// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "base/logging.h" #include "base/timeutil.h" #include "math/dataconv.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "Common/Vulkan/VulkanContext.h" #include "Common/Vulkan/VulkanMemory.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/FramebufferVulkan.h" #include "GPU/Vulkan/GPU_Vulkan.h" enum { DRAW_BINDING_TEXTURE = 0, DRAW_BINDING_2ND_TEXTURE = 1, DRAW_BINDING_DYNUBO_BASE = 2, DRAW_BINDING_DYNUBO_LIGHT = 3, DRAW_BINDING_DYNUBO_BONE = 4, DRAW_BINDING_TESS_POS_TEXTURE = 5, DRAW_BINDING_TESS_TEX_TEXTURE = 6, DRAW_BINDING_TESS_COL_TEXTURE = 7, }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan) : vulkan_(vulkan), prevPrim_(GE_PRIM_INVALID), lastVTypeID_(-1), numDrawCalls(0), vertexCountInDrawCalls(0), curFrame_(0), nullTexture_(nullptr), stats_{} { decOptions_.expandAllWeightsToFloat = false; decOptions_.expand8BitNormalsToFloat = false; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); InitDeviceObjects(); tessDataTransfer = new TessellationDataTransferVulkan(vulkan); } void DrawEngineVulkan::InitDeviceObjects() { // All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated. VkDescriptorSetLayoutBinding bindings[8]; bindings[0].descriptorCount = 1; bindings[0].pImmutableSamplers = nullptr; bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[0].binding = DRAW_BINDING_TEXTURE; bindings[1].descriptorCount = 1; bindings[1].pImmutableSamplers = nullptr; bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[1].binding = DRAW_BINDING_2ND_TEXTURE; bindings[2].descriptorCount = 1; bindings[2].pImmutableSamplers = nullptr; bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; bindings[2].binding = DRAW_BINDING_DYNUBO_BASE; bindings[3].descriptorCount = 1; bindings[3].pImmutableSamplers = nullptr; bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT; bindings[4].descriptorCount = 1; bindings[4].pImmutableSamplers = nullptr; bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[4].binding = DRAW_BINDING_DYNUBO_BONE; // Hardware tessellation bindings[5].descriptorCount = 1; bindings[5].pImmutableSamplers = nullptr; bindings[5].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[5].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[5].binding = DRAW_BINDING_TESS_POS_TEXTURE; bindings[6].descriptorCount = 1; bindings[6].pImmutableSamplers = nullptr; bindings[6].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[6].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[6].binding = DRAW_BINDING_TESS_TEX_TEXTURE; bindings[7].descriptorCount = 1; bindings[7].pImmutableSamplers = nullptr; bindings[7].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[7].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[7].binding = DRAW_BINDING_TESS_COL_TEXTURE; VkDevice device = vulkan_->GetDevice(); VkDescriptorSetLayoutCreateInfo dsl = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; dsl.bindingCount = 8; dsl.pBindings = bindings; VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_); assert(VK_SUCCESS == res); VkDescriptorPoolSize dpTypes[2]; dpTypes[0].descriptorCount = 2048; dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; dpTypes[1].descriptorCount = 512; dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; VkDescriptorPoolCreateInfo dp = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; dp.pNext = nullptr; dp.flags = 0; // Don't want to mess around with individually freeing these, let's go fixed each frame and zap the whole array. Might try the dynamic approach later. dp.maxSets = 1000; dp.pPoolSizes = dpTypes; dp.poolSizeCount = ARRAY_SIZE(dpTypes); // We are going to use one-shot descriptors in the initial implementation. Might look into caching them // if creating and updating them turns out to be expensive. for (int i = 0; i < 2; i++) { // If we run out of memory, try with less descriptors. for (int tries = 0; tries < 3; ++tries) { VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool); if (res == VK_SUCCESS) { break; } // Let's try to reduce the counts. assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY); dpTypes[0].descriptorCount /= 2; dpTypes[1].descriptorCount /= 2; } frame_[i].pushUBO = new VulkanPushBuffer(vulkan_, 8 * 1024 * 1024); frame_[i].pushVertex = new VulkanPushBuffer(vulkan_, 2 * 1024 * 1024); frame_[i].pushIndex = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024); } VkPipelineLayoutCreateInfo pl = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pl.pPushConstantRanges = nullptr; pl.pushConstantRangeCount = 0; pl.setLayoutCount = 1; pl.pSetLayouts = &descriptorSetLayout_; pl.flags = 0; res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_); assert(VK_SUCCESS == res); VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; samp.flags = 0; samp.magFilter = VK_FILTER_NEAREST; samp.minFilter = VK_FILTER_NEAREST; res = vkCreateSampler(device, &samp, nullptr, &depalSampler_); res = vkCreateSampler(device, &samp, nullptr, &nullSampler_); assert(VK_SUCCESS == res); } DrawEngineVulkan::~DrawEngineVulkan() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE); FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE); DestroyDeviceObjects(); delete tessDataTransfer; } void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) { if (descPool != VK_NULL_HANDLE) { vulkan->Delete().QueueDeleteDescriptorPool(descPool); } if (pushUBO) { pushUBO->Destroy(vulkan); delete pushUBO; pushUBO = nullptr; } if (pushVertex) { pushVertex->Destroy(vulkan); delete pushVertex; pushVertex = nullptr; } if (pushIndex) { pushIndex->Destroy(vulkan); delete pushIndex; pushIndex = nullptr; } } void DrawEngineVulkan::DestroyDeviceObjects() { for (int i = 0; i < 2; i++) { frame_[i].Destroy(vulkan_); } if (depalSampler_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteSampler(depalSampler_); if (nullSampler_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteSampler(nullSampler_); if (pipelineLayout_ != VK_NULL_HANDLE) vkDestroyPipelineLayout(vulkan_->GetDevice(), pipelineLayout_, nullptr); pipelineLayout_ = VK_NULL_HANDLE; if (descriptorSetLayout_ != VK_NULL_HANDLE) vkDestroyDescriptorSetLayout(vulkan_->GetDevice(), descriptorSetLayout_, nullptr); descriptorSetLayout_ = VK_NULL_HANDLE; if (nullTexture_) { nullTexture_->Destroy(); delete nullTexture_; nullTexture_ = nullptr; } } void DrawEngineVulkan::DeviceLost() { DestroyDeviceObjects(); DirtyAllUBOs(); } void DrawEngineVulkan::DeviceRestore(VulkanContext *vulkan) { vulkan_ = vulkan; InitDeviceObjects(); } void DrawEngineVulkan::BeginFrame() { FrameData *frame = &frame_[curFrame_ & 1]; vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0); frame->descSets.clear(); // First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it, // if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer // needs to grow in the same frame. The state where many buffers are reset can also be used to // defragment memory. frame->pushUBO->Reset(); frame->pushVertex->Reset(); frame->pushIndex->Reset(); frame->pushUBO->Begin(vulkan_); frame->pushVertex->Begin(vulkan_); frame->pushIndex->Begin(vulkan_); // TODO : Find a better place to do this. if (!nullTexture_) { nullTexture_ = new VulkanTexture(vulkan_); int w = 8; int h = 8; nullTexture_->CreateDirect(w, h, 1, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT); uint32_t bindOffset; VkBuffer bindBuf; uint32_t *data = (uint32_t *)frame->pushUBO->Push(w * h * 4, &bindOffset, &bindBuf); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { // data[y*w + x] = ((x ^ y) & 1) ? 0xFF808080 : 0xFF000000; // gray/black checkerboard data[y*w + x] = 0; // black } } nullTexture_->UploadMip(0, w, h, bindBuf, bindOffset, w); nullTexture_->EndCreate(); } DirtyAllUBOs(); } void DrawEngineVulkan::EndFrame() { FrameData *frame = &frame_[curFrame_ & 1]; stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset(); stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset(); stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset(); frame->pushUBO->End(); frame->pushVertex->End(); frame->pushIndex->End(); curFrame_++; } void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) { SetupVertexDecoderInternal(vertType); } inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) { // As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it // into the top of the verttype where there are unused bits. const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24); // If vtype has changed, setup the vertex decoder. if (vertTypeID != lastVTypeID_) { dec_ = GetVertexDecoder(vertTypeID); lastVTypeID_ = vertTypeID; } } void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX) Flush(cmd_); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoderInternal(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } uvScale[numDrawCalls] = gstate_c.uv; numDrawCalls++; vertexCountInDrawCalls += vertexCount; if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); Flush(cmd_); } } } void DrawEngineVulkan::DecodeVertsStep(u8 *dest, int &i, int &decodedVerts) { const DeferredDrawCall &dc = drawCalls[i]; indexGen.SetIndex(decodedVerts); int indexLowerBound = dc.indexLowerBound; int indexUpperBound = dc.indexUpperBound; void *inds = dc.inds; if (dc.indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) { // Decode the verts and apply morphing. Simple. dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts += indexUpperBound - indexLowerBound + 1; indexGen.AddPrim(dc.prim, dc.vertexCount); } else { // It's fairly common that games issue long sequences of PRIM calls, with differing // inds pointer but the same base vertex pointer. We'd like to reuse vertices between // these as much as possible, so we make sure here to combine as many as possible // into one nice big drawcall, sharing data. // 1. Look ahead to find the max index, only looking as "matching" drawcalls. // Expand the lower and upper bounds as we go. int lastMatch = i; const int total = numDrawCalls; for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } // 2. Loop through the drawcalls, translating indices as we go. switch (dc.indexType) { case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16_le *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_32BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u32_le *)drawCalls[j].inds, indexLowerBound); } break; } const int vertexCount = indexUpperBound - indexLowerBound + 1; // This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes. if (decodedVerts + vertexCount > VERTEX_BUFFER_MAX) { return; } // 3. Decode that range of vertex data. dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts += vertexCount; // 4. Advance indexgen vertex counter. indexGen.Advance(vertexCount); i = lastMatch; } } void DrawEngineVulkan::DecodeVerts(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) { int decodedVerts = 0; u8 *dest = decoded; // Figure out how much pushbuffer space we need to allocate. if (push) { int vertsToDecode = 0; if (drawCalls[0].indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) { for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; vertsToDecode += dc.vertexCount; } } else { // TODO: Share this computation with DecodeVertsStep? for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; int lastMatch = i; const int total = numDrawCalls; int indexLowerBound = dc.indexLowerBound; int indexUpperBound = dc.indexUpperBound; for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } vertsToDecode += indexUpperBound - indexLowerBound + 1; i = lastMatch; } } dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf); } const UVScale origUV = gstate_c.uv; for (int i = 0; i < numDrawCalls; i++) { gstate_c.uv = uvScale[i]; DecodeVertsStep(dest, i, decodedVerts); // Note that this can modify i } gstate_c.uv = origUV; // Sanity check if (indexGen.Prim() < 0) { ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim()); // Force to points (0) indexGen.AddPrim(GE_PRIM_POINTS, 0); } } inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) { // Switch to u32 units. const u32 *p = (const u32 *)ptr; sz >>= 2; if (sz > 100) { size_t step = sz / 4; u32 hash = 0; for (size_t i = 0; i < sz; i += step) { hash += DoReliableHash32(p + i, 100, 0x3A44B9C4); } return hash; } else { return p[0] + p[sz - 1]; } } VkDescriptorSet DrawEngineVulkan::GetDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone) { DescriptorSetKey key; key.imageView_ = imageView; key.sampler_ = sampler; key.secondaryImageView_ = VK_NULL_HANDLE; key.base_ = base; key.light_ = light; key.bone_ = bone; assert(base != VK_NULL_HANDLE); assert(light != VK_NULL_HANDLE); assert(bone != VK_NULL_HANDLE); FrameData *frame = &frame_[curFrame_ & 1]; if (!(gstate_c.bezier || gstate_c.spline)) { // Has no cache when HW tessellation. auto iter = frame->descSets.find(key); if (iter != frame->descSets.end()) { return iter->second; } } // Didn't find one in the frame descriptor set cache, let's make a new one. // We wipe the cache on every frame. VkDescriptorSet desc; VkDescriptorSetAllocateInfo descAlloc = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; descAlloc.pNext = nullptr; descAlloc.pSetLayouts = &descriptorSetLayout_; descAlloc.descriptorPool = frame->descPool; descAlloc.descriptorSetCount = 1; VkResult result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc); assert(result == VK_SUCCESS); // We just don't write to the slots we don't care about. VkWriteDescriptorSet writes[7]; memset(writes, 0, sizeof(writes)); // Main texture int n = 0; VkDescriptorImageInfo tex; if (imageView) { // TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them? tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex.imageView = imageView; tex.sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TEXTURE; writes[n].pImageInfo = &tex; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } // Skipping 2nd texture for now. // Tessellation data textures if (gstate_c.bezier || gstate_c.spline) { VkDescriptorImageInfo tess_tex[3]; VkSampler sampler = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetSampler(); for (int i = 0; i < 3; i++) { VulkanTexture *texture = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetTexture(i); VkImageView imageView = texture->GetImageView(); if (i == 0 || imageView) { tess_tex[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tess_tex[i].imageView = imageView; tess_tex[i].sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TESS_POS_TEXTURE + i; writes[n].pImageInfo = &tess_tex[i]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } } } // Uniform buffer objects VkDescriptorBufferInfo buf[3]; int count = 0; buf[count].buffer = base; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_FS_Base); count++; buf[count].buffer = light; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Lights); count++; buf[count].buffer = bone; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Bones); count++; for (int i = 0; i < count; i++) { writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i; writes[n].dstArrayElement = 0; writes[n].pBufferInfo = &buf[i]; writes[n].dstSet = desc; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; n++; } vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr); if (!(gstate_c.bezier || gstate_c.spline)) // Avoid caching when HW tessellation. frame->descSets[key] = desc; return desc; } void DrawEngineVulkan::DirtyAllUBOs() { baseUBOOffset = 0; lightUBOOffset = 0; boneUBOOffset = 0; baseBuf = VK_NULL_HANDLE; lightBuf = VK_NULL_HANDLE; boneBuf = VK_NULL_HANDLE; dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS; imageView = VK_NULL_HANDLE; sampler = VK_NULL_HANDLE; gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } //void DrawEngineVulkan::ApplyDrawStateLate() { /* // At this point, we know if the vertices are full alpha or not. // TODO: Set the nearest/linear here (since we correctly know if alpha/color tests are needed)? if (!gstate.isModeClear()) { // TODO: Test texture? if (fboTexNeedBind_) { // Note that this is positions, not UVs, that we need the copy from. framebufferManager_->BindFramebufferAsColorTexture(1, framebufferManager_->GetCurrentRenderVFB(), BINDFBCOLOR_MAY_COPY); // If we are rendering at a higher resolution, linear is probably best for the dest color. fboTexBound_ = true; fboTexNeedBind_ = false; } } */ //} // The inline wrapper in the header checks for numDrawCalls == 0d void DrawEngineVulkan::DoFlush(VkCommandBuffer cmd) { gpuStats.numFlushes++; FrameData *frame = &frame_[curFrame_ & 1]; bool textureNeedsApply = false; if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) { textureCache_->SetTexture(); gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); textureNeedsApply = true; if (gstate_c.needShaderTexClamp) { // We will rarely need to set this, so let's do it every time on use rather than in runloop. // Most of the time non-framebuffer textures will be used which can be clamped themselves. gstate_c.Dirty(DIRTY_TEXCLAMP); } } GEPrimitiveType prim = prevPrim_; bool useHWTransform = CanUseHardwareTransform(prim); VulkanVertexShader *vshader = nullptr; VulkanFragmentShader *fshader = nullptr; uint32_t ibOffset = 0; uint32_t vbOffset = 0; if (useHWTransform) { // We don't detect clears in this path, so here we can switch framebuffers if necessary. int vertexCount = 0; bool useElements = true; // Decode directly into the pushbuffer VkBuffer vbuf; DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); bool hasColor = (lastVTypeID_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = nullTexture_->GetImageView(); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_); // TODO: Dirty-flag these. vkCmdSetScissor(cmd_, 0, 1, &dynState_.scissor); vkCmdSetViewport(cmd_, 0, 1, &dynState_.viewport); if (dynState_.useStencil) { vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState_.stencilWriteMask); vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState_.stencilCompareMask); vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState_.stencilRef); } if (dynState_.useBlendColor) { float bc[4]; Uint8x4ToFloat4(bc, dynState_.blendColor); vkCmdSetBlendConstants(cmd_, bc); } dirtyUniforms_ |= shaderManager_->UpdateUniforms(); shaderManager_->GetShaders(prim, lastVTypeID_, &vshader, &fshader, useHWTransform); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey_, dec_, vshader, fshader, true); if (!pipeline) { // Already logged, let's bail out. return; } vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw. UpdateUBOs(frame); VkDescriptorSet ds = GetDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets); int stride = dec_->GetDecVtxFmt().stride; VkDeviceSize offsets[1] = { vbOffset }; if (useElements) { VkBuffer ibuf; ibOffset = (uint32_t)frame->pushIndex->Push(decIndex, 2 * indexGen.VertexCount(), &ibuf); // TODO: Avoid rebinding vertex/index buffers if the vertex size stays the same by using the offset arguments vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets); vkCmdBindIndexBuffer(cmd_, ibuf, ibOffset, VK_INDEX_TYPE_UINT16); int numInstances = (gstate_c.bezier || gstate_c.spline) ? numPatches : 1; vkCmdDrawIndexed(cmd_, vertexCount, numInstances, 0, 0, 0); } else { vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets); vkCmdDraw(cmd_, vertexCount, 1, 0, 0); } } else { // Decode to "decoded" DecodeVerts(nullptr, nullptr, nullptr); bool hasColor = (lastVTypeID_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount()); int numTrans = 0; bool drawIndexed = false; u16 *inds = decIndex; TransformedVertex *drawBuffer = NULL; SoftwareTransformResult result; memset(&result, 0, sizeof(result)); SoftwareTransformParams params; memset(¶ms, 0, sizeof(params)); params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; params.allowSeparateAlphaClear = false; int maxIndex = indexGen.MaxIndex(); SoftwareTransform( prim, indexGen.VertexCount(), dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, drawBuffer, numTrans, drawIndexed, ¶ms, &result); // Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity // to use a "pre-clear" render pass, for high efficiency on tilers. if (result.action == SW_DRAW_PRIMITIVES) { if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = nullTexture_->GetImageView(); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } VulkanPipelineRasterStateKey pipelineKey; VulkanDynamicState dynState; ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey, dynState); // TODO: Dirty-flag these. vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor); vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport); if (dynState.useStencil) { vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask); vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask); } if (result.setStencil) { vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, result.stencilValue); } else if (dynState.useStencil) { vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef); } if (dynState.useBlendColor) { float bc[4]; Uint8x4ToFloat4(bc, dynState.blendColor); vkCmdSetBlendConstants(cmd_, bc); } dirtyUniforms_ |= shaderManager_->UpdateUniforms(); shaderManager_->GetShaders(prim, lastVTypeID_, &vshader, &fshader, useHWTransform); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader, fshader, false); if (!pipeline) { // Already logged, let's bail out. return; } vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw. // Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered UpdateUBOs(frame); VkDescriptorSet ds = GetDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets); if (drawIndexed) { VkBuffer vbuf, ibuf; vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf); ibOffset = (uint32_t)frame->pushIndex->Push(inds, sizeof(short) * numTrans, &ibuf); VkDeviceSize offsets[1] = { vbOffset }; // TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets); vkCmdBindIndexBuffer(cmd_, ibuf, ibOffset, VK_INDEX_TYPE_UINT16); vkCmdDrawIndexed(cmd_, numTrans, 1, 0, 0, 0); } else { VkBuffer vbuf; vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vbuf); VkDeviceSize offsets[1] = { vbOffset }; // TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets); vkCmdDraw(cmd_, numTrans, 1, 0, 0); } } else if (result.action == SW_CLEAR) { // Note: we won't get here if the clear is alpha but not color, or color but not alpha. // We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers. framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth); int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; framebufferManager_->SetSafeSize(scissorX2, scissorY2); if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) { ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color); } } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls; indexGen.Reset(); numDrawCalls = 0; vertexCountInDrawCalls = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; host->GPUNotifyDraw(); } void DrawEngineVulkan::UpdateUBOs(FrameData *frame) { if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) { baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf); dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) { lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf); dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) { boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf); dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS; } } bool DrawEngineVulkan::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); } void DrawEngineVulkan::TessellationDataTransferVulkan::PrepareBuffers(float *&pos, float *&tex, float *&col, int size, bool hasColor, bool hasTexCoords) { int rowPitch; // Position if (prevSize < size) { prevSize = size; data_tex[0]->CreateDirect(size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } pos = (float *)data_tex[0]->Lock(0, &rowPitch); // Texcoords if (hasTexCoords) { if (prevSizeTex < size) { prevSizeTex = size; data_tex[1]->CreateDirect(size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } tex = (float *)data_tex[1]->Lock(0, &rowPitch); } // Color int sizeColor = hasColor ? size : 1; if (prevSizeCol < sizeColor) { prevSizeCol = sizeColor; data_tex[2]->CreateDirect(sizeColor, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } col = (float *)data_tex[2]->Lock(0, &rowPitch); } void DrawEngineVulkan::TessellationDataTransferVulkan::SendDataToShader(const float *pos, const float *tex, const float *col, int size, bool hasColor, bool hasTexCoords) { // Position data_tex[0]->Unlock(); // Texcoords if (hasTexCoords) data_tex[1]->Unlock(); // Color data_tex[2]->Unlock(); }