// Copyright (c) 2015- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/logging.h" #include "profiler/profiler.h" #include "Common/ChunkFile.h" #include "Common/GraphicsContext.h" #include "Core/Config.h" #include "Core/Debugger/Breakpoints.h" #include "Core/MemMapHelpers.h" #include "Core/Host.h" #include "Core/Config.h" #include "Core/Reporting.h" #include "Core/System.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/GeDisasm.h" #include "GPU/Common/FramebufferCommon.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/GPU_Vulkan.h" #include "GPU/Vulkan/FramebufferVulkan.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "Core/MIPS/MIPS.h" #include "Core/HLE/sceKernelThread.h" #include "Core/HLE/sceKernelInterrupt.h" #include "Core/HLE/sceGe.h" struct VulkanCommandTableEntry { uint8_t cmd; uint8_t flags; uint64_t dirty; GPU_Vulkan::CmdFunc func; }; GPU_Vulkan::CommandInfo GPU_Vulkan::cmdInfo_[256]; // This table gets crunched into a faster form by init. // TODO: Share this table between the backends. Will have to make another indirection for the function pointers though.. static const VulkanCommandTableEntry commandTable[] = { // Changes that dirty the current texture. { GE_CMD_TEXSIZE0, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTE, 0, &GPU_Vulkan::Execute_TexSize0 }, { GE_CMD_STENCILTEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_STENCILREPLACEVALUE }, // Changing the vertex type requires us to flush. { GE_CMD_VERTEXTYPE, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPU_Vulkan::Execute_VertexType }, { GE_CMD_PRIM, FLAG_EXECUTE, 0, &GPU_Vulkan::Execute_Prim }, { GE_CMD_BEZIER, FLAG_FLUSHBEFORE | FLAG_EXECUTE, 0, &GPU_Vulkan::Execute_Bezier }, { GE_CMD_SPLINE, FLAG_FLUSHBEFORE | FLAG_EXECUTE, 0, &GPU_Vulkan::Execute_Spline }, // Changes that trigger data copies. Only flushing on change for LOADCLUT must be a bit of a hack... { GE_CMD_LOADCLUT, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTE, 0, &GPU_Vulkan::Execute_LoadClut }, { GE_CMD_TRANSFERSTART, FLAG_FLUSHBEFORE | FLAG_EXECUTE | FLAG_READS_PC, 0, &GPUCommon::Execute_BlockTransferStart }, }; GPU_Vulkan::GPU_Vulkan(GraphicsContext *gfxCtx, Draw::DrawContext *draw) : GPUCommon(gfxCtx, draw), vulkan_((VulkanContext *)gfxCtx->GetAPIContext()), drawEngine_(vulkan_) { UpdateVsyncInterval(true); CheckGPUFeatures(); shaderManagerVulkan_ = new ShaderManagerVulkan(vulkan_); pipelineManager_ = new PipelineManagerVulkan(vulkan_); framebufferManagerVulkan_ = new FramebufferManagerVulkan(draw, vulkan_); framebufferManager_ = framebufferManagerVulkan_; textureCacheVulkan_ = new TextureCacheVulkan(draw, vulkan_); textureCache_ = textureCacheVulkan_; drawEngineCommon_ = &drawEngine_; shaderManager_ = shaderManagerVulkan_; drawEngine_.SetTextureCache(textureCacheVulkan_); drawEngine_.SetFramebufferManager(framebufferManagerVulkan_); drawEngine_.SetShaderManager(shaderManagerVulkan_); drawEngine_.SetPipelineManager(pipelineManager_); framebufferManagerVulkan_->Init(); framebufferManagerVulkan_->SetTextureCache(textureCacheVulkan_); framebufferManagerVulkan_->SetDrawEngine(&drawEngine_); framebufferManagerVulkan_->SetShaderManager(shaderManagerVulkan_); textureCacheVulkan_->SetFramebufferManager(framebufferManagerVulkan_); textureCacheVulkan_->SetDepalShaderCache(&depalShaderCache_); textureCacheVulkan_->SetShaderManager(shaderManagerVulkan_); textureCacheVulkan_->SetDrawEngine(&drawEngine_); // Sanity check gstate if ((int *)&gstate.transferstart - (int *)&gstate != 0xEA) { ERROR_LOG(G3D, "gstate has drifted out of sync!"); } memset(cmdInfo_, 0, sizeof(cmdInfo_)); // Import both the global and local command tables, and check for dupes std::set dupeCheck; for (size_t i = 0; i < commonCommandTableSize; i++) { const u8 cmd = commonCommandTable[i].cmd; if (dupeCheck.find(cmd) != dupeCheck.end()) { ERROR_LOG(G3D, "Command table Dupe: %02x (%i)", (int)cmd, (int)cmd); } else { dupeCheck.insert(cmd); } cmdInfo_[cmd].flags |= (uint64_t)commonCommandTable[i].flags | (commonCommandTable[i].dirty << 8); cmdInfo_[cmd].func = commonCommandTable[i].func; if ((cmdInfo_[cmd].flags & (FLAG_EXECUTE | FLAG_EXECUTEONCHANGE)) && !cmdInfo_[cmd].func) { Crash(); } } for (size_t i = 0; i < ARRAY_SIZE(commandTable); i++) { const u8 cmd = commandTable[i].cmd; if (dupeCheck.find(cmd) != dupeCheck.end()) { ERROR_LOG(G3D, "Command table Dupe: %02x (%i)", (int)cmd, (int)cmd); } else { dupeCheck.insert(cmd); } cmdInfo_[cmd].flags |= (uint64_t)commandTable[i].flags | (commandTable[i].dirty << 8); cmdInfo_[cmd].func = commandTable[i].func; if ((cmdInfo_[cmd].flags & (FLAG_EXECUTE | FLAG_EXECUTEONCHANGE)) && !cmdInfo_[cmd].func) { Crash(); } } // Find commands missing from the table. for (int i = 0; i < 0xEF; i++) { if (dupeCheck.find((u8)i) == dupeCheck.end()) { ERROR_LOG(G3D, "Command missing from table: %02x (%i)", i, i); } } UpdateCmdInfo(); BuildReportingInfo(); // Update again after init to be sure of any silly driver problems. UpdateVsyncInterval(true); textureCacheVulkan_->NotifyConfigChanged(); } GPU_Vulkan::~GPU_Vulkan() { framebufferManagerVulkan_->DestroyAllFBOs(true); depalShaderCache_.Clear(); delete pipelineManager_; delete shaderManagerVulkan_; } void GPU_Vulkan::CheckGPUFeatures() { uint32_t features = 0; features |= GPU_SUPPORTS_16BIT_FORMATS; if (vulkan_->GetFeaturesEnabled().wideLines) { features |= GPU_SUPPORTS_WIDE_LINES; } if (vulkan_->GetFeaturesEnabled().dualSrcBlend) { features |= GPU_SUPPORTS_DUALSOURCE_BLEND; } if (vulkan_->GetFeaturesEnabled().logicOp) { features |= GPU_SUPPORTS_LOGIC_OP; } if (vulkan_->GetFeaturesEnabled().samplerAnisotropy) { features |= GPU_SUPPORTS_ANISOTROPY; } if (PSP_CoreParameter().compat.flags().ClearToRAM) { features |= GPU_USE_CLEAR_RAM_HACK; } // Mandatory features on Vulkan, which may be checked in "centralized" code features |= GPU_SUPPORTS_TEXTURE_LOD_CONTROL; features |= GPU_SUPPORTS_FBO; features |= GPU_SUPPORTS_BLEND_MINMAX; features |= GPU_SUPPORTS_ANY_COPY_IMAGE; features |= GPU_SUPPORTS_OES_TEXTURE_NPOT; features |= GPU_SUPPORTS_LARGE_VIEWPORTS; features |= GPU_SUPPORTS_16BIT_FORMATS; gstate_c.featureFlags = features; } void GPU_Vulkan::BeginHostFrame() { if (g_Config.iRenderingMode == FB_NON_BUFFERED_MODE) { // Draw everything directly to the backbuffer. drawEngine_.SetCmdBuffer(vulkan_->GetSurfaceCommandBuffer()); } drawEngine_.BeginFrame(); if (resized_) { CheckGPUFeatures(); // In case the GPU changed. BuildReportingInfo(); UpdateCmdInfo(); drawEngine_.Resized(); textureCacheVulkan_->NotifyConfigChanged(); } resized_ = false; textureCacheVulkan_->StartFrame(); depalShaderCache_.Decimate(); framebufferManagerVulkan_->BeginFrameVulkan(); shaderManagerVulkan_->DirtyShader(); gstate_c.Dirty(DIRTY_ALL); if (dumpNextFrame_) { NOTICE_LOG(G3D, "DUMPING THIS FRAME"); dumpThisFrame_ = true; dumpNextFrame_ = false; } else if (dumpThisFrame_) { dumpThisFrame_ = false; } } void GPU_Vulkan::EndHostFrame() { drawEngine_.EndFrame(); framebufferManagerVulkan_->EndFrame(); textureCacheVulkan_->EndFrame(); } // Needs to be called on GPU thread, not reporting thread. void GPU_Vulkan::BuildReportingInfo() { const auto &props = vulkan_->GetPhysicalDeviceProperties(); const auto &features = vulkan_->GetFeaturesAvailable(); #define CHECK_BOOL_FEATURE(n) do { if (features.n) { featureNames += ", " #n; } } while (false) std::string featureNames = ""; CHECK_BOOL_FEATURE(robustBufferAccess); CHECK_BOOL_FEATURE(fullDrawIndexUint32); CHECK_BOOL_FEATURE(imageCubeArray); CHECK_BOOL_FEATURE(independentBlend); CHECK_BOOL_FEATURE(geometryShader); CHECK_BOOL_FEATURE(tessellationShader); CHECK_BOOL_FEATURE(sampleRateShading); CHECK_BOOL_FEATURE(dualSrcBlend); CHECK_BOOL_FEATURE(logicOp); CHECK_BOOL_FEATURE(multiDrawIndirect); CHECK_BOOL_FEATURE(drawIndirectFirstInstance); CHECK_BOOL_FEATURE(depthClamp); CHECK_BOOL_FEATURE(depthBiasClamp); CHECK_BOOL_FEATURE(fillModeNonSolid); CHECK_BOOL_FEATURE(depthBounds); CHECK_BOOL_FEATURE(wideLines); CHECK_BOOL_FEATURE(largePoints); CHECK_BOOL_FEATURE(alphaToOne); CHECK_BOOL_FEATURE(multiViewport); CHECK_BOOL_FEATURE(samplerAnisotropy); CHECK_BOOL_FEATURE(textureCompressionETC2); CHECK_BOOL_FEATURE(textureCompressionASTC_LDR); CHECK_BOOL_FEATURE(textureCompressionBC); CHECK_BOOL_FEATURE(occlusionQueryPrecise); CHECK_BOOL_FEATURE(pipelineStatisticsQuery); CHECK_BOOL_FEATURE(vertexPipelineStoresAndAtomics); CHECK_BOOL_FEATURE(fragmentStoresAndAtomics); CHECK_BOOL_FEATURE(shaderTessellationAndGeometryPointSize); CHECK_BOOL_FEATURE(shaderImageGatherExtended); CHECK_BOOL_FEATURE(shaderStorageImageExtendedFormats); CHECK_BOOL_FEATURE(shaderStorageImageMultisample); CHECK_BOOL_FEATURE(shaderStorageImageReadWithoutFormat); CHECK_BOOL_FEATURE(shaderStorageImageWriteWithoutFormat); CHECK_BOOL_FEATURE(shaderUniformBufferArrayDynamicIndexing); CHECK_BOOL_FEATURE(shaderSampledImageArrayDynamicIndexing); CHECK_BOOL_FEATURE(shaderStorageBufferArrayDynamicIndexing); CHECK_BOOL_FEATURE(shaderStorageImageArrayDynamicIndexing); CHECK_BOOL_FEATURE(shaderClipDistance); CHECK_BOOL_FEATURE(shaderCullDistance); CHECK_BOOL_FEATURE(shaderFloat64); CHECK_BOOL_FEATURE(shaderInt64); CHECK_BOOL_FEATURE(shaderInt16); CHECK_BOOL_FEATURE(shaderResourceResidency); CHECK_BOOL_FEATURE(shaderResourceMinLod); CHECK_BOOL_FEATURE(sparseBinding); CHECK_BOOL_FEATURE(sparseResidencyBuffer); CHECK_BOOL_FEATURE(sparseResidencyImage2D); CHECK_BOOL_FEATURE(sparseResidencyImage3D); CHECK_BOOL_FEATURE(sparseResidency2Samples); CHECK_BOOL_FEATURE(sparseResidency4Samples); CHECK_BOOL_FEATURE(sparseResidency8Samples); CHECK_BOOL_FEATURE(sparseResidency16Samples); CHECK_BOOL_FEATURE(sparseResidencyAliased); CHECK_BOOL_FEATURE(variableMultisampleRate); CHECK_BOOL_FEATURE(inheritedQueries); #undef CHECK_BOOL_FEATURE if (!featureNames.empty()) { featureNames = featureNames.substr(2); } char temp[16384]; snprintf(temp, sizeof(temp), "v%08x driver v%08x (%s), vendorID=%d, deviceID=%d (features: %s)", props.apiVersion, props.driverVersion, props.deviceName, props.vendorID, props.deviceID, featureNames.c_str()); reportingPrimaryInfo_ = props.deviceName; reportingFullInfo_ = temp; Reporting::UpdateConfig(); } void GPU_Vulkan::ReinitializeInternal() { textureCacheVulkan_->Clear(true); depalShaderCache_.Clear(); framebufferManagerVulkan_->DestroyAllFBOs(true); framebufferManagerVulkan_->Resized(); } void GPU_Vulkan::InitClearInternal() { bool useNonBufferedRendering = g_Config.iRenderingMode == FB_NON_BUFFERED_MODE; if (useNonBufferedRendering) { /* glstate.depthWrite.set(GL_TRUE); glstate.colorMask.set(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); */ } } void GPU_Vulkan::DumpNextFrame() { dumpNextFrame_ = true; } void GPU_Vulkan::BeginFrame() { ScheduleEvent(GPU_EVENT_BEGIN_FRAME); } void GPU_Vulkan::UpdateVsyncInterval(bool force) { // TODO } void GPU_Vulkan::UpdateCmdInfo() { /* if (g_Config.bSoftwareSkinning) { cmdInfo_[GE_CMD_VERTEXTYPE].flags &= ~FLAG_FLUSHBEFOREONCHANGE; cmdInfo_[GE_CMD_VERTEXTYPE].func = &GPU_Vulkan::Execute_VertexTypeSkinning; } else {*/ cmdInfo_[GE_CMD_VERTEXTYPE].flags |= FLAG_FLUSHBEFOREONCHANGE; cmdInfo_[GE_CMD_VERTEXTYPE].func = &GPU_Vulkan::Execute_VertexType; // } } void GPU_Vulkan::BeginFrameInternal() { } void GPU_Vulkan::SetDisplayFramebuffer(u32 framebuf, u32 stride, GEBufferFormat format) { host->GPUNotifyDisplay(framebuf, stride, format); framebufferManager_->SetDisplayFramebuffer(framebuf, stride, format); } bool GPU_Vulkan::FramebufferDirty() { if (ThreadEnabled()) { // Allow it to process fully before deciding if it's dirty. SyncThread(); } VirtualFramebuffer *vfb = framebufferManager_->GetDisplayVFB(); if (vfb) { bool dirty = vfb->dirtyAfterDisplay; vfb->dirtyAfterDisplay = false; return dirty; } return true; } bool GPU_Vulkan::FramebufferReallyDirty() { if (ThreadEnabled()) { // Allow it to process fully before deciding if it's dirty. SyncThread(); } VirtualFramebuffer *vfb = framebufferManager_->GetDisplayVFB(); if (vfb) { bool dirty = vfb->reallyDirtyAfterDisplay; vfb->reallyDirtyAfterDisplay = false; return dirty; } return true; } void GPU_Vulkan::CopyDisplayToOutputInternal() { // Flush anything left over. drawEngine_.Flush(curCmd_); shaderManagerVulkan_->DirtyLastShader(); framebufferManagerVulkan_->CopyDisplayToOutput(); gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } // Maybe should write this in ASM... void GPU_Vulkan::FastRunLoop(DisplayList &list) { PROFILE_THIS_SCOPE("gpuloop"); const CommandInfo *cmdInfo = cmdInfo_; int dc = downcount; for (; dc > 0; --dc) { // We know that display list PCs have the upper nibble == 0 - no need to mask the pointer const u32 op = *(const u32 *)(Memory::base + list.pc); const u32 cmd = op >> 24; const CommandInfo info = cmdInfo[cmd]; const u8 cmdFlags = info.flags; // If we stashed the cmdFlags in the top bits of the cmdmem, we could get away with one table lookup instead of two const u32 diff = op ^ gstate.cmdmem[cmd]; // Inlined CheckFlushOp here to get rid of the dumpThisFrame_ check. if ((cmdFlags & FLAG_FLUSHBEFORE) || (diff && (cmdFlags & FLAG_FLUSHBEFOREONCHANGE))) { drawEngine_.Flush(curCmd_); } gstate.cmdmem[cmd] = op; // TODO: no need to write if diff==0... if ((cmdFlags & FLAG_EXECUTE) || (diff && (cmdFlags & FLAG_EXECUTEONCHANGE))) { downcount = dc; (this->*info.func)(op, diff); dc = downcount; } else if (diff) { uint64_t dirty = info.flags >> 8; if (dirty) gstate_c.Dirty(dirty); } list.pc += 4; } downcount = 0; } void GPU_Vulkan::FinishDeferred() { } inline void GPU_Vulkan::CheckFlushOp(int cmd, u32 diff) { const u8 cmdFlags = cmdInfo_[cmd].flags; if ((cmdFlags & FLAG_FLUSHBEFORE) || (diff && (cmdFlags & FLAG_FLUSHBEFOREONCHANGE))) { if (dumpThisFrame_) { NOTICE_LOG(G3D, "================ FLUSH ================"); } drawEngine_.Flush(curCmd_); } } void GPU_Vulkan::PreExecuteOp(u32 op, u32 diff) { CheckFlushOp(op >> 24, diff); } void GPU_Vulkan::ExecuteOp(u32 op, u32 diff) { const u8 cmd = op >> 24; const CommandInfo info = cmdInfo_[cmd]; const u8 cmdFlags = info.flags; if ((cmdFlags & FLAG_EXECUTE) || (diff && (cmdFlags & FLAG_EXECUTEONCHANGE))) { (this->*info.func)(op, diff); } else if (diff) { uint64_t dirty = info.flags >> 8; if (dirty) gstate_c.Dirty(dirty); } } void GPU_Vulkan::Execute_Prim(u32 op, u32 diff) { // This drives all drawing. All other state we just buffer up, then we apply it only // when it's time to draw. As most PSP games set state redundantly ALL THE TIME, this is a huge optimization. u32 data = op & 0xFFFFFF; u32 count = data & 0xFFFF; // Upper bits are ignored. GEPrimitiveType prim = static_cast((data >> 16) & 7); if (count == 0) return; SetDrawType(DRAW_PRIM, prim); // Discard AA lines as we can't do anything that makes sense with these anyway. The SW plugin might, though. if (gstate.isAntiAliasEnabled()) { // Discard AA lines in DOA if (prim == GE_PRIM_LINE_STRIP) return; // Discard AA lines in Summon Night 5 if ((prim == GE_PRIM_LINES) && gstate.isSkinningEnabled()) return; } // This also makes skipping drawing very effective. framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason); if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) { drawEngine_.SetupVertexDecoder(gstate.vertType); // Rough estimate, not sure what's correct. cyclesExecuted += EstimatePerVertexCost() * count; return; } if (!Memory::IsValidAddress(gstate_c.vertexAddr)) { ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr); return; } void *verts = Memory::GetPointerUnchecked(gstate_c.vertexAddr); void *inds = 0; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { if (!Memory::IsValidAddress(gstate_c.indexAddr)) { ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr); return; } inds = Memory::GetPointerUnchecked(gstate_c.indexAddr); } #ifndef MOBILE_DEVICE if (prim > GE_PRIM_RECTANGLES) { ERROR_LOG_REPORT_ONCE(reportPrim, G3D, "Unexpected prim type: %d", prim); } #endif int bytesRead = 0; drawEngine_.SubmitPrim(verts, inds, prim, count, gstate.vertType, &bytesRead); int vertexCost = EstimatePerVertexCost(); gpuStats.vertexGPUCycles += vertexCost * count; cyclesExecuted += vertexCost * count; // After drawing, we advance the vertexAddr (when non indexed) or indexAddr (when indexed). // Some games rely on this, they don't bother reloading VADDR and IADDR. // The VADDR/IADDR registers are NOT updated. AdvanceVerts(gstate.vertType, count, bytesRead); } void GPU_Vulkan::Execute_VertexType(u32 op, u32 diff) { if (diff & (GE_VTYPE_TC_MASK | GE_VTYPE_THROUGH_MASK)) { gstate_c.Dirty(DIRTY_UVSCALEOFFSET); } } void GPU_Vulkan::Execute_Bezier(u32 op, u32 diff) { // We don't dirty on normal changes anymore as we prescale, but it's needed for splines/bezier. gstate_c.Dirty(DIRTY_UVSCALEOFFSET); // This also make skipping drawing very effective. framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason); if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) { // TODO: Should this eat some cycles? Probably yes. Not sure if important. return; } if (!Memory::IsValidAddress(gstate_c.vertexAddr)) { ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr); return; } void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr); void *indices = NULL; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { if (!Memory::IsValidAddress(gstate_c.indexAddr)) { ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr); return; } indices = Memory::GetPointerUnchecked(gstate_c.indexAddr); } if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) { DEBUG_LOG_REPORT(G3D, "Bezier + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT); } if (vertTypeIsSkinningEnabled(gstate.vertType)) { DEBUG_LOG_REPORT(G3D, "Bezier + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType)); } GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType(); SetDrawType(DRAW_BEZIER, PatchPrimToPrim(patchPrim)); int bz_ucount = op & 0xFF; int bz_vcount = (op >> 8) & 0xFF; bool computeNormals = gstate.isLightingEnabled(); bool patchFacing = gstate.patchfacing & 1; int bytesRead = 0; if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) { gstate_c.bezier = true; if (gstate_c.spline_count_u != bz_ucount) { gstate_c.Dirty(DIRTY_BEZIERSPLINE); gstate_c.spline_count_u = bz_ucount; } } drawEngine_.SubmitBezier(control_points, indices, gstate.getPatchDivisionU(), gstate.getPatchDivisionV(), bz_ucount, bz_vcount, patchPrim, computeNormals, patchFacing, gstate.vertType, &bytesRead); gstate_c.bezier = false; // After drawing, we advance pointers - see SubmitPrim which does the same. int count = bz_ucount * bz_vcount; AdvanceVerts(gstate.vertType, count, bytesRead); } void GPU_Vulkan::Execute_Spline(u32 op, u32 diff) { // We don't dirty on normal changes anymore as we prescale, but it's needed for splines/bezier. gstate_c.Dirty(DIRTY_UVSCALEOFFSET); // This also make skipping drawing very effective. framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason); if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) { // TODO: Should this eat some cycles? Probably yes. Not sure if important. return; } if (!Memory::IsValidAddress(gstate_c.vertexAddr)) { ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr); return; } void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr); void *indices = NULL; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { if (!Memory::IsValidAddress(gstate_c.indexAddr)) { ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr); return; } indices = Memory::GetPointerUnchecked(gstate_c.indexAddr); } if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) { DEBUG_LOG_REPORT(G3D, "Spline + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT); } if (vertTypeIsSkinningEnabled(gstate.vertType)) { DEBUG_LOG_REPORT(G3D, "Spline + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType)); } int sp_ucount = op & 0xFF; int sp_vcount = (op >> 8) & 0xFF; int sp_utype = (op >> 16) & 0x3; int sp_vtype = (op >> 18) & 0x3; GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType(); SetDrawType(DRAW_SPLINE, PatchPrimToPrim(patchPrim)); bool computeNormals = gstate.isLightingEnabled(); bool patchFacing = gstate.patchfacing & 1; u32 vertType = gstate.vertType; if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) { gstate_c.spline = true; bool countsChanged = gstate_c.spline_count_u != sp_ucount || gstate_c.spline_count_v != sp_vcount; bool typesChanged = gstate_c.spline_type_u != sp_utype || gstate_c.spline_type_v != sp_vtype; if (countsChanged || typesChanged) { gstate_c.Dirty(DIRTY_BEZIERSPLINE); gstate_c.spline_count_u = sp_ucount; gstate_c.spline_count_v = sp_vcount; gstate_c.spline_type_u = sp_utype; gstate_c.spline_type_v = sp_vtype; } } int bytesRead = 0; drawEngine_.SubmitSpline(control_points, indices, gstate.getPatchDivisionU(), gstate.getPatchDivisionV(), sp_ucount, sp_vcount, sp_utype, sp_vtype, patchPrim, computeNormals, patchFacing, vertType, &bytesRead); gstate_c.spline = false; // After drawing, we advance pointers - see SubmitPrim which does the same. int count = sp_ucount * sp_vcount; AdvanceVerts(gstate.vertType, count, bytesRead); } void GPU_Vulkan::Execute_TexSize0(u32 op, u32 diff) { // Render to texture may have overridden the width/height. // Don't reset it unless the size is different / the texture has changed. if (diff || gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS)) { gstate_c.curTextureWidth = gstate.getTextureWidth(0); gstate_c.curTextureHeight = gstate.getTextureHeight(0); // We will need to reset the texture now. gstate_c.Dirty(DIRTY_UVSCALEOFFSET | DIRTY_TEXTURE_PARAMS); } } void GPU_Vulkan::Execute_LoadClut(u32 op, u32 diff) { gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); textureCacheVulkan_->LoadClut(gstate.getClutAddress(), gstate.getClutLoadBytes()); } void GPU_Vulkan::Execute_BoneMtxNum(u32 op, u32 diff) { // This is almost always followed by GE_CMD_BONEMATRIXDATA. const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4); u32 *dst = (u32 *)(gstate.boneMatrix + (op & 0x7F)); const int end = 12 * 8 - (op & 0x7F); int i = 0; // If we can't use software skinning, we have to flush and dirty. while ((src[i] >> 24) == GE_CMD_BONEMATRIXDATA) { const u32 newVal = src[i] << 8; if (dst[i] != newVal) { Flush(); dst[i] = newVal; } if (++i >= end) { break; } } const int numPlusCount = (op & 0x7F) + i; for (int num = op & 0x7F; num < numPlusCount; num += 12) { gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12)); } const int count = i; gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | ((op + count) & 0x7F); // Skip over the loaded data, it's done now. UpdatePC(currentList->pc, currentList->pc + count * 4); currentList->pc += count * 4; } void GPU_Vulkan::Execute_BoneMtxData(u32 op, u32 diff) { // Note: it's uncommon to get here now, see above. int num = gstate.boneMatrixNumber & 0x7F; u32 newVal = op << 8; if (num < 96 && newVal != ((const u32 *)gstate.boneMatrix)[num]) { // Bone matrices should NOT flush when software skinning is enabled! Flush(); gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12)); ((u32 *)gstate.boneMatrix)[num] = newVal; } num++; gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | (num & 0x7F); } void GPU_Vulkan::FastLoadBoneMatrix(u32 target) { const int num = gstate.boneMatrixNumber & 0x7F; const int mtxNum = num / 12; uint32_t uniformsToDirty = DIRTY_BONEMATRIX0 << mtxNum; if ((num - 12 * mtxNum) != 0) { uniformsToDirty |= DIRTY_BONEMATRIX0 << ((mtxNum + 1) & 7); } Flush(); gstate_c.Dirty(uniformsToDirty); gstate.FastLoadBoneMatrix(target); } void GPU_Vulkan::DeviceLost() { framebufferManagerVulkan_->DeviceLost(); drawEngine_.DeviceLost(); pipelineManager_->DeviceLost(); textureCacheVulkan_->DeviceLost(); depalShaderCache_.Clear(); shaderManagerVulkan_->ClearShaders(); } void GPU_Vulkan::DeviceRestore() { vulkan_ = (VulkanContext *)PSP_CoreParameter().graphicsContext->GetAPIContext(); CheckGPUFeatures(); BuildReportingInfo(); UpdateCmdInfo(); framebufferManagerVulkan_->DeviceRestore(vulkan_); drawEngine_.DeviceRestore(vulkan_); pipelineManager_->DeviceRestore(vulkan_); textureCacheVulkan_->DeviceRestore(vulkan_); shaderManagerVulkan_->DeviceRestore(vulkan_); } void GPU_Vulkan::GetStats(char *buffer, size_t bufsize) { const DrawEngineVulkanStats &drawStats = drawEngine_.GetStats(); float vertexAverageCycles = gpuStats.numVertsSubmitted > 0 ? (float)gpuStats.vertexGPUCycles / (float)gpuStats.numVertsSubmitted : 0.0f; snprintf(buffer, bufsize - 1, "DL processing time: %0.2f ms\n" "Draw calls: %i, flushes %i\n" "Cached Draw calls: %i\n" "Num Tracked Vertex Arrays: %i\n" "GPU cycles executed: %d (%f per vertex)\n" "Commands per call level: %i %i %i %i\n" "Vertices submitted: %i\n" "Cached, Uncached Vertices Drawn: %i, %i\n" "FBOs active: %i\n" "Textures active: %i, decoded: %i invalidated: %i\n" "Vertex, Fragment, Pipelines loaded: %i, %i, %i\n" "Pushbuffer space used: UBO %d, Vtx %d, Idx %d\n", gpuStats.msProcessingDisplayLists * 1000.0f, gpuStats.numDrawCalls, gpuStats.numFlushes, gpuStats.numCachedDrawCalls, gpuStats.numTrackedVertexArrays, gpuStats.vertexGPUCycles + gpuStats.otherGPUCycles, vertexAverageCycles, gpuStats.gpuCommandsAtCallLevel[0], gpuStats.gpuCommandsAtCallLevel[1], gpuStats.gpuCommandsAtCallLevel[2], gpuStats.gpuCommandsAtCallLevel[3], gpuStats.numVertsSubmitted, gpuStats.numCachedVertsDrawn, gpuStats.numUncachedVertsDrawn, (int)framebufferManager_->NumVFBs(), (int)textureCacheVulkan_->NumLoadedTextures(), gpuStats.numTexturesDecoded, gpuStats.numTextureInvalidations, shaderManagerVulkan_->GetNumVertexShaders(), shaderManagerVulkan_->GetNumFragmentShaders(), pipelineManager_->GetNumPipelines(), drawStats.pushUBOSpaceUsed, drawStats.pushVertexSpaceUsed, drawStats.pushIndexSpaceUsed ); } void GPU_Vulkan::ClearCacheNextFrame() { textureCacheVulkan_->ClearNextFrame(); } void GPU_Vulkan::ClearShaderCache() { // TODO } std::vector GPU_Vulkan::GetFramebufferList() { return framebufferManagerVulkan_->GetFramebufferList(); } void GPU_Vulkan::DoState(PointerWrap &p) { GPUCommon::DoState(p); // TODO: Some of these things may not be necessary. // None of these are necessary when saving. // In Freeze-Frame mode, we don't want to do any of this. if (p.mode == p.MODE_READ && !PSP_CoreParameter().frozen) { textureCacheVulkan_->Clear(true); depalShaderCache_.Clear(); gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); framebufferManagerVulkan_->DestroyAllFBOs(true); shaderManagerVulkan_->ClearShaders(); pipelineManager_->Clear(); } } bool GPU_Vulkan::GetCurrentSimpleVertices(int count, std::vector &vertices, std::vector &indices) { return drawEngine_.GetCurrentSimpleVertices(count, vertices, indices); } bool GPU_Vulkan::DescribeCodePtr(const u8 *ptr, std::string &name) { if (drawEngine_.IsCodePtrVertexDecoder(ptr)) { name = "VertexDecoderJit"; return true; } return false; } std::vector GPU_Vulkan::DebugGetShaderIDs(DebugShaderType type) { if (type == SHADER_TYPE_VERTEXLOADER) { return drawEngine_.DebugGetVertexLoaderIDs(); } else if (type == SHADER_TYPE_PIPELINE) { return pipelineManager_->DebugGetObjectIDs(type); } else { return shaderManagerVulkan_->DebugGetShaderIDs(type); } } std::string GPU_Vulkan::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) { if (type == SHADER_TYPE_VERTEXLOADER) { return drawEngine_.DebugGetVertexLoaderString(id, stringType); } else if (type == SHADER_TYPE_PIPELINE) { return pipelineManager_->DebugGetObjectString(id, type, stringType); } else { return shaderManagerVulkan_->DebugGetShaderString(id, type, stringType); } }