// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/logging.h" #include "Common/CPUDetect.h" #include "Core/Config.h" #include "GPU/GLES/VertexDecoder.h" extern void DisassembleArm(const u8 *data, int size); bool NEONSkinning = false; // Used only in non-NEON mode. static float MEMORY_ALIGNED16(skinMatrix[12]); // Will be used only in NEON mode. static float MEMORY_ALIGNED16(bones[16 * 8]); // First two will be kept in registers later // NEON register allocation: // Q0: Texture scaling parameters // Q1: Temp storage // Q2: Vector-by-matrix accumulator // Q3: Unused // // We'll use Q4-Q7 as the "matrix accumulator". // First two matrices will be preloaded into Q8-Q11 and Q12-Q15 to reduce // memory bandwidth requirements. // The rest will be dumped to bones as on x86. static const float by128 = 1.0f / 128.0f; static const float by256 = 1.0f / 256.0f; static const float by32768 = 1.0f / 32768.0f; using namespace ArmGen; static const ARMReg tempReg1 = R3; static const ARMReg tempReg2 = R4; static const ARMReg tempReg3 = R5; static const ARMReg scratchReg = R6; static const ARMReg scratchReg2 = R7; static const ARMReg scratchReg3 = R12; static const ARMReg srcReg = R0; static const ARMReg dstReg = R1; static const ARMReg counterReg = R2; static const ARMReg fpScratchReg = S4; static const ARMReg fpScratchReg2 = S5; static const ARMReg fpScratchReg3 = S6; static const ARMReg fpScratchReg4 = S7; static const ARMReg fpUscaleReg = S0; static const ARMReg fpVscaleReg = S1; static const ARMReg fpUoffsetReg = S2; static const ARMReg fpVoffsetReg = S3; // Simpler aliases for NEON. Overlaps with corresponding VFP regs. static const ARMReg neonUVScaleReg = D0; static const ARMReg neonUVOffsetReg = D1; static const ARMReg neonScratchReg = D2; static const ARMReg neonScratchRegQ = Q1; // Overlaps with all the scratch regs // Everything above S6 is fair game for skinning // S8-S15 are used during matrix generation // These only live through the matrix multiplication static const ARMReg src[3] = {S8, S9, S10}; // skin source static const ARMReg acc[3] = {S11, S12, S13}; // skin accumulator static const ARMReg srcNEON = Q2; static const ARMReg accNEON = Q3; static const JitLookup jitLookup[] = { {&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8}, {&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16}, {&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat}, {&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin}, {&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin}, {&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin}, {&VertexDecoder::Step_TcU8, &VertexDecoderJitCache::Jit_TcU8}, {&VertexDecoder::Step_TcU16, &VertexDecoderJitCache::Jit_TcU16}, {&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat}, {&VertexDecoder::Step_TcU16Double, &VertexDecoderJitCache::Jit_TcU16Double}, {&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale}, {&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale}, {&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale}, {&VertexDecoder::Step_TcU16Through, &VertexDecoderJitCache::Jit_TcU16Through}, {&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough}, {&VertexDecoder::Step_TcU16ThroughDouble, &VertexDecoderJitCache::Jit_TcU16ThroughDouble}, {&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8}, {&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16}, {&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat}, {&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin}, {&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin}, {&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin}, {&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888}, {&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444}, {&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565}, {&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551}, {&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through}, {&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through}, {&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloat}, {&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8}, {&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16}, {&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat}, {&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin}, {&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin}, {&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin}, }; JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec) { dec_ = &dec; const u8 *start = AlignCode16(); bool prescaleStep = false; bool skinning = false; NEONSkinning = cpu_info.bNEON; // Look for prescaled texcoord steps for (int i = 0; i < dec.numSteps_; i++) { if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale || dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale || dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) { prescaleStep = true; } if (dec.steps_[i] == &VertexDecoder::Step_WeightsU8Skin || dec.steps_[i] == &VertexDecoder::Step_WeightsU16Skin || dec.steps_[i] == &VertexDecoder::Step_WeightsFloatSkin) { skinning = true; } } SetCC(CC_AL); PUSH(6, R4, R5, R6, R7, R8, _LR); // Keep the scale/offset in a few fp registers if we need it. // This step can be NEON-ized but the savings would be miniscule. if (prescaleStep) { MOVI2R(R3, (u32)(&gstate_c.uv), scratchReg); VLDR(fpUscaleReg, R3, 0); VLDR(fpVscaleReg, R3, 4); VLDR(fpUoffsetReg, R3, 8); VLDR(fpVoffsetReg, R3, 12); if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) { MOVI2F(fpScratchReg, by128, scratchReg); VMUL(fpUscaleReg, fpUscaleReg, fpScratchReg); VMUL(fpVscaleReg, fpVscaleReg, fpScratchReg); } else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) { MOVI2F(fpScratchReg, by32768, scratchReg); VMUL(fpUscaleReg, fpUscaleReg, fpScratchReg); VMUL(fpVscaleReg, fpVscaleReg, fpScratchReg); } } // Add code to convert matrices to 4x4. // Later we might want to do this when the matrices are loaded instead. int boneCount = 0; if (NEONSkinning && dec.weighttype && g_Config.bSoftwareSkinning) { // Copying from R3 to R4 MOVP2R(R3, gstate.boneMatrix); MOVP2R(R4, bones); MOVI2F(fpScratchReg, 0.0f, scratchReg); for (int i = 0; i < 8; i++) { VLD1(F_32, Q4, R3, 2); // Load 128 bits even though we just want 96 VMOV(S19, fpScratchReg); ADD(R3, R3, 12); VLD1(F_32, Q5, R3, 2); VMOV(S23, fpScratchReg); ADD(R3, R3, 12); VLD1(F_32, Q6, R3, 2); VMOV(S27, fpScratchReg); ADD(R3, R3, 12); VLD1(F_32, Q7, R3, 2); VMOV(S31, fpScratchReg); ADD(R3, R3, 12); // First two matrices are in registers. if (i == 0) { VMOV(Q8, Q4); VMOV(Q9, Q5); VMOV(Q10, Q6); VMOV(Q11, Q7); ADD(R4, R4, 16 * 4); } else if (i == 1) { VMOV(Q12, Q4); VMOV(Q13, Q5); VMOV(Q14, Q6); VMOV(Q15, Q7); ADD(R4, R4, 16 * 4); } else { VST1(F_32, Q4, R4, 2, ALIGN_128, REG_UPDATE); VST1(F_32, Q5, R4, 2, ALIGN_128, REG_UPDATE); VST1(F_32, Q6, R4, 2, ALIGN_128, REG_UPDATE); VST1(F_32, Q7, R4, 2, ALIGN_128, REG_UPDATE); } } } // TODO: NEON skinning register mapping // The matrix will be built in Q12-Q15. // The temporary matrix to be added to the built matrix will be in Q8-Q11. if (skinning) { // TODO: Preload scale factors } JumpTarget loopStart = GetCodePtr(); // Preload data cache ahead of reading. TODO: Experiment with the offset. PLD(srcReg, 64); for (int i = 0; i < dec.numSteps_; i++) { if (!CompileStep(dec, i)) { // Reset the code ptr and return zero to indicate that we failed. SetCodePtr(const_cast(start)); char temp[1024] = {0}; dec.ToString(temp); INFO_LOG(HLE, "Could not compile vertex decoder: %s", temp); return 0; } } ADDI2R(srcReg, srcReg, dec.VertexSize(), scratchReg); ADDI2R(dstReg, dstReg, dec.decFmt.stride, scratchReg); SUBS(counterReg, counterReg, 1); B_CC(CC_NEQ, loopStart); POP(6, R4, R5, R6, R7, R8, _PC); FlushLitPool(); FlushIcache(); /* DisassembleArm(start, GetCodePtr() - start); char temp[1024] = {0}; dec.ToString(temp); INFO_LOG(HLE, "%s", temp); */ return (JittedVertexDecoder)start; } void VertexDecoderJitCache::Jit_WeightsU8() { // Basic implementation - a byte at a time. TODO: Optimize int j; for (j = 0; j < dec_->nweights; j++) { LDRB(tempReg1, srcReg, dec_->weightoff + j); STRB(tempReg1, dstReg, dec_->decFmt.w0off + j); } if (j & 3) { // Create a zero register. Might want to make a fixed one. EOR(scratchReg, scratchReg, scratchReg); } while (j & 3) { STRB(scratchReg, dstReg, dec_->decFmt.w0off + j); j++; } } void VertexDecoderJitCache::Jit_WeightsU16() { // Basic implementation - a short at a time. TODO: Optimize int j; for (j = 0; j < dec_->nweights; j++) { LDRH(tempReg1, srcReg, dec_->weightoff + j * 2); STRH(tempReg1, dstReg, dec_->decFmt.w0off + j * 2); } if (j & 3) { // Create a zero register. Might want to make a fixed one. EOR(scratchReg, scratchReg, scratchReg); } while (j & 3) { STRH(scratchReg, dstReg, dec_->decFmt.w0off + j * 2); j++; } } void VertexDecoderJitCache::Jit_WeightsFloat() { int j; for (j = 0; j < dec_->nweights; j++) { LDR(tempReg1, srcReg, dec_->weightoff + j * 4); STR(tempReg1, dstReg, dec_->decFmt.w0off + j * 4); } if (j & 3) { // Create a zero register. Might want to make a fixed one. EOR(scratchReg, scratchReg, scratchReg); } } static const ARMReg weightRegs[8] = { S8, S9, S10, S11, S12, S13, S14, S15 }; static const ARMReg neonWeightRegs[2] = { Q2, Q3 }; void VertexDecoderJitCache::Jit_ApplyWeights() { if (NEONSkinning) { // We construct a matrix in Q4-Q7 // We can use Q1 as temp. MOVP2R(scratchReg, bones); for (int i = 0; i < dec_->nweights; i++) { switch (i) { case 0: VMUL_scalar(F_32, Q4, Q8, QScalar(neonWeightRegs[0], 0)); VMUL_scalar(F_32, Q5, Q9, QScalar(neonWeightRegs[0], 0)); VMUL_scalar(F_32, Q6, Q10, QScalar(neonWeightRegs[0], 0)); VMUL_scalar(F_32, Q7, Q11, QScalar(neonWeightRegs[0], 0)); ADD(scratchReg, scratchReg, 16 * 4); break; case 1: VMLA_scalar(F_32, Q4, Q12, QScalar(neonWeightRegs[0], 1)); VMLA_scalar(F_32, Q5, Q13, QScalar(neonWeightRegs[0], 1)); VMLA_scalar(F_32, Q6, Q14, QScalar(neonWeightRegs[0], 1)); VMLA_scalar(F_32, Q7, Q15, QScalar(neonWeightRegs[0], 1)); ADD(scratchReg, scratchReg, 16 * 4); break; default: // Matrices 2+ need to be loaded from memory. // Wonder if we can free up one more register so we could get some parallelism. VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE); VMLA_scalar(F_32, Q4, Q1, QScalar(neonWeightRegs[i >> 2], i & 3)); VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE); VMLA_scalar(F_32, Q5, Q1, QScalar(neonWeightRegs[i >> 2], i & 3)); VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE); VMLA_scalar(F_32, Q6, Q1, QScalar(neonWeightRegs[i >> 2], i & 3)); VLD1(F_32, Q1, scratchReg, 2, ALIGN_128, REG_UPDATE); VMLA_scalar(F_32, Q7, Q1, QScalar(neonWeightRegs[i >> 2], i & 3)); break; } } } else { MOVI2R(tempReg2, (u32)skinMatrix, scratchReg); // This approach saves a few stores but accesses the matrices in a more // sparse order. const float *bone = &gstate.boneMatrix[0]; MOVI2R(tempReg1, (u32)bone, scratchReg); for (int i = 0; i < 12; i++) { VLDR(fpScratchReg3, tempReg1, i * 4); VMUL(fpScratchReg3, fpScratchReg3, weightRegs[0]); for (int j = 1; j < dec_->nweights; j++) { VLDR(fpScratchReg2, tempReg1, i * 4 + j * 4 * 12); VMLA(fpScratchReg3, fpScratchReg2, weightRegs[j]); } VSTR(fpScratchReg3, tempReg2, i * 4); } } } void VertexDecoderJitCache::Jit_WeightsU8Skin() { if (NEONSkinning && dec_->nweights <= 4) { // Most common cases. // Weight is first so srcReg is correct. switch (dec_->nweights) { case 1: LDRB(scratchReg2, srcReg, 0); break; case 2: LDRH(scratchReg2, srcReg, 0); break; case 3: LDR(scratchReg2, srcReg, 0); ANDI2R(scratchReg2, scratchReg2, 0xFFFFFF, scratchReg); break; case 4: LDR(scratchReg2, srcReg, 0); break; } VMOV(fpScratchReg, scratchReg2); MOVI2F(S12, by128, scratchReg); VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ); VMUL_scalar(F_32, neonWeightRegs[0], neonScratchRegQ, DScalar(D6, 0)); } else { // Fallback and non-neon for (int j = 0; j < dec_->nweights; j++) { LDRB(tempReg1, srcReg, dec_->weightoff + j); VMOV(fpScratchReg, tempReg1); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT); MOVI2F(fpScratchReg2, by128, scratchReg); VMUL(weightRegs[j], fpScratchReg, fpScratchReg2); } } Jit_ApplyWeights(); } void VertexDecoderJitCache::Jit_WeightsU16Skin() { if (NEONSkinning && dec_->nweights <= 4) { // Most common cases. switch (dec_->nweights) { case 1: LDRH(scratchReg, srcReg, 0); break; case 2: LDR(scratchReg, srcReg, 0); break; case 3: LDR(scratchReg, srcReg, 0); LDRH(scratchReg2, srcReg, 4); break; case 4: LDR(scratchReg, srcReg, 0); LDR(scratchReg2, srcReg, 4); break; } VMOV(fpScratchReg, scratchReg); VMOV(fpScratchReg2, scratchReg2); MOVI2F(S12, by32768, scratchReg); VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ); VMUL_scalar(F_32, neonWeightRegs[0], neonScratchRegQ, DScalar(D6, 0)); } else { // Fallback and non-neon for (int j = 0; j < dec_->nweights; j++) { LDRH(tempReg1, srcReg, dec_->weightoff + j * 2); VMOV(fpScratchReg, tempReg1); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT); MOVI2F(fpScratchReg2, 1.0f / 32768.0f, scratchReg); VMUL(weightRegs[j], fpScratchReg, fpScratchReg2); } } Jit_ApplyWeights(); } void VertexDecoderJitCache::Jit_WeightsFloatSkin() { // TODO: NEON-ize (barely worth) for (int j = 0; j < dec_->nweights; j++) { VLDR(weightRegs[j], srcReg, dec_->weightoff + j * 4); } Jit_ApplyWeights(); } // Fill last two bytes with zeroes to align to 4 bytes. LDRH does it for us, handy. void VertexDecoderJitCache::Jit_TcU8() { LDRB(tempReg1, srcReg, dec_->tcoff); LDRB(tempReg2, srcReg, dec_->tcoff + 1); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 8)); STR(tempReg1, dstReg, dec_->decFmt.uvoff); } void VertexDecoderJitCache::Jit_TcU16() { LDRH(tempReg1, srcReg, dec_->tcoff); LDRH(tempReg2, srcReg, dec_->tcoff + 2); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.uvoff); } void VertexDecoderJitCache::Jit_TcFloat() { LDR(tempReg1, srcReg, dec_->tcoff); LDR(tempReg2, srcReg, dec_->tcoff + 4); STR(tempReg1, dstReg, dec_->decFmt.uvoff); STR(tempReg2, dstReg, dec_->decFmt.uvoff + 4); } void VertexDecoderJitCache::Jit_TcU16Through() { LDRH(tempReg1, srcReg, dec_->tcoff); LDRH(tempReg2, srcReg, dec_->tcoff + 2); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.uvoff); } void VertexDecoderJitCache::Jit_TcFloatThrough() { LDR(tempReg1, srcReg, dec_->tcoff); LDR(tempReg2, srcReg, dec_->tcoff + 4); STR(tempReg1, dstReg, dec_->decFmt.uvoff); STR(tempReg2, dstReg, dec_->decFmt.uvoff + 4); } void VertexDecoderJitCache::Jit_TcU16Double() { LDRH(tempReg1, srcReg, dec_->tcoff); LDRH(tempReg2, srcReg, dec_->tcoff + 2); LSL(tempReg1, tempReg1, 1); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 17)); STR(tempReg1, dstReg, dec_->decFmt.uvoff); } void VertexDecoderJitCache::Jit_TcU16ThroughDouble() { LDRH(tempReg1, srcReg, dec_->tcoff); LDRH(tempReg2, srcReg, dec_->tcoff + 2); LSL(tempReg1, tempReg1, 1); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 17)); STR(tempReg1, dstReg, dec_->decFmt.uvoff); } void VertexDecoderJitCache::Jit_TcU8Prescale() { if (cpu_info.bNEON) { // TODO: Needs testing ADD(scratchReg, srcReg, dec_->tcoff); VLD1_lane(I_16, neonScratchReg, scratchReg, 0, false); VMOVL(I_8 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 16-bit VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ); ADD(scratchReg2, dstReg, dec_->decFmt.uvoff); VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg); VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg); VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE); } else { // TODO: SIMD LDRB(tempReg1, srcReg, dec_->tcoff); LDRB(tempReg2, srcReg, dec_->tcoff + 1); VMOV(fpScratchReg, tempReg1); VMOV(fpScratchReg2, tempReg2); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT); VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT); // Could replace VMUL + VADD with VMLA but would require 2 more regs as we don't want to destroy fp*offsetReg. Later. VMUL(fpScratchReg, fpScratchReg, fpUscaleReg); VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg); VADD(fpScratchReg, fpScratchReg, fpUoffsetReg); VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg); VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff); VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4); } } void VertexDecoderJitCache::Jit_TcU16Prescale() { if (cpu_info.bNEON) { // TODO: Needs testing ADD(scratchReg, srcReg, dec_->tcoff); VLD1_lane(I_32, neonScratchReg, scratchReg, 0, false); VMOVL(I_16 | I_UNSIGNED, neonScratchRegQ, neonScratchReg); // Widen to 32-bit VCVT(F_32 | I_UNSIGNED, neonScratchRegQ, neonScratchRegQ); ADD(scratchReg2, dstReg, dec_->decFmt.uvoff); VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg); VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg); VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE); } else { LDRH(tempReg1, srcReg, dec_->tcoff); LDRH(tempReg2, srcReg, dec_->tcoff + 2); VMOV(fpScratchReg, tempReg1); VMOV(fpScratchReg2, tempReg2); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT); VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT); VMUL(fpScratchReg, fpScratchReg, fpUscaleReg); VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg); VADD(fpScratchReg, fpScratchReg, fpUoffsetReg); VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg); VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff); VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4); } } void VertexDecoderJitCache::Jit_TcFloatPrescale() { if (cpu_info.bNEON) { ADD(scratchReg, srcReg, dec_->tcoff); VLD1(F_32, neonScratchReg, scratchReg, 1, ALIGN_NONE); ADD(scratchReg2, dstReg, dec_->decFmt.uvoff); VMUL(F_32, neonScratchReg, neonScratchReg, neonUVScaleReg); VADD(F_32, neonScratchReg, neonScratchReg, neonUVOffsetReg); VST1(F_32, neonScratchReg, scratchReg2, 1, ALIGN_NONE); } else { // TODO: SIMD VLDR(fpScratchReg, srcReg, dec_->tcoff); VLDR(fpScratchReg2, srcReg, dec_->tcoff + 4); VMUL(fpScratchReg, fpScratchReg, fpUscaleReg); VMUL(fpScratchReg2, fpScratchReg2, fpVscaleReg); VADD(fpScratchReg, fpScratchReg, fpUoffsetReg); VADD(fpScratchReg2, fpScratchReg2, fpVoffsetReg); VSTR(fpScratchReg, dstReg, dec_->decFmt.uvoff); VSTR(fpScratchReg2, dstReg, dec_->decFmt.uvoff + 4); } } void VertexDecoderJitCache::Jit_Color8888() { LDR(tempReg1, srcReg, dec_->coloff); STR(tempReg1, dstReg, dec_->decFmt.c0off); } void VertexDecoderJitCache::Jit_Color4444() { LDRH(tempReg1, srcReg, dec_->coloff); // Spread out the components. ANDI2R(tempReg2, tempReg1, 0x000F, scratchReg); ANDI2R(tempReg3, tempReg1, 0x00F0, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 4)); ANDI2R(tempReg3, tempReg1, 0x0F00, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 8)); ANDI2R(tempReg3, tempReg1, 0xF000, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 12)); // And saturate. ORR(tempReg1, tempReg2, Operand2(tempReg2, ST_LSL, 4)); STR(tempReg1, dstReg, dec_->decFmt.c0off); } void VertexDecoderJitCache::Jit_Color565() { LDRH(tempReg1, srcReg, dec_->coloff); // Spread out R and B first. This puts them in 0x001F001F. ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg); ANDI2R(tempReg3, tempReg1, 0xF800, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 5)); // Expand 5 -> 8. LSL(tempReg3, tempReg2, 3); ORR(tempReg2, tempReg3, Operand2(tempReg2, ST_LSR, 2)); ANDI2R(tempReg2, tempReg2, 0xFFFF00FF, scratchReg); // Now finally G. We start by shoving it into a wall. LSR(tempReg1, tempReg1, 5); ANDI2R(tempReg1, tempReg1, 0x003F, scratchReg); LSL(tempReg3, tempReg1, 2); // Don't worry, shifts into a wall. ORR(tempReg3, tempReg3, Operand2(tempReg1, ST_LSR, 4)); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 8)); // Add in full alpha. ORI2R(tempReg1, tempReg2, 0xFF000000, scratchReg); STR(tempReg1, dstReg, dec_->decFmt.c0off); } void VertexDecoderJitCache::Jit_Color5551() { LDRH(tempReg1, srcReg, dec_->coloff); ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg); ANDI2R(tempReg3, tempReg1, 0x07E0, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 3)); ANDI2R(tempReg3, tempReg1, 0xF800, scratchReg); ORR(tempReg2, tempReg2, Operand2(tempReg3, ST_LSL, 6)); // Expand 5 -> 8. LSR(tempReg3, tempReg2, 2); // Clean up the bits that were shifted right. BIC(tempReg3, tempReg1, AssumeMakeOperand2(0x000000F8)); BIC(tempReg3, tempReg3, AssumeMakeOperand2(0x0000F800)); ORR(tempReg2, tempReg3, Operand2(tempReg2, ST_LSL, 3)); // Now we just need alpha. TSTI2R(tempReg1, 0x8000, scratchReg); SetCC(CC_NEQ); ORI2R(tempReg2, tempReg2, 0xFF000000, scratchReg); SetCC(CC_AL); STR(tempReg2, dstReg, dec_->decFmt.c0off); } void VertexDecoderJitCache::Jit_NormalS8() { LDRB(tempReg1, srcReg, dec_->nrmoff); LDRB(tempReg2, srcReg, dec_->nrmoff + 1); LDRB(tempReg3, srcReg, dec_->nrmoff + 2); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 8)); ORR(tempReg1, tempReg1, Operand2(tempReg3, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.nrmoff); // Copy 3 bytes and then a zero. Might as well copy four. // LDR(tempReg1, srcReg, dec_->nrmoff); // ANDI2R(tempReg1, tempReg1, 0x00FFFFFF, scratchReg); // STR(tempReg1, dstReg, dec_->decFmt.nrmoff); } // Copy 6 bytes and then 2 zeroes. void VertexDecoderJitCache::Jit_NormalS16() { LDRH(tempReg1, srcReg, dec_->nrmoff); LDRH(tempReg2, srcReg, dec_->nrmoff + 2); LDRH(tempReg3, srcReg, dec_->nrmoff + 4); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.nrmoff); STR(tempReg3, dstReg, dec_->decFmt.nrmoff + 4); } void VertexDecoderJitCache::Jit_NormalFloat() { // Might not be aligned to 4, so we can't use LDMIA. // Actually - not true: This will always be aligned. TODO LDR(tempReg1, srcReg, dec_->nrmoff); LDR(tempReg2, srcReg, dec_->nrmoff + 4); LDR(tempReg3, srcReg, dec_->nrmoff + 8); // But this is always aligned to 4 so we're safe. ADD(scratchReg, dstReg, dec_->decFmt.nrmoff); STMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3); } // Through expands into floats, always. Might want to look at changing this. void VertexDecoderJitCache::Jit_PosS8Through() { // TODO: SIMD LDRSB(tempReg1, srcReg, dec_->posoff); LDRSB(tempReg2, srcReg, dec_->posoff + 1); LDRSB(tempReg3, srcReg, dec_->posoff + 2); static const ARMReg tr[3] = { tempReg1, tempReg2, tempReg3 }; for (int i = 0; i < 3; i++) { VMOV(fpScratchReg, tr[i]); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT | IS_SIGNED); VSTR(fpScratchReg, dstReg, dec_->decFmt.posoff + i * 4); } } // Through expands into floats, always. Might want to look at changing this. void VertexDecoderJitCache::Jit_PosS16Through() { // TODO: SIMD LDRSH(tempReg1, srcReg, dec_->posoff); LDRSH(tempReg2, srcReg, dec_->posoff + 2); LDRSH(tempReg3, srcReg, dec_->posoff + 4); static const ARMReg tr[3] = { tempReg1, tempReg2, tempReg3 }; for (int i = 0; i < 3; i++) { VMOV(fpScratchReg, tr[i]); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT | IS_SIGNED); VSTR(fpScratchReg, dstReg, dec_->decFmt.posoff + i * 4); } } // Copy 3 bytes and then a zero. Might as well copy four. void VertexDecoderJitCache::Jit_PosS8() { LDRB(tempReg1, srcReg, dec_->posoff); LDRB(tempReg2, srcReg, dec_->posoff + 1); LDRB(tempReg3, srcReg, dec_->posoff + 2); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 8)); ORR(tempReg1, tempReg1, Operand2(tempReg3, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.posoff); } // Copy 6 bytes and then 2 zeroes. void VertexDecoderJitCache::Jit_PosS16() { LDRH(tempReg1, srcReg, dec_->posoff); LDRH(tempReg2, srcReg, dec_->posoff + 2); LDRH(tempReg3, srcReg, dec_->posoff + 4); ORR(tempReg1, tempReg1, Operand2(tempReg2, ST_LSL, 16)); STR(tempReg1, dstReg, dec_->decFmt.posoff); STR(tempReg3, dstReg, dec_->decFmt.posoff + 4); } // Just copy 12 bytes. void VertexDecoderJitCache::Jit_PosFloat() { LDR(tempReg1, srcReg, dec_->posoff); LDR(tempReg2, srcReg, dec_->posoff + 4); LDR(tempReg3, srcReg, dec_->posoff + 8); // But this is always aligned to 4 so we're safe. ADD(scratchReg, dstReg, dec_->decFmt.posoff); STMIA(scratchReg, false, 3, tempReg1, tempReg2, tempReg3); } void VertexDecoderJitCache::Jit_NormalS8Skin() { LDRSB(tempReg1, srcReg, dec_->nrmoff); LDRSB(tempReg2, srcReg, dec_->nrmoff + 1); LDRSB(tempReg3, srcReg, dec_->nrmoff + 2); VMOV(src[0], tempReg1); VMOV(src[1], tempReg2); VMOV(src[2], tempReg3); MOVI2F(S15, 1.0f/128.0f, scratchReg); VCVT(src[0], src[0], TO_FLOAT | IS_SIGNED); VCVT(src[1], src[1], TO_FLOAT | IS_SIGNED); VCVT(src[2], src[2], TO_FLOAT | IS_SIGNED); VMUL(src[0], src[0], S15); VMUL(src[1], src[1], S15); VMUL(src[2], src[2], S15); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } void VertexDecoderJitCache::Jit_NormalS16Skin() { LDRSH(tempReg1, srcReg, dec_->nrmoff); LDRSH(tempReg2, srcReg, dec_->nrmoff + 2); LDRSH(tempReg3, srcReg, dec_->nrmoff + 4); VMOV(fpScratchReg, tempReg1); VMOV(fpScratchReg2, tempReg2); VMOV(fpScratchReg3, tempReg3); MOVI2F(S15, 1.0f/32768.0f, scratchReg); VCVT(fpScratchReg, fpScratchReg, TO_FLOAT | IS_SIGNED); VCVT(fpScratchReg2, fpScratchReg2, TO_FLOAT | IS_SIGNED); VCVT(fpScratchReg3, fpScratchReg3, TO_FLOAT | IS_SIGNED); VMUL(src[0], fpScratchReg, S15); VMUL(src[1], fpScratchReg2, S15); VMUL(src[2], fpScratchReg3, S15); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } void VertexDecoderJitCache::Jit_NormalFloatSkin() { VLDR(src[0], srcReg, dec_->nrmoff); VLDR(src[1], srcReg, dec_->nrmoff + 4); VLDR(src[2], srcReg, dec_->nrmoff + 8); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) { if (NEONSkinning) { // Multiply with the matrix sitting in Q4-Q7. ADD(scratchReg, dstReg, outOff); VMUL_scalar(F_32, accNEON, Q4, QScalar(srcNEON, 0)); VMLA_scalar(F_32, accNEON, Q5, QScalar(srcNEON, 1)); VMLA_scalar(F_32, accNEON, Q6, QScalar(srcNEON, 2)); if (pos) { VADD(F_32, accNEON, accNEON, Q7); } VST1(F_32, accNEON, scratchReg, 2); } else { MOVI2R(tempReg1, (u32)skinMatrix, scratchReg); for (int i = 0; i < 3; i++) { VLDR(fpScratchReg, tempReg1, 4 * i); VMUL(acc[i], fpScratchReg, src[0]); } for (int i = 0; i < 3; i++) { VLDR(fpScratchReg, tempReg1, 12 + 4 * i); VMLA(acc[i], fpScratchReg, src[1]); } for (int i = 0; i < 3; i++) { VLDR(fpScratchReg, tempReg1, 24 + 4 * i); VMLA(acc[i], fpScratchReg, src[2]); } if (pos) { for (int i = 0; i < 3; i++) { VLDR(fpScratchReg, tempReg1, 36 + 4 * i); VADD(acc[i], acc[i], fpScratchReg); } } for (int i = 0; i < 3; i++) { VSTR(acc[i], dstReg, outOff + i * 4); } } } void VertexDecoderJitCache::Jit_PosS8Skin() { LDRSB(tempReg1, srcReg, dec_->posoff); LDRSB(tempReg2, srcReg, dec_->posoff + 1); LDRSB(tempReg3, srcReg, dec_->posoff + 2); VMOV(src[0], tempReg1); VMOV(src[1], tempReg2); VMOV(src[2], tempReg3); MOVI2F(S15, 1.0f/128.0f, scratchReg); VCVT(src[0], src[0], TO_FLOAT | IS_SIGNED); VCVT(src[1], src[1], TO_FLOAT | IS_SIGNED); VCVT(src[2], src[2], TO_FLOAT | IS_SIGNED); VMUL(src[0], src[0], S15); VMUL(src[1], src[1], S15); VMUL(src[2], src[2], S15); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } void VertexDecoderJitCache::Jit_PosS16Skin() { LDRSH(tempReg1, srcReg, dec_->posoff); LDRSH(tempReg2, srcReg, dec_->posoff + 2); LDRSH(tempReg3, srcReg, dec_->posoff + 4); VMOV(src[0], tempReg1); VMOV(src[1], tempReg2); VMOV(src[2], tempReg3); MOVI2F(S15, 1.0f/32768.0f, scratchReg); VCVT(src[0], src[0], TO_FLOAT | IS_SIGNED); VCVT(src[1], src[1], TO_FLOAT | IS_SIGNED); VCVT(src[2], src[2], TO_FLOAT | IS_SIGNED); VMUL(src[0], src[0], S15); VMUL(src[1], src[1], S15); VMUL(src[2], src[2], S15); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } void VertexDecoderJitCache::Jit_PosFloatSkin() { VLDR(src[0], srcReg, dec_->posoff); VLDR(src[1], srcReg, dec_->posoff + 4); VLDR(src[2], srcReg, dec_->posoff + 8); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) { // See if we find a matching JIT function for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) { if (dec.steps_[step] == jitLookup[i].func) { ((*this).*jitLookup[i].jitFunc)(); return true; } } return false; }