// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "profiler/profiler.h" #include "Common/CPUDetect.h" #include "Common/MemoryUtil.h" #include "Core/Config.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" // only needed for UVScale stuff static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) { if (type == GE_PATCHPRIM_LINES) { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx3; *(indices++) = idx1; *(indices++) = idx2; } else { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx1; *(indices++) = idx2; *(indices++) = idx3; } } static void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total = 0) { for (int v = 0; v < num_v; ++v) { for (int u = 0; u < num_u; ++u) { int idx0 = v * (num_u + 1) + u + total; // Top left int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1); count += 6; } } } struct Weight { float weights[4], derivs[4]; }; class Bezier3DWeight { private: void CalcWeights(float t, Weight &w) { // Bernstein 3D basis polynomial w.weights[0] = (1 - t) * (1 - t) * (1 - t); w.weights[1] = 3 * t * (1 - t) * (1 - t); w.weights[2] = 3 * t * t * (1 - t); w.weights[3] = t * t * t; // Derivative w.derivs[0] = -3 * (1 - t) * (1 - t); w.derivs[1] = 9 * t * t - 12 * t + 3; w.derivs[2] = 3 * (2 - 3 * t) * t; w.derivs[3] = 3 * t * t; } public: Weight *CalcWeightsAll(u32 key) { int tess = (int)key; Weight *weights = new Weight[tess + 1]; const float inv_u = 1.0f / (float)tess; for (int i = 0; i < tess + 1; ++i) { const float t = (float)i * inv_u; CalcWeights(t, weights[i]); } return weights; } }; // http://en.wikipedia.org/wiki/Bernstein_polynomial template static T Bernstein3D(const T& p0, const T& p1, const T& p2, const T& p3, const float w[4]) { if (w[0] == 1) return p0; if (w[3] == 1) return p3; // Linear combination return p0 * w[0] + p1 * w[1] + p2 * w[2] + p3 * w[3]; } class Spline3DWeight { private: struct KnotDiv { float _3_0 = 1.0f / 3.0f; float _4_1 = 1.0f / 3.0f; float _5_2 = 1.0f / 3.0f; float _3_1 = 1.0f / 2.0f; float _4_2 = 1.0f / 2.0f; float _3_2 = 1.0f; // Always 1 }; // knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic)) void CalcKnots(int n, int type, float *knots, KnotDiv *divs) { // Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0) // for (int i = 0; i < n + 5; ++i) { for (int i = 0; i < n + 2; ++i) { knots[i] = (float)i - 2; } // The first edge is open if ((type & 1) != 0) { knots[0] = 0; knots[1] = 0; divs[0]._3_0 = 1.0f; divs[0]._4_1 = 1.0f / 2.0f; divs[0]._3_1 = 1.0f; if (n > 1) divs[1]._3_0 = 1.0f / 2.0f; } // The last edge is open if ((type & 2) != 0) { // knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv divs[n - 1]._4_1 = 1.0f / 2.0f; divs[n - 1]._5_2 = 1.0f; divs[n - 1]._4_2 = 1.0f; if (n > 1) divs[n - 2]._5_2 = 1.0f / 2.0f; } } void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) { #ifdef _M_SSE const __m128 knot012 = _mm_loadu_ps(knots); const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012); const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0)); const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2)); const float &f32 = t012.m128_f32[2]; // Following comments are for explains order of the multiply. // float a = (1-f30)*(1-f31); // float c = (1-f41)*(1-f42); // float b = ( f31 * f41); // float d = ( f42 * f52); const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0)); const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1)); const __m128 c1_1_0_0 = { 1, 1, 0, 0 }; const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52)); const float &a = acbd.m128_f32[0]; const float &b = acbd.m128_f32[2]; const float &c = acbd.m128_f32[1]; const float &d = acbd.m128_f32[3]; // For derivative const float &f31 = f30_41_31_42.m128_f32[2]; const float &f42 = f30_41_31_42.m128_f32[3]; #else // TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly... float t0 = (t - knots[0]); float t1 = (t - knots[1]); float t2 = (t - knots[2]); float f30 = t0 * div._3_0; float f41 = t1 * div._4_1; float f52 = t2 * div._5_2; float f31 = t1 * div._3_1; float f42 = t2 * div._4_2; float f32 = t2 * div._3_2; float a = (1 - f30) * (1 - f31); float b = (f31 * f41); float c = (1 - f41) * (1 - f42); float d = (f42 * f52); #endif w.weights[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32) w.weights[1] = 1 - a - b + ((a + b + c - 1) * f32); w.weights[2] = b + ((1 - b - c - d) * f32); w.weights[3] = d * f32; // f32*f42*f52 // Derivative float i1 = (1 - f31) * (1 - f32); float i2 = f31 * (1 - f32) + (1 - f42) * f32; float i3 = f42 * f32; float f130 = i1 * div._3_0; float f241 = i2 * div._4_1; float f352 = i3 * div._5_2; w.derivs[0] = 3 * (0 - f130); w.derivs[1] = 3 * (f130 - f241); w.derivs[2] = 3 * (f241 - f352); w.derivs[3] = 3 * (f352 - 0); } public: Weight *CalcWeightsAll(u32 key) { int tess, count, type; FromKey(key, tess, count, type); const int num_patches = count - 3; Weight *weights = new Weight[tess * num_patches + 1]; // float *knots = new float[num_patches + 5]; float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory KnotDiv *divs = new KnotDiv[num_patches]; CalcKnots(num_patches, type, knots, divs); const float inv_tess = 1.0f / (float)tess; for (int i = 0; i < num_patches; ++i) { const int _tess = (i == num_patches - 1) ? (tess + 1) : tess; for (int j = 0; j < _tess; ++j) { const int index = i * tess + j; const float t = (float)index * inv_tess; CalcWeights(t, knots + i, divs[i], weights[index]); } } delete[] knots; delete[] divs; return weights; } u32 ToKey(int tess, int count, int type) { return tess | (count << 8) | (type << 16); } void FromKey(u32 key, int &tess, int &count, int &type) { tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF; } }; template class WeightCache : public T { private: std::unordered_map weightsCache; public: Weight* operator [] (u32 key) { Weight *&weights = weightsCache[key]; if (!weights) weights = CalcWeightsAll(key); return weights; } void Clear() { for (auto it : weightsCache) delete[] it.second; weightsCache.clear(); } }; static WeightCache bezierWeightsCache; static WeightCache splineWeightsCache; struct Weight2D { const Weight *u, *v; template Weight2D(WeightCache &cache, u32 key_u, u32 key_v) { u = cache[key_u]; v = (key_u != key_v) ? cache[key_v] : u; // Use same weights if u == v } }; void DrawEngineCommon::ClearSplineBezierWeights() { bezierWeightsCache.Clear(); splineWeightsCache.Clear(); } bool CanUseHardwareTessellation(GEPatchPrimType prim) { if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) { return CanUseHardwareTransform(PatchPrimToPrim(prim)); } return false; } // Prepare mesh of one patch for "Instanced Tessellation". static void TessellateSplinePatchHardware(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)spatch.tess_u; float inv_v = 1.0f / (float)spatch.tess_v; // Generating simple input vertices for the spline-computing vertex shader. for (int tile_v = 0; tile_v < spatch.tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < spatch.tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (spatch.tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; // TODO: Move to shader uniform and unify this method spline and bezier if necessary. // For compute normal vert.nrm.x = inv_u; vert.nrm.y = inv_v; } } BuildIndex(indices, count, spatch.tess_u, spatch.tess_v, spatch.primType); } template static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { // Full (mostly) correct tessellation of spline patches. // Not very fast. u32 key_u = splineWeightsCache.ToKey(spatch.tess_u, spatch.count_u, spatch.type_u); u32 key_v = splineWeightsCache.ToKey(spatch.tess_v, spatch.count_v, spatch.type_v); Weight2D weights(splineWeightsCache, key_u, key_v); // Increase tessellation based on the size. Should be approximately right? int patch_div_s = (spatch.count_u - 3) * spatch.tess_u; int patch_div_t = (spatch.count_v - 3) * spatch.tess_v; if (quality == 0) { // Low quality patch_div_s = (spatch.count_u - 3) * 2; patch_div_t = (spatch.count_v - 3) * 2; } if (quality > 1) { // Don't cut below 2, though. if (patch_div_s > 2) { patch_div_s /= quality; } if (patch_div_t > 2) { patch_div_t /= quality; } } // Downsample until it fits, in case crazy tessellation factors are sent. while ((patch_div_s + 1) * (patch_div_t + 1) > maxVertices) { patch_div_s /= 2; patch_div_t /= 2; } if (patch_div_s < 1) patch_div_s = 1; if (patch_div_t < 1) patch_div_t = 1; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; float tu_width = (float)spatch.count_u - 3.0f; float tv_height = (float)spatch.count_v - 3.0f; // int max_idx = spatch.count_u * spatch.count_v; bool computeNormals = spatch.computeNormals; float one_over_patch_div_s = 1.0f / (float)(patch_div_s); float one_over_patch_div_t = 1.0f / (float)(patch_div_t); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = (float)tile_v * (float)(spatch.count_v - 3) * one_over_patch_div_t; if (v < 0.0f) v = 0.0f; for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = (float)tile_u * (float)(spatch.count_u - 3) * one_over_patch_div_s; if (u < 0.0f) u = 0.0f; SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; Vec4f vert_color(0, 0, 0, 0); Vec3f vert_pos; vert_pos.SetZero(); Vec3f du, dv; Vec2f vert_tex; if (origNrm) { du.SetZero(); dv.SetZero(); } if (origCol) { vert_color.SetZero(); } else { vert->color_32 = spatch.defcolor; } if (origTc) { vert_tex.SetZero(); } else { vert->uv[0] = tu_width * ((float)tile_u * one_over_patch_div_s); vert->uv[1] = tv_height * ((float)tile_v * one_over_patch_div_t); } int iu = (int)u; int iv = (int)v; // TODO: Would really like to fix the surrounding logic somehow to get rid of these but I can't quite get it right.. // Without the previous epsilons and with large count_u, we will end up doing an out of bounds access later without these. if (iu >= spatch.count_u - 3) iu = spatch.count_u - 4; if (iv >= spatch.count_v - 3) iv = spatch.count_v - 4; const Weight &wu = weights.u[tile_u]; const Weight &wv = weights.v[tile_v]; // Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points. int patch_w = std::min(spatch.count_u - iu, 4); int patch_h = std::min(spatch.count_v - iv, 4); for (int ii = 0; ii < patch_w; ++ii) { for (int jj = 0; jj < patch_h; ++jj) { float u_spline = wu.weights[ii]; float v_spline = wv.weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { int idx = spatch.count_u * (iv + jj) + (iu + ii); /* if (idx >= max_idx) { char temp[512]; snprintf(temp, sizeof(temp), "count_u: %d count_v: %d patch_w: %d patch_h: %d ii: %d jj: %d iu: %d iv: %d patch_div_s: %d patch_div_t: %d\n", spatch.count_u, spatch.count_v, patch_w, patch_h, ii, jj, iu, iv, patch_div_s, patch_div_t); OutputDebugStringA(temp); Crash(); }*/ vert_pos += spatch.pos[idx] * f; if (origTc) { vert_tex += spatch.tex[idx] * f; } if (origCol) { vert_color += spatch.col[idx] * f; } if (origNrm) { du += spatch.pos[idx] * (wu.derivs[ii] * wv.weights[jj]); dv += spatch.pos[idx] * (wu.weights[ii] * wv.derivs[jj]); } } } } vert->pos = vert_pos; if (origNrm) { vert->nrm = Cross(du, dv).Normalized(useSSE4); } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origCol) { vert->color_32 = vert_color.ToRGBA(); } if (origTc) { vert_tex.Write(vert->uv); } } } BuildIndex(indices, count, patch_div_s, patch_div_t, spatch.primType); } template static inline void SplinePatchFullQualityDispatch4(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { if (cpu_info.bSSE4_1) SplinePatchFullQuality(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQuality(dest, indices, count, spatch, origVertType, quality, maxVertices); } template static inline void SplinePatchFullQualityDispatch3(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origTc = (origVertType & GE_VTYPE_TC_MASK) != 0; if (origTc) SplinePatchFullQualityDispatch4(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch4(dest, indices, count, spatch, origVertType, quality, maxVertices); } template static inline void SplinePatchFullQualityDispatch2(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origCol = (origVertType & GE_VTYPE_COL_MASK) != 0; if (origCol) SplinePatchFullQualityDispatch3(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch3(dest, indices, count, spatch, origVertType, quality, maxVertices); } static void SplinePatchFullQualityDispatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origNrm = (origVertType & GE_VTYPE_NRM_MASK) != 0; if (origNrm) SplinePatchFullQualityDispatch2(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch2(dest, indices, count, spatch, origVertType, quality, maxVertices); } void TessellateSplinePatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int maxVertexCount) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 0, maxVertexCount); break; case MEDIUM_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 2, maxVertexCount); break; case HIGH_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 1, maxVertexCount); break; } } template struct PrecomputedCurves { PrecomputedCurves(int count) { horiz1 = (T *)AllocateAlignedMemory(count * 4 * sizeof(T), 16); horiz2 = horiz1 + count * 1; horiz3 = horiz1 + count * 2; horiz4 = horiz1 + count * 3; } ~PrecomputedCurves() { FreeAlignedMemory(horiz1); } T Bernstein3D(int u, const float w[4]) { return ::Bernstein3D(horiz1[u], horiz2[u], horiz3[u], horiz4[u], w); } T *horiz1; T *horiz2; T *horiz3; T *horiz4; }; static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float third = 1.0f / 3.0f; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; PrecomputedCurves prepos(tess_u + 1); PrecomputedCurves precol(tess_u + 1); PrecomputedCurves pretex(tess_u + 1); PrecomputedCurves prederivU(tess_u + 1); const bool computeNormals = patch.computeNormals; const bool sampleColors = (origVertType & GE_VTYPE_COL_MASK) != 0; const bool sampleTexcoords = (origVertType & GE_VTYPE_TC_MASK) != 0; Weight2D weights(bezierWeightsCache, tess_u, tess_v); int num_patches_u = (patch.count_u - 1) / 3; int num_patches_v = (patch.count_v - 1) / 3; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { // Precompute the horizontal curves to we only have to evaluate the vertical ones. Vec3f *_pos[16]; Vec4f *_col[16]; Vec2f *_tex[16]; for (int point = 0; point < 16; ++point) { int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * patch.count_u; _pos[point] = &patch.pos[idx]; _col[point] = &patch.col[idx]; _tex[point] = &patch.tex[idx]; } for (int i = 0; i < tess_u + 1; i++) { const Weight &wu = weights.u[i]; prepos.horiz1[i] = Bernstein3D(*_pos[0], *_pos[1], *_pos[2], *_pos[3], wu.weights); prepos.horiz2[i] = Bernstein3D(*_pos[4], *_pos[5], *_pos[6], *_pos[7], wu.weights); prepos.horiz3[i] = Bernstein3D(*_pos[8], *_pos[9], *_pos[10], *_pos[11], wu.weights); prepos.horiz4[i] = Bernstein3D(*_pos[12], *_pos[13], *_pos[14], *_pos[15], wu.weights); if (sampleColors) { precol.horiz1[i] = Bernstein3D(*_col[0], *_col[1], *_col[2], *_col[3], wu.weights); precol.horiz2[i] = Bernstein3D(*_col[4], *_col[5], *_col[6], *_col[7], wu.weights); precol.horiz3[i] = Bernstein3D(*_col[8], *_col[9], *_col[10], *_col[11], wu.weights); precol.horiz4[i] = Bernstein3D(*_col[12], *_col[13], *_col[14], *_col[15], wu.weights); } if (sampleTexcoords) { pretex.horiz1[i] = Bernstein3D(*_tex[0], *_tex[1], *_tex[2], *_tex[3], wu.weights); pretex.horiz2[i] = Bernstein3D(*_tex[4], *_tex[5], *_tex[6], *_tex[7], wu.weights); pretex.horiz3[i] = Bernstein3D(*_tex[8], *_tex[9], *_tex[10], *_tex[11], wu.weights); pretex.horiz4[i] = Bernstein3D(*_tex[12], *_tex[13], *_tex[14], *_tex[15], wu.weights); } if (computeNormals) { prederivU.horiz1[i] = Bernstein3D(*_pos[0], *_pos[1], *_pos[2], *_pos[3], wu.derivs); prederivU.horiz2[i] = Bernstein3D(*_pos[4], *_pos[5], *_pos[6], *_pos[7], wu.derivs); prederivU.horiz3[i] = Bernstein3D(*_pos[8], *_pos[9], *_pos[10], *_pos[11], wu.derivs); prederivU.horiz4[i] = Bernstein3D(*_pos[12], *_pos[13], *_pos[14], *_pos[15], wu.derivs); } } for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; const Weight &wv = weights.v[tile_v]; if (computeNormals) { const Vec3f derivU = prederivU.Bernstein3D(tile_u, wv.weights); const Vec3f derivV = prepos.Bernstein3D(tile_u, wv.derivs); vert.nrm = Cross(derivU, derivV).Normalized(); if (patch.patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } vert.pos = prepos.Bernstein3D(tile_u, wv.weights); if (!sampleTexcoords) { float u = ((float)tile_u / (float)tess_u); float v = ((float)tile_v / (float)tess_v); // Generate texcoord vert.uv[0] = u + patch_u * third; vert.uv[1] = v + patch_u * third; } else { // Sample UV from control points const Vec2f res = pretex.Bernstein3D(tile_u, wv.weights); vert.uv[0] = res.x; vert.uv[1] = res.y; } if (sampleColors) { vert.color_32 = precol.Bernstein3D(tile_u, wv.weights).ToRGBA(); } else { vert.color_32 = patch.defcolor; } } } int patch_index = patch_v * num_patches_u + patch_u; int total = patch_index * (tess_u + 1) * (tess_v + 1); BuildIndex(indices + count, count, tess_u, tess_v, patch.primType, total); dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex); } } } // Prepare mesh of one patch for "Instanced Tessellation". static void TessellateBezierPatchHardware(u8 *&dest, u16 *indices, int &count, int tess_u, int tess_v, GEPatchPrimType primType) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)tess_u; float inv_v = 1.0f / (float)tess_v; // Generating simple input vertices for the bezier-computing vertex shader. for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; } } BuildIndex(indices, count, tess_u, tess_v, primType); } void TessellateBezierPatch(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: _BezierPatchHighQuality(dest, indices, count, 2, 2, patch, origVertType); break; case MEDIUM_QUALITY: _BezierPatchHighQuality(dest, indices, count, std::max(tess_u / 2, 1), std::max(tess_v / 2, 1), patch, origVertType); break; case HIGH_QUALITY: _BezierPatchHighQuality(dest, indices, count, tess_u, tess_v, patch, origVertType); break; } } static void CopyControlPoints(const SimpleVertex *const *points, float *pos, float *tex, float *col, int posStride, int texStride, int colStride, int size, bool hasColor, bool hasTexCoords) { for (int idx = 0; idx < size; idx++) { memcpy(pos, points[idx]->pos.AsArray(), 3 * sizeof(float)); pos += posStride; if (hasTexCoords) { memcpy(tex, points[idx]->uv, 2 * sizeof(float)); tex += texStride; } if (hasColor) { memcpy(col, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float)); col += colStride; } } if (!hasColor) memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float)); } class SimpleBufferManager { private: u8 *buf_; size_t totalSize, maxSize_; public: SimpleBufferManager(u8 *buf, size_t maxSize) : buf_(buf), totalSize(0), maxSize_(maxSize) {} u8 *Allocate(size_t size) { size = (size + 15) & ~15; // Align for 16 bytes if ((totalSize + size) > maxSize_) return nullptr; // No more memory size_t tmp = totalSize; totalSize += size; return buf_ + tmp; } }; // This maps GEPatchPrimType to GEPrimitiveType. const GEPrimitiveType primType[] = { GE_PRIM_TRIANGLES, GE_PRIM_LINES, GE_PRIM_POINTS, GE_PRIM_POINTS }; void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("spline"); DispatchFlush(); // Real hardware seems to draw nothing when given < 4 either U or V. if (count_u < 4 || count_v < 4) return; SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter ConvertIndex(vertType, indices); if (indices) GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1)); u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v); u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // Make an array of pointers to the control points, to get rid of indices. const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx); int count = 0; u8 *dest = splineBuffer; SplinePatchLocal patch; patch.tess_u = tess_u; patch.tess_v = tess_v; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.computeNormals = computeNormals; patch.primType = prim_type; patch.patchFacing = patchFacing; patch.defcolor = points[0]->color_32; if (CanUseHardwareTessellation(prim_type)) { tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType); TessellateSplinePatchHardware(dest, quadIndices_, count, patch); numPatches = (count_u - 3) * (count_v - 3); } else { patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v); patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v); patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) { patch.pos[idx] = Vec3f(points[idx]->pos); patch.tex[idx] = Vec2f(points[idx]->uv); patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32); } int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize; TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount); } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if ((origVertType & GE_VTYPE_TC_MASK) != 0) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0.0f; gstate_c.uv.vOff = 0.0f; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead); DispatchFlush(); if ((origVertType & GE_VTYPE_TC_MASK) != 0) { gstate_c.uv = prevUVScale; } } void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("bezier"); DispatchFlush(); // Real hardware seems to draw nothing when given < 4 either U or V. // This would result in num_patches_u / num_patches_v being 0. if (count_u < 4 || count_v < 4) return; SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter ConvertIndex(vertType, indices); if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Simplify away bones and morph before proceeding // There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great. SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1)); u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v); u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // If specified as 0, uses 1. if (tess_u < 1) tess_u = 1; if (tess_v < 1) tess_v = 1; // Make an array of pointers to the control points, to get rid of indices. const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx); int count = 0; u8 *dest = splineBuffer; u16 *inds = quadIndices_; // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; if (CanUseHardwareTessellation(prim_type)) { tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType); TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type); numPatches = num_patches_u * num_patches_v; } else { BezierPatch patch; patch.count_u = count_u; patch.count_v = count_v; patch.primType = prim_type; patch.computeNormals = computeNormals; patch.patchFacing = patchFacing; patch.defcolor = points[0]->color_32; patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v); patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v); patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) { patch.pos[idx] = Vec3f(points[idx]->pos); patch.tex[idx] = Vec2f(points[idx]->uv); patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32); } int maxVertices = SPLINE_BUFFER_SIZE / vertexSize; // Downsample until it fits, in case crazy tessellation factors are sent. while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) { tess_u /= 2; tess_v /= 2; } TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType); } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (origVertType & GE_VTYPE_TC_MASK) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead); DispatchFlush(); if (origVertType & GE_VTYPE_TC_MASK) { gstate_c.uv = prevUVScale; } }