// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "base/logging.h" #include "base/timeutil.h" #include "math/dataconv.h" #include "profiler/profiler.h" #include "thin3d/VulkanRenderManager.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "Common/Vulkan/VulkanContext.h" #include "Common/Vulkan/VulkanMemory.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/FramebufferVulkan.h" #include "GPU/Vulkan/GPU_Vulkan.h" enum { VERTEX_CACHE_SIZE = 8192 * 1024 }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 #define DESCRIPTORSET_DECIMATION_INTERVAL 1 // Temporarily cut to 1. Handle reuse breaks this when textures get deleted. enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; enum { DRAW_BINDING_TEXTURE = 0, DRAW_BINDING_2ND_TEXTURE = 1, DRAW_BINDING_DYNUBO_BASE = 2, DRAW_BINDING_DYNUBO_LIGHT = 3, DRAW_BINDING_DYNUBO_BONE = 4, DRAW_BINDING_TESS_POS_TEXTURE = 5, DRAW_BINDING_TESS_TEX_TEXTURE = 6, DRAW_BINDING_TESS_COL_TEXTURE = 7, }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan, Draw::DrawContext *draw) : vulkan_(vulkan), draw_(draw), stats_{}, vai_(1024) { decOptions_.expandAllWeightsToFloat = false; decOptions_.expand8BitNormalsToFloat = false; // Allocate nicely aligned memory. Maybe graphics drivers will appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); InitDeviceObjects(); } void DrawEngineVulkan::InitDeviceObjects() { // All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated. VkDescriptorSetLayoutBinding bindings[8]; bindings[0].descriptorCount = 1; bindings[0].pImmutableSamplers = nullptr; bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[0].binding = DRAW_BINDING_TEXTURE; bindings[1].descriptorCount = 1; bindings[1].pImmutableSamplers = nullptr; bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[1].binding = DRAW_BINDING_2ND_TEXTURE; bindings[2].descriptorCount = 1; bindings[2].pImmutableSamplers = nullptr; bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; bindings[2].binding = DRAW_BINDING_DYNUBO_BASE; bindings[3].descriptorCount = 1; bindings[3].pImmutableSamplers = nullptr; bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT; bindings[4].descriptorCount = 1; bindings[4].pImmutableSamplers = nullptr; bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[4].binding = DRAW_BINDING_DYNUBO_BONE; // Hardware tessellation. TODO: Don't allocate these unless actually drawing splines. // Will require additional bindings[5].descriptorCount = 1; bindings[5].pImmutableSamplers = nullptr; bindings[5].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[5].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[5].binding = DRAW_BINDING_TESS_POS_TEXTURE; bindings[6].descriptorCount = 1; bindings[6].pImmutableSamplers = nullptr; bindings[6].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[6].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[6].binding = DRAW_BINDING_TESS_TEX_TEXTURE; bindings[7].descriptorCount = 1; bindings[7].pImmutableSamplers = nullptr; bindings[7].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[7].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[7].binding = DRAW_BINDING_TESS_COL_TEXTURE; VkDevice device = vulkan_->GetDevice(); VkDescriptorSetLayoutCreateInfo dsl = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; dsl.bindingCount = 8; dsl.pBindings = bindings; VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_); assert(VK_SUCCESS == res); VkDescriptorPoolSize dpTypes[2]; dpTypes[0].descriptorCount = 8192; dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; dpTypes[1].descriptorCount = 8192 + 4096; // Due to the tess stuff, we need a LOT of these. Most will be empty... dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; VkDescriptorPoolCreateInfo dp = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; dp.pNext = nullptr; dp.flags = 0; // Don't want to mess around with individually freeing these. // We zap the whole pool every few frames. dp.maxSets = 2048; dp.pPoolSizes = dpTypes; dp.poolSizeCount = ARRAY_SIZE(dpTypes); // We are going to use one-shot descriptors in the initial implementation. Might look into caching them // if creating and updating them turns out to be expensive. for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) { // If we run out of memory, try with less descriptors. for (int tries = 0; tries < 3; ++tries) { VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool); if (res == VK_SUCCESS) { break; } // Let's try to reduce the counts. assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY); dpTypes[0].descriptorCount /= 2; dpTypes[1].descriptorCount /= 2; } frame_[i].pushUBO = new VulkanPushBuffer(vulkan_, 8 * 1024 * 1024); frame_[i].pushVertex = new VulkanPushBuffer(vulkan_, 2 * 1024 * 1024); frame_[i].pushIndex = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024); } VkPipelineLayoutCreateInfo pl = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pl.pPushConstantRanges = nullptr; pl.pushConstantRangeCount = 0; pl.setLayoutCount = 1; pl.pSetLayouts = &descriptorSetLayout_; pl.flags = 0; res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_); assert(VK_SUCCESS == res); VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; samp.flags = 0; samp.magFilter = VK_FILTER_NEAREST; samp.minFilter = VK_FILTER_NEAREST; res = vkCreateSampler(device, &samp, nullptr, &samplerSecondary_); res = vkCreateSampler(device, &samp, nullptr, &nullSampler_); assert(VK_SUCCESS == res); vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE); tessDataTransfer = new TessellationDataTransferVulkan(vulkan_, draw_); } DrawEngineVulkan::~DrawEngineVulkan() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); DestroyDeviceObjects(); } void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) { if (descPool != VK_NULL_HANDLE) { vulkan->Delete().QueueDeleteDescriptorPool(descPool); } if (pushUBO) { pushUBO->Destroy(vulkan); delete pushUBO; pushUBO = nullptr; } if (pushVertex) { pushVertex->Destroy(vulkan); delete pushVertex; pushVertex = nullptr; } if (pushIndex) { pushIndex->Destroy(vulkan); delete pushIndex; pushIndex = nullptr; } } void DrawEngineVulkan::DestroyDeviceObjects() { delete tessDataTransfer; tessDataTransfer = nullptr; for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) { frame_[i].Destroy(vulkan_); } if (samplerSecondary_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteSampler(samplerSecondary_); if (nullSampler_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteSampler(nullSampler_); if (pipelineLayout_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeletePipelineLayout(pipelineLayout_); pipelineLayout_ = VK_NULL_HANDLE; if (descriptorSetLayout_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteDescriptorSetLayout(descriptorSetLayout_); descriptorSetLayout_ = VK_NULL_HANDLE; if (nullTexture_) { nullTexture_->Destroy(); delete nullTexture_; nullTexture_ = nullptr; } vertexCache_->Destroy(vulkan_); delete vertexCache_; vertexCache_ = nullptr; } void DrawEngineVulkan::DeviceLost() { DestroyDeviceObjects(); DirtyAllUBOs(); } void DrawEngineVulkan::DeviceRestore(VulkanContext *vulkan, Draw::DrawContext *draw) { vulkan_ = vulkan; draw_ = draw; InitDeviceObjects(); } void DrawEngineVulkan::BeginFrame() { lastPipeline_ = nullptr; int curFrame = vulkan_->GetCurFrame(); FrameData *frame = &frame_[curFrame]; // First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it, // if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer // needs to grow in the same frame. The state where many buffers are reset can also be used to // defragment memory. frame->pushUBO->Reset(); frame->pushVertex->Reset(); frame->pushIndex->Reset(); frame->pushUBO->Begin(vulkan_); frame->pushVertex->Begin(vulkan_); frame->pushIndex->Begin(vulkan_); // TODO : Find a better place to do this. if (!nullTexture_) { ILOG("INIT : Creating null texture"); VkCommandBuffer cmdInit = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER); nullTexture_ = new VulkanTexture(vulkan_); int w = 8; int h = 8; nullTexture_->CreateDirect(cmdInit, w, h, 1, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT); uint32_t bindOffset; VkBuffer bindBuf; uint32_t *data = (uint32_t *)frame->pushUBO->Push(w * h * 4, &bindOffset, &bindBuf); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { // data[y*w + x] = ((x ^ y) & 1) ? 0xFF808080 : 0xFF000000; // gray/black checkerboard data[y*w + x] = 0; // black } } nullTexture_->UploadMip(cmdInit, 0, w, h, bindBuf, bindOffset, w); nullTexture_->EndCreate(cmdInit); } DirtyAllUBOs(); // Wipe the vertex cache if it's grown too large. if (vertexCache_->GetTotalSize() > VERTEX_CACHE_SIZE) { vertexCache_->Destroy(vulkan_); delete vertexCache_; // orphans the buffers, they'll get deleted once no longer used by an in-flight frame. vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE); vai_.Clear(); } vertexCache_->BeginNoReset(); // TODO: Need a better way to keep the number of descriptors under control. if (--descDecimationCounter_ <= 0 || frame->descSets.size() > 1024) { vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0); frame->descSets.Clear(); descDecimationCounter_ = DESCRIPTORSET_DECIMATION_INTERVAL; } if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) { bool kill; if (vai->status == VertexArrayInfoVulkan::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = vai->lastFrame < threshold; } if (kill) { // This is actually quite safe. vai_.Remove(hash); delete vai; } }); } } void DrawEngineVulkan::EndFrame() { FrameData *frame = &frame_[vulkan_->GetCurFrame()]; stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset(); stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset(); stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset(); frame->pushUBO->End(); frame->pushVertex->End(); frame->pushIndex->End(); vertexCache_->End(); } void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) { SetupVertexDecoderInternal(vertType); } inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) { // As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it // into the top of the verttype where there are unused bits. const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24); // If vtype has changed, setup the vertex decoder. if (vertTypeID != lastVType_) { dec_ = GetVertexDecoder(vertTypeID); lastVType_ = vertTypeID; } if (!dec_) Crash(); } void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls_ + vertexCount > VERTEX_BUFFER_MAX) Flush(); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoderInternal(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; if (g_Config.bVertexCache) { u32 dhash = dcid_; dhash ^= (u32)(uintptr_t)verts; dhash = __rotl(dhash, 13); dhash ^= (u32)(uintptr_t)inds; dhash = __rotl(dhash, 13); dhash ^= (u32)vertType; dhash = __rotl(dhash, 13); dhash ^= (u32)vertexCount; dhash = __rotl(dhash, 13); dhash ^= (u32)prim; dcid_ = dhash; } if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } uvScale[numDrawCalls] = gstate_c.uv; numDrawCalls++; vertexCountInDrawCalls_ += vertexCount; if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) { DecodeVertsStep(decoded, decodeCounter_, decodedVerts_); decodeCounter_++; } if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); Flush(); } } } int DrawEngineVulkan::ComputeNumVertsToDecode() const { int vertsToDecode = 0; if (drawCalls[0].indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) { for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; vertsToDecode += dc.vertexCount; } } else { // TODO: Share this computation with DecodeVertsStep? for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; int lastMatch = i; const int total = numDrawCalls; int indexLowerBound = dc.indexLowerBound; int indexUpperBound = dc.indexUpperBound; for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } vertsToDecode += indexUpperBound - indexLowerBound + 1; i = lastMatch; } } return vertsToDecode; } void DrawEngineVulkan::DecodeVerts(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) { u8 *dest = decoded; // Figure out how much pushbuffer space we need to allocate. if (push) { int vertsToDecode = ComputeNumVertsToDecode(); dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf); } const UVScale origUV = gstate_c.uv; for (; decodeCounter_ < numDrawCalls; decodeCounter_++) { gstate_c.uv = uvScale[decodeCounter_]; DecodeVertsStep(dest, decodeCounter_, decodedVerts_); // NOTE! DecodeVertsStep can modify decodeCounter_! } gstate_c.uv = origUV; // Sanity check if (indexGen.Prim() < 0) { ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim()); // Force to points (0) indexGen.AddPrim(GE_PRIM_POINTS, 0); } } VkDescriptorSet DrawEngineVulkan::GetOrCreateDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone) { DescriptorSetKey key; key.imageView_ = imageView; key.sampler_ = sampler; key.secondaryImageView_ = boundSecondary_; key.base_ = base; key.light_ = light; key.bone_ = bone; assert(base != VK_NULL_HANDLE); assert(light != VK_NULL_HANDLE); assert(bone != VK_NULL_HANDLE); FrameData *frame = &frame_[vulkan_->GetCurFrame()]; if (!gstate_c.bezier && !gstate_c.spline) { // Has no cache when HW tessellation. VkDescriptorSet d = frame->descSets.Get(key); if (d != VK_NULL_HANDLE) return d; } // Didn't find one in the frame descriptor set cache, let's make a new one. // We wipe the cache on every frame. VkDescriptorSet desc; VkDescriptorSetAllocateInfo descAlloc = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; descAlloc.pNext = nullptr; descAlloc.pSetLayouts = &descriptorSetLayout_; descAlloc.descriptorPool = frame->descPool; descAlloc.descriptorSetCount = 1; VkResult result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc); // Even in release mode, this is bad. _assert_msg_(G3D, result == VK_SUCCESS, "Ran out of descriptors in pool. sz=%d", (int)frame->descSets.size()); // We just don't write to the slots we don't care about. VkWriteDescriptorSet writes[7]; memset(writes, 0, sizeof(writes)); // Main texture int n = 0; VkDescriptorImageInfo tex{}; if (imageView) { // TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them? tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex.imageView = imageView; tex.sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TEXTURE; writes[n].pImageInfo = &tex; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } if (boundSecondary_) { // TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them? tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex.imageView = boundSecondary_; tex.sampler = samplerSecondary_; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_2ND_TEXTURE; writes[n].pImageInfo = &tex; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } // Skipping 2nd texture for now. // Tessellation data textures if (gstate_c.bezier || gstate_c.spline) { VkDescriptorImageInfo tess_tex[3]{}; VkSampler sampler = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetSampler(); for (int i = 0; i < 3; i++) { VulkanTexture *texture = ((TessellationDataTransferVulkan *)tessDataTransfer)->GetTexture(i); VkImageView imageView = texture->GetImageView(); if (i == 0 || imageView) { tess_tex[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tess_tex[i].imageView = imageView; tess_tex[i].sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TESS_POS_TEXTURE + i; writes[n].pImageInfo = &tess_tex[i]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } } } // Uniform buffer objects VkDescriptorBufferInfo buf[3]{}; int count = 0; buf[count].buffer = base; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_FS_Base); count++; buf[count].buffer = light; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Lights); count++; buf[count].buffer = bone; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Bones); count++; for (int i = 0; i < count; i++) { writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i; writes[n].dstArrayElement = 0; writes[n].pBufferInfo = &buf[i]; writes[n].dstSet = desc; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; n++; } vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr); if (!(gstate_c.bezier || gstate_c.spline)) // Avoid caching when HW tessellation. frame->descSets.Insert(key, desc); return desc; } void DrawEngineVulkan::DirtyAllUBOs() { baseUBOOffset = 0; lightUBOOffset = 0; boneUBOOffset = 0; baseBuf = VK_NULL_HANDLE; lightBuf = VK_NULL_HANDLE; boneBuf = VK_NULL_HANDLE; dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS; imageView = VK_NULL_HANDLE; sampler = VK_NULL_HANDLE; gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } void MarkUnreliable(VertexArrayInfoVulkan *vai) { vai->status = VertexArrayInfoVulkan::VAI_UNRELIABLE; // TODO: If we change to a real allocator, free the data here. // For now we just leave it in the pushbuffer. } // The inline wrapper in the header checks for numDrawCalls == 0 void DrawEngineVulkan::DoFlush() { PROFILE_THIS_SCOPE("Flush"); gpuStats.numFlushes++; // TODO: Should be enough to update this once per frame? gpuStats.numTrackedVertexArrays = (int)vai_.size(); VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); // HACK: These two lines should only execute if we started on a new render pass. Can't tell from in here though... lastPipeline_ = nullptr; // Since we have a new cmdbuf, dirty our dynamic state so it gets re-set. // gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE|DIRTY_DEPTHSTENCIL_STATE|DIRTY_BLEND_STATE); FrameData *frame = &frame_[vulkan_->GetCurFrame()]; bool textureNeedsApply = false; if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) { textureCache_->SetTexture(); gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); textureNeedsApply = true; if (gstate_c.needShaderTexClamp) { // We will rarely need to set this, so let's do it every time on use rather than in runloop. // Most of the time non-framebuffer textures will be used which can be clamped themselves. gstate_c.Dirty(DIRTY_TEXCLAMP); } } GEPrimitiveType prim = prevPrim_; bool useHWTransform = CanUseHardwareTransform(prim); VulkanVertexShader *vshader = nullptr; VulkanFragmentShader *fshader = nullptr; uint32_t ibOffset; uint32_t vbOffset; if (useHWTransform) { // We don't detect clears in this path, so here we can switch framebuffers if necessary. int vertexCount = 0; int maxIndex; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. VkBuffer vbuf = VK_NULL_HANDLE; VkBuffer ibuf = VK_NULL_HANDLE; if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { useCache = false; } if (useCache) { PROFILE_THIS_SCOPE("vcache"); u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263 VertexArrayInfoVulkan *vai = vai_.Get(id); if (!vai) { vai = new VertexArrayInfoVulkan(); vai_.Insert(id, vai); } switch (vai->status) { case VertexArrayInfoVulkan::VAI_NEW: { // Haven't seen this one before. We don't actually upload the vertex data yet. ReliableHashType dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfoVulkan::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth uploading the data. case VertexArrayInfoVulkan::VAI_HASHING: { PROFILE_THIS_SCOPE("vcachehash"); vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); ReliableHashType newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 24 vai->drawsUntilNextFullHash = std::min(24, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); goto rotateVBO; } } if (!vai->vb) { // Directly push to the vertex cache. DecodeVerts(vertexCache_, &vai->vbOffset, &vai->vb); _dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } if (useElements) { u32 size = sizeof(uint16_t) * indexGen.VertexCount(); void *dest = vertexCache_->Push(size, &vai->ibOffset, &vai->ib); memcpy(dest, decIndex, size); } else { vai->ib = VK_NULL_HANDLE; vai->ibOffset = 0; } } else { gpuStats.numCachedDrawCalls++; useElements = vai->ib ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA; } vbuf = vai->vb; ibuf = vai->ib; vbOffset = vai->vbOffset; ibOffset = vai->ibOffset; vertexCount = vai->numVerts; maxIndex = vai->maxIndex; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfoVulkan::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vbuf = vai->vb; ibuf = vai->ib; vbOffset = vai->vbOffset; ibOffset = vai->ibOffset; vertexCount = vai->numVerts; maxIndex = vai->maxIndex; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfoVulkan::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); goto rotateVBO; } default: break; } } else { if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { // If software skinning, we've already predecoded into "decoded". So push that content. VkDeviceSize size = decodedVerts_ * dec_->GetDecVtxFmt().stride; u8 *dest = (u8 *)frame->pushVertex->Push(size, &vbOffset, &vbuf); memcpy(dest, decoded, size); } else { // Decode directly into the pushbuffer DecodeVerts(frame->pushVertex, &vbOffset, &vbuf); } rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); } bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } PROFILE_THIS_SCOPE("updatestate"); if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = nullTexture_->GetImageView(); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } if (!lastPipeline_ || !gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) { shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform); if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) { ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_); } Draw::NativeObject object = g_Config.iRenderingMode != 0 ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS; VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, dec_, vshader, fshader, true); if (!pipeline) { // Already logged, let's bail out. return; } renderManager->BindPipeline(pipeline->pipeline); if (pipeline != lastPipeline_) { if (lastPipeline_ && !lastPipeline_->useBlendConstant && pipeline->useBlendConstant) { gstate_c.Dirty(DIRTY_BLEND_STATE); } lastPipeline_ = pipeline; } ApplyDrawStateLate(renderManager, false, 0, pipeline->useBlendConstant); gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE); lastPipeline_ = pipeline; } lastPrim_ = prim; dirtyUniforms_ |= shaderManager_->UpdateUniforms(); UpdateUBOs(frame); VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf); { PROFILE_THIS_SCOPE("renderman_q"); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; int stride = dec_->GetDecVtxFmt().stride; if (useElements) { if (!ibuf) ibOffset = (uint32_t)frame->pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &ibuf); int numInstances = (gstate_c.bezier || gstate_c.spline) ? numPatches : 1; renderManager->DrawIndexed(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, vertexCount, numInstances, VK_INDEX_TYPE_UINT16); } else { renderManager->Draw(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, vertexCount); } } } else { PROFILE_THIS_SCOPE("soft"); // Decode to "decoded" DecodeVerts(nullptr, nullptr, nullptr); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount()); int numTrans = 0; bool drawIndexed = false; u16 *inds = decIndex; TransformedVertex *drawBuffer = NULL; SoftwareTransformResult result; memset(&result, 0, sizeof(result)); SoftwareTransformParams params; memset(¶ms, 0, sizeof(params)); params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; params.allowSeparateAlphaClear = false; int maxIndex = indexGen.MaxIndex(); SoftwareTransform( prim, indexGen.VertexCount(), dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, drawBuffer, numTrans, drawIndexed, ¶ms, &result); // Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity // to use a "pre-clear" render pass, for high efficiency on tilers. if (result.action == SW_DRAW_PRIMITIVES) { if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = nullTexture_->GetImageView(); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) { shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform); if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) { ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_); } Draw::NativeObject object = g_Config.iRenderingMode != 0 ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS; VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, dec_, vshader, fshader, false); if (!pipeline) { // Already logged, let's bail out. return; } renderManager->BindPipeline(pipeline->pipeline); if (pipeline != lastPipeline_) { if (lastPipeline_ && !lastPipeline_->useBlendConstant && pipeline->useBlendConstant) { gstate_c.Dirty(DIRTY_BLEND_STATE); } lastPipeline_ = pipeline; } ApplyDrawStateLate(renderManager, false, 0, pipeline->useBlendConstant); gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE); lastPipeline_ = pipeline; } lastPrim_ = prim; dirtyUniforms_ |= shaderManager_->UpdateUniforms(); // Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered UpdateUBOs(frame); VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; PROFILE_THIS_SCOPE("renderman_q"); if (drawIndexed) { VkBuffer vbuf, ibuf; vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf); ibOffset = (uint32_t)frame->pushIndex->Push(inds, sizeof(short) * numTrans, &ibuf); VkDeviceSize offsets[1] = { vbOffset }; renderManager->DrawIndexed(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, numTrans, 1, VK_INDEX_TYPE_UINT16); } else { VkBuffer vbuf; vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vbuf); VkDeviceSize offsets[1] = { vbOffset }; renderManager->Draw(pipelineLayout_, ds, 3, dynamicUBOOffsets, vbuf, vbOffset, numTrans); } } else if (result.action == SW_CLEAR) { // Note: we won't get here if the clear is alpha but not color, or color but not alpha. // We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers. // If non-buffered though, it'll just do a plain clear. framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth); int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; framebufferManager_->SetSafeSize(scissorX2, scissorY2); if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) { framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color); } } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls_; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls_ = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; host->GPUNotifyDraw(); } void DrawEngineVulkan::UpdateUBOs(FrameData *frame) { if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) { baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf); dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) { lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf); dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) { boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf); dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS; } } void DrawEngineVulkan::TessellationDataTransferVulkan::PrepareBuffers(float *&pos, float *&tex, float *&col, int size, bool hasColor, bool hasTexCoords) { int rowPitch; ILOG("INIT : Prep tess"); VkCommandBuffer cmd = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER); // Position if (prevSize < size) { prevSize = size; data_tex[0]->CreateDirect(cmd, size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } pos = (float *)data_tex[0]->Lock(0, &rowPitch); // Texcoords if (hasTexCoords) { if (prevSizeTex < size) { prevSizeTex = size; data_tex[1]->CreateDirect(cmd, size, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } tex = (float *)data_tex[1]->Lock(0, &rowPitch); } // Color int sizeColor = hasColor ? size : 1; if (prevSizeCol < sizeColor) { prevSizeCol = sizeColor; data_tex[2]->CreateDirect(cmd, sizeColor, 1, 1, VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } col = (float *)data_tex[2]->Lock(0, &rowPitch); } void DrawEngineVulkan::TessellationDataTransferVulkan::SendDataToShader(const float *pos, const float *tex, const float *col, int size, bool hasColor, bool hasTexCoords) { VkCommandBuffer cmd = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER); // Position data_tex[0]->Unlock(cmd); // Texcoords if (hasTexCoords) data_tex[1]->Unlock(cmd); // Color data_tex[2]->Unlock(cmd); }