VMOV(D1, D_1(r.vt)); VDIV(S0, S0, S2); if (sz == V_Quad) VDIV(S1, S1, S3); VMOV(D_1(r.vd), D0); } } break; default: DISABLE; } break; case 25: //VFPU1 switch ((op >> 23) & 7) { case 0: VMUL(F_32, r.vd, r.vs, r.vt); break; // vmul default: DISABLE; } break; case 27: //VFPU3 switch ((op >> 23) & 7) { case 2: VMIN(F_32, r.vd, r.vs, r.vt); break; // vmin case 3: VMAX(F_32, r.vd, r.vs, r.vt); break; // vmax case 6: // vsge VMOV_immf(temp, 1.0f); VCGE(F_32, r.vd, r.vs, r.vt); VAND(r.vd, r.vd, temp); break; case 7: // vslt VMOV_immf(temp, 1.0f); VCLT(F_32, r.vd, r.vs, r.vt); VAND(r.vd, r.vd, temp); break; } break; default: DISABLE; } NEONApplyPrefixD(r.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } // #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } void ArmJit::CompNEON_SV(MIPSOpcode op) { CONDITIONAL_DISABLE(LSU_VFPU); CheckMemoryBreakpoint(); // Remember to use single lane stores here and not VLDR/VSTR - switching usage // between NEON and VFPU can be expensive on some chips. // Here's a common idiom we should optimize: // lv.s S200, 0(s4) // lv.s S201, 4(s4) // lv.s S202, 8(s4) // vone.s S203 // vtfm4.q C000, E600, C200 // Would be great if we could somehow combine the lv.s into one vector instead of mapping three // separate quads. s32 offset = (signed short)(op & 0xFFFC); int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5); MIPSGPReg rs = _RS; bool doCheck = false; switch (op >> 26) { case 50: //lv.s // VI(vt) = Memory::Read_U32(addr); { if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset < 0x400 && offset > -0x400) { INFO_LOG(HLE, "LV.S fastmode!"); // TODO: Also look forward and combine multiple loads. gpr.MapRegAsPointer(rs); ARMReg ar = fpr.QMapReg(vt, V_Single, MAP_NOINIT | MAP_DIRTY); if (offset) { ADDI2R(R0, gpr.RPtr(rs), offset, R1); VLD1_lane(F_32, ar, R0, 0, true); } else { VLD1_lane(F_32, ar, gpr.RPtr(rs), 0, true); } break; } INFO_LOG(HLE, "LV.S slowmode!"); // CC might be set by slow path below, so load regs first. ARMReg ar = fpr.QMapReg(vt, V_Single, MAP_DIRTY | MAP_NOINIT); if (gpr.IsImm(rs)) { u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; gpr.SetRegImm(R0, addr + (u32)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetR0ToEffectiveAddress(rs, offset); } else { SetCCAndR0ForSafeAddress(rs, offset, R1); doCheck = true; } ADD(R0, R0, MEMBASEREG); } FixupBranch skip; if (doCheck) { skip = B_CC(CC_EQ); } VLD1_lane(F_32, ar, R0, 0, true); if (doCheck) { SetJumpTarget(skip); SetCC(CC_AL); } } break; case 58: //sv.s // Memory::Write_U32(VI(vt), addr); { if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset < 0x400 && offset > -0x400) { INFO_LOG(HLE, "SV.S fastmode!"); // TODO: Also look forward and combine multiple stores. gpr.MapRegAsPointer(rs); ARMReg ar = fpr.QMapReg(vt, V_Single, 0); if (offset) { ADDI2R(R0, gpr.RPtr(rs), offset, R1); VST1_lane(F_32, ar, R0, 0, true); } else { VST1_lane(F_32, ar, gpr.RPtr(rs), 0, true); } break; } INFO_LOG(HLE, "SV.S slowmode!"); // CC might be set by slow path below, so load regs first. ARMReg ar = fpr.QMapReg(vt, V_Single, 0); if (gpr.IsImm(rs)) { u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; gpr.SetRegImm(R0, addr + (u32)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetR0ToEffectiveAddress(rs, offset); } else { SetCCAndR0ForSafeAddress(rs, offset, R1); doCheck = true; } ADD(R0, R0, MEMBASEREG); } FixupBranch skip; if (doCheck) { skip = B_CC(CC_EQ); } VST1_lane(F_32, ar, R0, 0, true); if (doCheck) { SetJumpTarget(skip); SetCC(CC_AL); } } break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } inline int MIPS_GET_VQVT(u32 op) { return (((op >> 16) & 0x1f)) | ((op & 1) << 5); } void ArmJit::CompNEON_SVQ(MIPSOpcode op) { CONDITIONAL_DISABLE(LSU_VFPU); CheckMemoryBreakpoint(); int offset = (signed short)(op & 0xFFFC); int vt = MIPS_GET_VQVT(op.encoding); MIPSGPReg rs = _RS; bool doCheck = false; switch (op >> 26) { case 54: //lv.q { // Check for four-in-a-row const u32 ops[4] = { op.encoding, GetOffsetInstruction(1).encoding, GetOffsetInstruction(2).encoding, GetOffsetInstruction(3).encoding, }; if (g_Config.bFastMemory && (ops[1] >> 26) == 54 && (ops[2] >> 26) == 54 && (ops[3] >> 26) == 54) { int offsets[4] = {offset, (s16)(ops[1] & 0xFFFC), (s16)(ops[2] & 0xFFFC), (s16)(ops[3] & 0xFFFC)}; int rss[4] = {MIPS_GET_RS(op), MIPS_GET_RS(ops[1]), MIPS_GET_RS(ops[2]), MIPS_GET_RS(ops[3])}; if (offsets[1] == offset + 16 && offsets[2] == offsets[1] + 16 && offsets[3] == offsets[2] + 16 && rss[0] == rss[1] && rss[1] == rss[2] && rss[2] == rss[3]) { int vts[4] = {MIPS_GET_VQVT(op.encoding), MIPS_GET_VQVT(ops[1]), MIPS_GET_VQVT(ops[2]), MIPS_GET_VQVT(ops[3])}; // TODO: Also check the destination registers! // Detected four consecutive ones! // gpr.MapRegAsPointer(rs); // fpr.QLoad4x4(vts[4], rs, offset); INFO_LOG(JIT, "Matrix load detected! TODO: optimize"); // break; } } if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && offset < 0x400-16 && offset > -0x400-16) { gpr.MapRegAsPointer(rs); ARMReg ar = fpr.QMapReg(vt, V_Quad, MAP_DIRTY | MAP_NOINIT); if (offset) { ADDI2R(R0, gpr.RPtr(rs), offset, R1); VLD1(F_32, ar, R0, 2, ALIGN_128); } else { VLD1(F_32, ar, gpr.RPtr(rs), 2, ALIGN_128); } break; } // CC might be set by slow path below, so load regs first. ARMReg ar = fpr.QMapReg(vt, V_Quad, MAP_DIRTY | MAP_NOINIT); if (gpr.IsImm(rs)) { u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; gpr.SetRegImm(R0, addr + (u32)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetR0ToEffectiveAddress(rs, offset); } else { SetCCAndR0ForSafeAddress(rs, offset, R1); doCheck = true; } ADD(R0, R0, MEMBASEREG); } FixupBranch skip; if (doCheck) { skip = B_CC(CC_EQ); } VLD1(F_32, ar, R0, 2, ALIGN_128); if (doCheck) { SetJumpTarget(skip); SetCC(CC_AL); } } break; case 62: //sv.q { const u32 ops[4] = { op.encoding, GetOffsetInstruction(1).encoding, GetOffsetInstruction(2).encoding, GetOffsetInstruction(3).encoding, }; if (g_Config.bFastMemory && (ops[1] >> 26) == 54 && (ops[2] >> 26) == 54 && (ops[3] >> 26) == 54) { int offsets[4] = { offset, (s16)(ops[1] & 0xFFFC), (s16)(ops[2] & 0xFFFC), (s16)(ops[3] & 0xFFFC) }; int rss[4] = { MIPS_GET_RS(op), MIPS_GET_RS(ops[1]), MIPS_GET_RS(ops[2]), MIPS_GET_RS(ops[3]) }; if (offsets[1] == offset + 16 && offsets[2] == offsets[1] + 16 && offsets[3] == offsets[2] + 16 && rss[0] == rss[1] && rss[1] == rss[2] && rss[2] == rss[3]) { int vts[4] = { MIPS_GET_VQVT(op.encoding), MIPS_GET_VQVT(ops[1]), MIPS_GET_VQVT(ops[2]), MIPS_GET_VQVT(ops[3]) }; // TODO: Also check the destination registers! // Detected four consecutive ones! // gpr.MapRegAsPointer(rs); // fpr.QLoad4x4(vts[4], rs, offset); INFO_LOG(JIT, "Matrix store detected! TODO: optimize"); // break; } } if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && offset < 0x400-16 && offset > -0x400-16) { gpr.MapRegAsPointer(rs); ARMReg ar = fpr.QMapReg(vt, V_Quad, 0); if (offset) { ADDI2R(R0, gpr.RPtr(rs), offset, R1); VST1(F_32, ar, R0, 2, ALIGN_128); } else { VST1(F_32, ar, gpr.RPtr(rs), 2, ALIGN_128); } break; } // CC might be set by slow path below, so load regs first. ARMReg ar = fpr.QMapReg(vt, V_Quad, 0); if (gpr.IsImm(rs)) { u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; gpr.SetRegImm(R0, addr + (u32)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetR0ToEffectiveAddress(rs, offset); } else { SetCCAndR0ForSafeAddress(rs, offset, R1); doCheck = true; } ADD(R0, R0, MEMBASEREG); } FixupBranch skip; if (doCheck) { skip = B_CC(CC_EQ); } VST1(F_32, ar, R0, 2, ALIGN_128); if (doCheck) { SetJumpTarget(skip); SetCC(CC_AL); } } break; default: DISABLE; break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VVectorInit(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); // WARNING: No prefix support! if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_NOINIT | MAP_DIRTY); switch ((op >> 16) & 0xF) { case 6: // vzero VEOR(vd.rd, vd.rd, vd.rd); break; case 7: // vone VMOV_immf(vd.rd, 1.0f); break; default: DISABLE; break; } NEONApplyPrefixD(vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VDot(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); MappedRegs r = NEONMapDirtyInIn(op, V_Single, sz, sz); switch (sz) { case V_Pair: VMUL(F_32, r.vd, r.vs, r.vt); VPADD(F_32, r.vd, r.vd, r.vd); break; case V_Triple: VMUL(F_32, Q0, r.vs, r.vt); VPADD(F_32, D0, D0, D0); VADD(F_32, r.vd, D0, D1); break; case V_Quad: VMUL(F_32, D0, D_0(r.vs), D_0(r.vt)); VMLA(F_32, D0, D_1(r.vs), D_1(r.vt)); VPADD(F_32, r.vd, D0, D0); break; case V_Single: case V_Invalid: ; } NEONApplyPrefixD(r.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VHdp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } DISABLE; // Similar to VDot but the last component is only s instead of s * t. // A bit tricky on NEON... } void ArmJit::CompNEON_VScl(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); MappedRegs r = NEONMapDirtyInIn(op, sz, sz, V_Single); ARMReg temp = MatchSize(Q0, r.vt); // TODO: VMUL_scalar directly when possible VMOV_neon(temp, r.vt); VMUL_scalar(F_32, r.vd, r.vs, DScalar(Q0, 0)); NEONApplyPrefixD(r.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VV2Op(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } // Pre-processing: Eliminate silly no-op VMOVs, common in Wipeout Pure if (((op >> 16) & 0x1f) == 0 && _VS == _VD && js.HasNoPrefix()) { return; } // Must bail before we start mapping registers. switch ((op >> 16) & 0x1f) { case 0: // d[i] = s[i]; break; //vmov case 1: // d[i] = fabsf(s[i]); break; //vabs case 2: // d[i] = -s[i]; break; //vneg case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq break; default: DISABLE; break; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); MappedRegs r = NEONMapDirtyIn(op, sz, sz); ARMReg temp = MatchSize(Q0, r.vs); switch ((op >> 16) & 0x1f) { case 0: // d[i] = s[i]; break; //vmov // Probably for swizzle. VMOV_neon(r.vd, r.vs); break; case 1: // d[i] = fabsf(s[i]); break; //vabs VABS(F_32, r.vd, r.vs); break; case 2: // d[i] = -s[i]; break; //vneg VNEG(F_32, r.vd, r.vs); break; case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0 if (IsD(r.vd)) { VMOV_immf(D0, 0.0f); VMOV_immf(D1, 1.0f); VMAX(F_32, r.vd, r.vs, D0); VMIN(F_32, r.vd, r.vd, D1); } else { VMOV_immf(Q0, 1.0f); VMIN(F_32, r.vd, r.vs, Q0); VMOV_immf(Q0, 0.0f); VMAX(F_32, r.vd, r.vd, Q0); } break; case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1 if (IsD(r.vd)) { VMOV_immf(D0, -1.0f); VMOV_immf(D1, 1.0f); VMAX(F_32, r.vd, r.vs, D0); VMIN(F_32, r.vd, r.vd, D1); } else { VMOV_immf(Q0, 1.0f); VMIN(F_32, r.vd, r.vs, Q0); VMOV_immf(Q0, -1.0f); VMAX(F_32, r.vd, r.vd, Q0); } break; case 16: // d[i] = 1.0f / s[i]; break; //vrcp // Can just fallback to VFP and use VDIV. DISABLE; { ARMReg temp2 = fpr.QAllocTemp(sz); // Needs iterations on NEON. And two temps - which is a problem if vs == vd! Argh! VRECPE(F_32, temp, r.vs); VRECPS(temp2, r.vs, temp); VMUL(F_32, temp2, temp2, temp); VRECPS(temp2, r.vs, temp); VMUL(F_32, temp2, temp2, temp); } // http://stackoverflow.com/questions/6759897/how-to-divide-in-neon-intrinsics-by-a-float-number // reciprocal = vrecpeq_f32(b); // reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); // reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); DISABLE; break; case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq DISABLE; // Needs iterations on NEON { if (true) { // Not-very-accurate estimate VRSQRTE(F_32, r.vd, r.vs); } else { ARMReg temp2 = fpr.QAllocTemp(sz); // TODO: It's likely that some games will require one or two Newton-Raphson // iterations to refine the estimate. VRSQRTE(F_32, temp, r.vs); VRSQRTS(temp2, r.vs, temp); VMUL(F_32, r.vd, temp2, temp); //VRSQRTS(temp2, r.vs, temp); // VMUL(F_32, r.vd, temp2, temp); } } break; case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin DISABLE; break; case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos DISABLE; break; case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2 DISABLE; break; case 21: // d[i] = logf(s[i])/log(2.0f); break; //vlog2 DISABLE; break; case 22: // d[i] = sqrtf(s[i]); break; //vsqrt // Let's just defer to VFP for now. Better than calling the interpreter for sure. VMOV_neon(MatchSize(Q0, r.vs), r.vs); for (int i = 0; i < n; i++) { VSQRT((ARMReg)(S0 + i), (ARMReg)(S0 + i)); } VMOV_neon(MatchSize(Q0, r.vd), r.vd); break; case 23: // d[i] = asinf(s[i] * (float)M_2_PI); break; //vasin DISABLE; break; case 24: // d[i] = -1.0f / s[i]; break; // vnrcp // Needs iterations on NEON. Just do the same as vrcp and negate. DISABLE; break; case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin DISABLE; break; case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2 DISABLE; break; default: DISABLE; break; } NEONApplyPrefixD(r.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Mftv(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int imm = op & 0xFF; MIPSGPReg rt = _RT; switch ((op >> 21) & 0x1f) { case 3: //mfv / mfvc // rt = 0, imm = 255 appears to be used as a CPU interlock by some games. if (rt != 0) { if (imm < 128) { //R(rt) = VI(imm); ARMReg r = fpr.QMapReg(imm, V_Single, MAP_READ); gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY); // TODO: Gotta be a faster way VMOV_neon(MatchSize(Q0, r), r); VMOV(gpr.R(rt), S0); } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc // In case we have a saved prefix. FlushPrefixV(); if (imm - 128 == VFPU_CTRL_CC) { gpr.MapDirtyIn(rt, MIPS_REG_VFPUCC); MOV(gpr.R(rt), gpr.R(MIPS_REG_VFPUCC)); } else { gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY); LDR(gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128)); } } else { //ERROR - maybe need to make this value too an "interlock" value? ERROR_LOG(CPU, "mfv - invalid register %i", imm); } } break; case 7: // mtv if (imm < 128) { // TODO: It's pretty common that this is preceded by mfc1, that is, a value is being // moved from the regular floating point registers. It would probably be faster to do // the copy directly in the FPRs instead of going through the GPRs. ARMReg r = fpr.QMapReg(imm, V_Single, MAP_DIRTY | MAP_NOINIT); if (gpr.IsMapped(rt)) { VMOV(S0, gpr.R(rt)); VMOV_neon(r, MatchSize(Q0, r)); } else { ADDI2R(R0, CTXREG, gpr.GetMipsRegOffset(rt), R1); VLD1_lane(F_32, r, R0, 0, true); } } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc //currentMIPS->vfpuCtrl[imm - 128] = R(rt); if (imm - 128 == VFPU_CTRL_CC) { gpr.MapDirtyIn(MIPS_REG_VFPUCC, rt); MOV(gpr.R(MIPS_REG_VFPUCC), rt); } else { gpr.MapReg(rt); STR(gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128)); } // TODO: Optimization if rt is Imm? // Set these BEFORE disable! if (imm - 128 == VFPU_CTRL_SPREFIX) { js.prefixSFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_TPREFIX) { js.prefixTFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_DPREFIX) { js.prefixDFlag = JitState::PREFIX_UNKNOWN; } } else { //ERROR _dbg_assert_msg_(false,"mtv - invalid register"); } break; default: DISABLE; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vmfvc(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vmtvc(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int vs = _VS; int imm = op & 0xFF; if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) { ARMReg r = fpr.QMapReg(vs, V_Single, 0); ADDI2R(R0, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + (imm - 128) * 4, R1); VST1_lane(F_32, r, R0, 0, true); fpr.ReleaseSpillLocksAndDiscardTemps(); if (imm - 128 == VFPU_CTRL_SPREFIX) { js.prefixSFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_TPREFIX) { js.prefixTFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_DPREFIX) { js.prefixDFlag = JitState::PREFIX_UNKNOWN; } } } void ArmJit::CompNEON_VMatrixInit(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); MatrixSize msz = GetMtxSize(op); int n = GetMatrixSide(msz); ARMReg cols[4]; fpr.QMapMatrix(cols, _VD, msz, MAP_NOINIT | MAP_DIRTY); switch ((op >> 16) & 0xF) { case 3: // vmidt // There has to be a better way to synthesize: 1.0, 0.0, 0.0, 1.0 in a quad VEOR(D0, D0, D0); VMOV_immf(D1, 1.0f); VTRN(F_32, D0, D1); VREV64(I_32, D0, D0); switch (msz) { case M_2x2: VMOV_neon(cols[0], D0); VMOV_neon(cols[1], D1); break; case M_3x3: VMOV_neon(D_0(cols[0]), D0); VMOV_imm(I_8, D_1(cols[0]), VIMMxxxxxxxx, 0); VMOV_neon(D_0(cols[1]), D1); VMOV_imm(I_8, D_1(cols[1]), VIMMxxxxxxxx, 0); VMOV_imm(I_8, D_0(cols[2]), VIMMxxxxxxxx, 0); VMOV_neon(D_1(cols[2]), D0); break; case M_4x4: VMOV_neon(D_0(cols[0]), D0); VMOV_imm(I_8, D_1(cols[0]), VIMMxxxxxxxx, 0); VMOV_neon(D_0(cols[1]), D1); VMOV_imm(I_8, D_1(cols[1]), VIMMxxxxxxxx, 0); VMOV_imm(I_8, D_0(cols[2]), VIMMxxxxxxxx, 0); VMOV_neon(D_1(cols[2]), D0); VMOV_imm(I_8, D_0(cols[3]), VIMMxxxxxxxx, 0); VMOV_neon(D_1(cols[3]), D1); // NEONTranspose4x4(cols); break; default: _assert_msg_(false, "Bad matrix size"); break; } break; case 6: // vmzero for (int i = 0; i < n; i++) { VEOR(cols[i], cols[i], cols[i]); } break; case 7: // vmone for (int i = 0; i < n; i++) { VMOV_immf(cols[i], 1.0f); } break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vmmov(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VMMOV); if (_VS == _VD) { // A lot of these no-op matrix moves in Wipeout... Just drop the instruction entirely. return; } MatrixSize msz = GetMtxSize(op); MatrixOverlapType overlap = GetMatrixOverlap(_VD, _VS, msz); if (overlap != OVERLAP_NONE) { // Too complicated to bother handling in the JIT. // TODO: Special case for in-place (and other) transpose, etc. DISABLE; } ARMReg s_cols[4], d_cols[4]; fpr.QMapMatrix(s_cols, _VS, msz, 0); fpr.QMapMatrix(d_cols, _VD, msz, MAP_DIRTY | MAP_NOINIT); int n = GetMatrixSide(msz); for (int i = 0; i < n; i++) { VMOV_neon(d_cols[i], s_cols[i]); } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vmmul(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VMMUL); MatrixSize msz = GetMtxSize(op); int n = GetMatrixSide(msz); bool overlap = GetMatrixOverlap(_VD, _VS, msz) || GetMatrixOverlap(_VD, _VT, msz); if (overlap) { // Later. Fortunately, the VFPU also seems to prohibit overlap for matrix mul. INFO_LOG(JIT, "Matrix overlap, ignoring."); DISABLE; } // Having problems with 2x2s for some reason. if (msz == M_2x2) { DISABLE; } ARMReg s_cols[4], t_cols[4], d_cols[4]; // For some reason, vmmul is encoded with the first matrix (S) transposed from the real meaning. fpr.QMapMatrix(t_cols, _VT, msz, MAP_FORCE_LOW); // Need to see if we can avoid having to force it low in some sane way. Will need crazy prediction logic for loads otherwise. fpr.QMapMatrix(s_cols, Xpose(_VS), msz, MAP_PREFER_HIGH); fpr.QMapMatrix(d_cols, _VD, msz, MAP_PREFER_HIGH | MAP_NOINIT | MAP_DIRTY); // TODO: Getting there but still getting wrong results. for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0) { VMUL_scalar(F_32, d_cols[j], s_cols[i], XScalar(t_cols[j], i)); } else { VMLA_scalar(F_32, d_cols[j], s_cols[i], XScalar(t_cols[j], i)); } } } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vmscl(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VMSCL); MatrixSize msz = GetMtxSize(op); bool overlap = GetMatrixOverlap(_VD, _VS, msz) != OVERLAP_NONE; if (overlap) { DISABLE; } int n = GetMatrixSide(msz); ARMReg s_cols[4], t, d_cols[4]; fpr.QMapMatrix(s_cols, _VS, msz, 0); fpr.QMapMatrix(d_cols, _VD, msz, MAP_NOINIT | MAP_DIRTY); t = fpr.QMapReg(_VT, V_Single, 0); VMOV_neon(D0, t); for (int i = 0; i < n; i++) { VMUL_scalar(F_32, d_cols[i], s_cols[i], DScalar(D0, 0)); } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vtfm(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VTFM); if (js.HasUnknownPrefix()) { DISABLE; } if (_VT == _VD) { DISABLE; } VectorSize sz = GetVecSize(op); MatrixSize msz = GetMtxSize(op); int n = GetNumVectorElements(sz); int ins = (op >> 23) & 7; bool homogenous = false; if (n == ins) { n++; sz = (VectorSize)((int)(sz)+1); msz = (MatrixSize)((int)(msz)+1); homogenous = true; } // Otherwise, n should already be ins + 1. else if (n != ins + 1) { DISABLE; } ARMReg s_cols[4], t, d; t = fpr.QMapReg(_VT, sz, MAP_FORCE_LOW); fpr.QMapMatrix(s_cols, Xpose(_VS), msz, MAP_PREFER_HIGH); d = fpr.QMapReg(_VD, sz, MAP_DIRTY | MAP_NOINIT | MAP_PREFER_HIGH); VMUL_scalar(F_32, d, s_cols[0], XScalar(t, 0)); for (int i = 1; i < n; i++) { if (homogenous && i == n - 1) { VADD(F_32, d, d, s_cols[i]); } else { VMLA_scalar(F_32, d, s_cols[i], XScalar(t, i)); } } // VTFM does not have prefix support. fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VCrs(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_VDet(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vi2x(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vx2i(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vf2i(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vi2f(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); int imm = (op >> 16) & 0x1f; const float mult = 1.0f / (float)(1UL << imm); MappedRegs regs = NEONMapDirtyIn(op, sz, sz); MOVI2F_neon(MatchSize(Q0, regs.vd), mult, R0); VCVT(F_32, regs.vd, regs.vs); VMUL(F_32, regs.vd, regs.vd, Q0); NEONApplyPrefixD(regs.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vh2f(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (!cpu_info.bHalf) { // No hardware support for half-to-float, fallback to interpreter // TODO: Translate the fast SSE solution to standard integer/VFP stuff // for the weaker CPUs. DISABLE; } VectorSize sz = GetVecSize(op); VectorSize outsize = V_Pair; switch (sz) { case V_Single: outsize = V_Pair; break; case V_Pair: outsize = V_Quad; break; default: ERROR_LOG(JIT, "Vh2f: Must be pair or quad"); break; } ARMReg vs = NEONMapPrefixS(_VS, sz, 0); // TODO: MAP_NOINIT if they're definitely not overlapping. DestARMReg vd = NEONMapPrefixD(_VD, outsize, MAP_DIRTY); VCVTF32F16(vd.rd, vs); NEONApplyPrefixD(vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vcst(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } int conNum = (op >> 16) & 0x1f; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_DIRTY | MAP_NOINIT); gpr.SetRegImm(R0, (u32)(void *)&cst_constants[conNum]); VLD1_all_lanes(F_32, vd, R0, true); NEONApplyPrefixD(vd); // TODO: Could bake this into the constant we load. fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vhoriz(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); // Do any games use these a noticeable amount? switch ((op >> 16) & 31) { case 6: // vfad { VMOV_neon(F_32, D1, 0.0f); MappedRegs r = NEONMapDirtyIn(op, V_Single, sz); switch (sz) { case V_Pair: VPADD(F_32, r.vd, r.vs, r.vs); break; case V_Triple: VPADD(F_32, D0, D_0(r.vs), D_0(r.vs)); VADD(F_32, r.vd, D0, D_1(r.vs)); break; case V_Quad: VADD(F_32, D0, D_0(r.vs), D_1(r.vs)); VPADD(F_32, r.vd, D0, D0); break; default: ; } // This forces the sign of -0.000 to +0.000. VADD(F_32, r.vd, r.vd, D1); break; } case 7: // vavg DISABLE; break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VRot(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } DISABLE; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); // ... fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_VIdt(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_NOINIT | MAP_DIRTY); switch (sz) { case V_Pair: VMOV_immf(vd, 1.0f); if ((_VD & 1) == 0) { // Load with 1.0, 0.0 VMOV_imm(I_64, D0, VIMMbits2bytes, 0x0F); VAND(vd, vd, D0); } else { VMOV_imm(I_64, D0, VIMMbits2bytes, 0xF0); VAND(vd, vd, D0); } break; case V_Triple: case V_Quad: { // TODO: This can be optimized. VEOR(vd, vd, vd); ARMReg dest = (_VD & 2) ? D_1(vd) : D_0(vd); VMOV_immf(dest, 1.0f); if ((_VD & 1) == 0) { // Load with 1.0, 0.0 VMOV_imm(I_64, D0, VIMMbits2bytes, 0x0F); VAND(dest, dest, D0); } else { VMOV_imm(I_64, D0, VIMMbits2bytes, 0xF0); VAND(dest, dest, D0); } } break; default: _dbg_assert_msg_(false,"Bad vidt instruction"); break; } NEONApplyPrefixD(vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vcmp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_COMP); if (js.HasUnknownPrefix()) DISABLE; // Not a chance that this works on the first try :P DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); VCondition cond = (VCondition)(op & 0xF); MappedRegs regs = NEONMapInIn(op, sz, sz); ARMReg vs = regs.vs, vt = regs.vt; ARMReg res = fpr.QAllocTemp(sz); // Some, we just fall back to the interpreter. // ES is just really equivalent to (value & 0x7F800000) == 0x7F800000. switch (cond) { case VC_EI: // c = my_isinf(s[i]); break; case VC_NI: // c = !my_isinf(s[i]); break; DISABLE; case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection case VC_NS: // c = !my_isnan(s[i]) && !my_isinf(s[i]); break; case VC_EN: // c = my_isnan(s[i]); break; case VC_NN: // c = !my_isnan(s[i]); break; // if (_VS != _VT) DISABLE; break; case VC_EZ: case VC_NZ: VMOV_immf(Q0, 0.0f); break; default: ; } int affected_bits = (1 << 4) | (1 << 5); // 4 and 5 for (int i = 0; i < n; i++) { affected_bits |= 1 << i; } // Preload the pointer to our magic mask static const u32 collectorBits[4] = { 1, 2, 4, 8 }; MOVP2R(R1, &collectorBits); // Do the compare MOVI2R(R0, 0); CCFlags flag = CC_AL; bool oneIsFalse = false; switch (cond) { case VC_FL: // c = 0; break; case VC_TR: // c = 1 MOVI2R(R0, affected_bits); break; case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection case VC_NS: // c = !(my_isnan(s[i]) || my_isinf(s[i])); break; DISABLE; // TODO: these shouldn't be that hard break; case VC_EN: // c = my_isnan(s[i]); break; // Tekken 6 case VC_NN: // c = !my_isnan(s[i]); break; DISABLE; // TODO: these shouldn't be that hard break; case VC_EQ: // c = s[i] == t[i] VCEQ(F_32, res, vs, vt); break; case VC_LT: // c = s[i] < t[i] VCLT(F_32, res, vs, vt); break; case VC_LE: // c = s[i] <= t[i]; VCLE(F_32, res, vs, vt); break; case VC_NE: // c = s[i] != t[i] VCEQ(F_32, res, vs, vt); oneIsFalse = true; break; case VC_GE: // c = s[i] >= t[i] VCGE(F_32, res, vs, vt); break; case VC_GT: // c = s[i] > t[i] VCGT(F_32, res, vs, vt); break; case VC_EZ: // c = s[i] == 0.0f || s[i] == -0.0f VCEQ(F_32, res, vs); break; case VC_NZ: // c = s[i] != 0 VCEQ(F_32, res, vs); oneIsFalse = true; break; default: DISABLE; } if (oneIsFalse) { VMVN(res, res); } // Somehow collect the bits into a mask. // Collect the bits. Where's my PMOVMSKB? :( VLD1(I_32, Q0, R1, n < 2 ? 1 : 2); VAND(Q0, Q0, res); VPADD(I_32, Q0, Q0, Q0); VPADD(I_32, D0, D0, D0); // OK, bits now in S0. VMOV(R0, S0); // Zap irrelevant bits (V_Single, V_Triple) AND(R0, R0, affected_bits); // TODO: Now, how in the world do we generate the component OR and AND bits without burning tens of ALU instructions?? Lookup-table? gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY); BIC(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), affected_bits); ORR(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), R0); } void ArmJit::CompNEON_Vcmov(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_COMP); if (js.HasUnknownPrefix()) { DISABLE; } DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); ARMReg vs = NEONMapPrefixS(_VS, sz, 0); DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_DIRTY); int tf = (op >> 19) & 1; int imm3 = (op >> 16) & 7; if (imm3 < 6) { // Test one bit of CC. This bit decides whether none or all subregisters are copied. gpr.MapReg(MIPS_REG_VFPUCC); TST(gpr.R(MIPS_REG_VFPUCC), 1 << imm3); FixupBranch skip = B_CC(CC_NEQ); VMOV_neon(vd, vs); SetJumpTarget(skip); } else { // Look at the bottom four bits of CC to individually decide if the subregisters should be copied. // This is the nasty one! Need to expand those bits into a full NEON register somehow. DISABLE; /* gpr.MapReg(MIPS_REG_VFPUCC); for (int i = 0; i < n; i++) { TST(gpr.R(MIPS_REG_VFPUCC), 1 << i); SetCC(tf ? CC_EQ : CC_NEQ); VMOV(fpr.V(dregs[i]), fpr.V(sregs[i])); SetCC(CC_AL); } */ } NEONApplyPrefixD(vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Viim(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } DestARMReg vt = NEONMapPrefixD(_VT, V_Single, MAP_NOINIT | MAP_DIRTY); s32 imm = SignExtend16ToS32(op); // TODO: Optimize for low registers. MOVI2F(S0, (float)imm, R0); VMOV_neon(vt.rd, D0); NEONApplyPrefixD(vt); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vfim(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } DestARMReg vt = NEONMapPrefixD(_VT, V_Single, MAP_NOINIT | MAP_DIRTY); FP16 half; half.u = op & 0xFFFF; FP32 fval = half_to_float_fast5(half); // TODO: Optimize for low registers. MOVI2F(S0, (float)fval.f, R0); VMOV_neon(vt.rd, D0); NEONApplyPrefixD(vt); fpr.ReleaseSpillLocksAndDiscardTemps(); } // https://code.google.com/p/bullet/source/browse/branches/PhysicsEffects/include/vecmath/neon/vectormath_neon_assembly_implementations.S?r=2488 void ArmJit::CompNEON_VCrossQuat(MIPSOpcode op) { // This op does not support prefixes anyway. CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE_UNKNOWN_PREFIX; } VectorSize sz = GetVecSize(op); if (sz != V_Triple) { // Quaternion product. Bleh. DISABLE; } MappedRegs r = NEONMapDirtyInIn(op, sz, sz, sz, false); ARMReg t1 = Q0; ARMReg t2 = fpr.QAllocTemp(V_Triple); // There has to be a faster way to do this. This is not really any better than // scalar. // d18, d19 (q9) = t1 = r.vt // d16, d17 (q8) = t2 = r.vs // d20, d21 (q10) = t VMOV_neon(t1, r.vs); VMOV_neon(t2, r.vt); VTRN(F_32, D_0(t2), D_1(t2)); // vtrn.32 d18,d19 @ q9 = = d18,d19 VREV64(F_32, D_0(t1), D_0(t1)); // vrev64.32 d16,d16 @ q8 = = d16,d17 VREV64(F_32, D_0(t2), D_0(t2)); // vrev64.32 d18,d18 @ q9 = = d18,d19 VTRN(F_32, D_0(t1), D_1(t1)); // vtrn.32 d16,d17 @ q8 = = d16,d17 // perform first half of cross product using rearranged inputs VMUL(F_32, r.vd, t1, t2); // vmul.f32 q10, q8, q9 @ q10 = // @ rearrange inputs again VTRN(F_32, D_0(t2), D_1(t2)); // vtrn.32 d18,d19 @ q9 = = d18,d19 VREV64(F_32, D_0(t1), D_0(t1)); // vrev64.32 d16,d16 @ q8 = = d16,d17 VREV64(F_32, D_0(t2), D_0(t2)); // vrev64.32 d18,d18 @ q9 = = d18,d19 VTRN(F_32, D_0(t1), D_1(t1)); // vtrn.32 d16,d17 @ q8 = = d16,d17 // @ perform last half of cross product using rearranged inputs VMLS(F_32, r.vd, t1, t2); // vmls.f32 q10, q8, q9 @ q10 = fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_Vsgn(MIPSOpcode op) { DISABLE; // This will be a bunch of bit magic. } void ArmJit::CompNEON_Vocp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } // TODO: Handle T prefix. Right now it uses 1.0f always. // This is a hack that modifies prefixes. We eat them later, so just overwrite. // S prefix forces the negate flags. js.prefixS |= 0x000F0000; // T prefix forces constants on and regnum to 1. // That means negate still works, and abs activates a different constant. js.prefixT = (js.prefixT & ~0x000000FF) | 0x00000055 | 0x0000F000; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); MappedRegs regs = NEONMapDirtyIn(op, sz, sz); MOVI2F_neon(Q0, 1.0f, R0); VADD(F_32, regs.vd, Q0, regs.vs); NEONApplyPrefixD(regs.vd); fpr.ReleaseSpillLocksAndDiscardTemps(); } void ArmJit::CompNEON_ColorConv(MIPSOpcode op) { DISABLE; } void ArmJit::CompNEON_Vbfy(MIPSOpcode op) { DISABLE; } } // namespace MIPSComp #endif // PPSSPP_ARCH(ARM)