// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Common/ColorConv.h" #include "Core/Host.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/GLES/TextureCache.h" #include "GPU/GLES/Framebuffer.h" #include "GPU/GLES/FragmentShaderGenerator.h" #include "GPU/GLES/DepalettizeShader.h" #include "GPU/GLES/ShaderManager.h" #include "GPU/Common/TextureDecoder.h" #include "Core/Config.h" #include "Core/Host.h" #include "ext/xxhash.h" #include "math/math_util.h" #include "native/gfx_es2/gl_state.h" #ifdef _M_SSE #include #endif // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 #define TEXTURE_KILL_AGE_LOWMEM 60 // Not used in lowmem mode. #define TEXTURE_SECOND_KILL_AGE 100 // Try to be prime to other decimation intervals. #define TEXCACHE_DECIMATION_INTERVAL 13 // Changes more frequent than this will be considered "frequent" and prevent texture scaling. #define TEXCACHE_FRAME_CHANGE_FREQUENT 6 #define TEXCACHE_NAME_CACHE_SIZE 16 #define TEXCACHE_MAX_TEXELS_SCALED (256*256) // Per frame #define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in GL #define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024 #ifndef GL_UNPACK_ROW_LENGTH #define GL_UNPACK_ROW_LENGTH 0x0CF2 #endif extern int g_iNumVideos; TextureCache::TextureCache() : cacheSizeEstimate_(0), secondCacheSizeEstimate_(0), clearCacheNextFrame_(false), lowMemoryMode_(false), clutBuf_(NULL), clutMaxBytes_(0), texelsScaledThisFrame_(0) { timesInvalidatedAllThisFrame_ = 0; lastBoundTexture = -1; decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; // This is 5MB of temporary storage. Might be possible to shrink it. tmpTexBuf32.resize(1024 * 512); // 2MB tmpTexBuf16.resize(1024 * 512); // 1MB tmpTexBufRearrange.resize(1024 * 512); // 2MB // Aren't these way too big? clutBufConverted_ = (u32 *)AllocateAlignedMemory(4096 * sizeof(u32), 16); // 16KB clutBufRaw_ = (u32 *)AllocateAlignedMemory(4096 * sizeof(u32), 16); // 16KB // Zap these so that reads from uninitialized parts of the CLUT look the same in // release and debug memset(clutBufConverted_, 0, 4096 * sizeof(u32)); memset(clutBufRaw_, 0, 4096 * sizeof(u32)); glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel); SetupTextureDecoder(); } TextureCache::~TextureCache() { Clear(true); FreeAlignedMemory(clutBufConverted_); FreeAlignedMemory(clutBufRaw_); } static u32 EstimateTexMemoryUsage(const TextureCache::TexCacheEntry *entry) { const u16 dim = entry->dim; const u8 dimW = ((dim >> 0) & 0xf); const u8 dimH = ((dim >> 8) & 0xf); u32 pixelSize = 2; switch (entry->format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: // We assume cluts always point to 8888 for simplicity. pixelSize = 4; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: break; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: pixelSize = 4; break; } // This in other words multiplies by w and h. return pixelSize << (dimW + dimH); } void TextureCache::Clear(bool delete_them) { glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; if (delete_them) { for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture); glDeleteTextures(1, &iter->second.texture); } for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture); glDeleteTextures(1, &iter->second.texture); } if (!nameCache_.empty()) { glDeleteTextures((GLsizei)nameCache_.size(), &nameCache_[0]); nameCache_.clear(); } } if (cache.size() + secondCache.size()) { INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache.size() + secondCache.size())); cache.clear(); secondCache.clear(); cacheSizeEstimate_ = 0; secondCacheSizeEstimate_ = 0; } fbTexInfo_.clear(); } void TextureCache::DeleteTexture(TexCache::iterator it) { glDeleteTextures(1, &it->second.texture); auto fbInfo = fbTexInfo_.find(it->second.addr); if (fbInfo != fbTexInfo_.end()) { fbTexInfo_.erase(fbInfo); } cacheSizeEstimate_ -= EstimateTexMemoryUsage(&it->second); cache.erase(it); } // Removes old textures. void TextureCache::Decimate() { if (--decimationCounter_ <= 0) { decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; } else { return; } if (cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) { const u32 had = cacheSizeEstimate_; glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE; for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) { if (iter->second.lastFrame + killAge < gpuStats.numFlips) { DeleteTexture(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_); } if (g_Config.bTextureSecondaryCache && secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE) { const u32 had = secondCacheSizeEstimate_; for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) { // In low memory mode, we kill them all. if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) { glDeleteTextures(1, &iter->second.texture); secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(&iter->second); secondCache.erase(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_); } } void TextureCache::Invalidate(u32 addr, int size, GPUInvalidationType type) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } addr &= 0x3FFFFFFF; const u32 addr_end = addr + size; // They could invalidate inside the texture, let's just give a bit of leeway. const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4; const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32; u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32; if (endKey < startKey) { endKey = (u64)-1; } for (TexCache::iterator iter = cache.lower_bound(startKey), end = cache.upper_bound(endKey); iter != end; ++iter) { u32 texAddr = iter->second.addr; u32 texEnd = iter->second.addr + iter->second.sizeInRAM; if (texAddr < addr_end && addr < texEnd) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (type != GPU_INVALIDATE_ALL) { gpuStats.numTextureInvalidations++; // Start it over from 0 (unless it's safe.) iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0; iter->second.framesUntilNextFullHash = 0; } else if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } } void TextureCache::InvalidateAll(GPUInvalidationType /*unused*/) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } if (timesInvalidatedAllThisFrame_ > 5) { return; } timesInvalidatedAllThisFrame_++; for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } void TextureCache::ClearNextFrame() { clearCacheNextFrame_ = true; } void TextureCache::AttachFramebufferValid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { const bool hasInvalidFramebuffer = entry->framebuffer == nullptr || entry->invalidHint == -1; const bool hasOlderFramebuffer = entry->framebuffer != nullptr && entry->framebuffer->last_frame_render < framebuffer->last_frame_render; bool hasFartherFramebuffer = false; if (!hasInvalidFramebuffer && !hasOlderFramebuffer) { // If it's valid, but the offset is greater, then we still win. if (fbTexInfo_[entry->addr].yOffset == fbInfo.yOffset) hasFartherFramebuffer = fbTexInfo_[entry->addr].xOffset > fbInfo.xOffset; else hasFartherFramebuffer = fbTexInfo_[entry->addr].yOffset > fbInfo.yOffset; } if (hasInvalidFramebuffer || hasOlderFramebuffer || hasFartherFramebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = 0; entry->status &= ~TextureCache::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[entry->addr] = fbInfo; framebuffer->last_frame_attached = gpuStats.numFlips; host->GPUNotifyTextureAttachment(entry->addr); } else if (entry->framebuffer == framebuffer) { framebuffer->last_frame_attached = gpuStats.numFlips; } } void TextureCache::AttachFramebufferInvalid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { if (entry->framebuffer == nullptr || entry->framebuffer == framebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = -1; entry->status &= ~TextureCache::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[entry->addr] = fbInfo; host->GPUNotifyTextureAttachment(entry->addr); } } bool TextureCache::AttachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer, u32 texaddrOffset) { static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32; AttachedFramebufferInfo fbInfo = {0}; const u64 mirrorMask = 0x00600000; // Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors. const u32 addr = (address | 0x04000000) & 0x3FFFFFFF & ~mirrorMask; const u32 texaddr = ((entry->addr + texaddrOffset) & ~mirrorMask); const bool noOffset = texaddr == addr; const bool exactMatch = noOffset && entry->format < 4; const u32 h = 1 << ((entry->dim >> 8) & 0xf); // 512 on a 272 framebuffer is sane, so let's be lenient. const u32 minSubareaHeight = h / 4; // If they match exactly, it's non-CLUT and from the top left. if (exactMatch) { // Apply to non-buffered and buffered mode only. if (!(g_Config.iRenderingMode == FB_NON_BUFFERED_MODE || g_Config.iRenderingMode == FB_BUFFERED_MODE)) return false; DEBUG_LOG(G3D, "Render to texture detected at %08x!", address); if (framebuffer->fb_stride != entry->bufw) { WARN_LOG_REPORT_ONCE(diffStrides1, G3D, "Render to texture with different strides %d != %d", entry->bufw, framebuffer->fb_stride); } if (entry->format != (GETextureFormat)framebuffer->format) { WARN_LOG_REPORT_ONCE(diffFormat1, G3D, "Render to texture with different formats %d != %d", entry->format, framebuffer->format); // Let's avoid using it when we know the format is wrong. May be a video/etc. updating memory. // However, some games use a different format to clear the buffer. if (framebuffer->last_frame_attached + 1 < gpuStats.numFlips) { DetachFramebuffer(entry, address, framebuffer); } } else { AttachFramebufferValid(entry, framebuffer, fbInfo); return true; } } else { // Apply to buffered mode only. if (!(g_Config.iRenderingMode == FB_BUFFERED_MODE)) return false; const bool clutFormat = (framebuffer->format == GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT32) || (framebuffer->format != GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT16); const u32 bitOffset = (texaddr - addr) * 8; const u32 pixelOffset = bitOffset / std::max(1U, (u32)textureBitsPerPixel[entry->format]); fbInfo.yOffset = entry->bufw == 0 ? 0 : pixelOffset / entry->bufw; fbInfo.xOffset = entry->bufw == 0 ? 0 : pixelOffset % entry->bufw; if (framebuffer->fb_stride != entry->bufw) { if (noOffset) { WARN_LOG_REPORT_ONCE(diffStrides2, G3D, "Render to texture using CLUT with different strides %d != %d", entry->bufw, framebuffer->fb_stride); } else { // Assume any render-to-tex with different bufw + offset is a render from ram. DetachFramebuffer(entry, address, framebuffer); return false; } } if (fbInfo.yOffset + minSubareaHeight >= framebuffer->height) { // Can't be inside the framebuffer then, ram. Detach to be safe. DetachFramebuffer(entry, address, framebuffer); return false; } // Trying to play it safe. Below 0x04110000 is almost always framebuffers. // TODO: Maybe we can reduce this check and find a better way above 0x04110000? if (fbInfo.yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000) { WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible render to texture at %08x +%dx%d / %dx%d", address, fbInfo.xOffset, fbInfo.yOffset, framebuffer->width, framebuffer->height); DetachFramebuffer(entry, address, framebuffer); return false; } // Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture. // 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture. if (clutFormat) { if (!noOffset) { WARN_LOG_REPORT_ONCE(subareaClut, G3D, "Render to texture using CLUT with offset at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset); } AttachFramebufferValid(entry, framebuffer, fbInfo); entry->status |= TexCacheEntry::STATUS_DEPALETTIZE; // We'll validate it compiles later. return true; } else if (entry->format == GE_TFMT_CLUT8 || entry->format == GE_TFMT_CLUT4) { ERROR_LOG_REPORT_ONCE(fourEightBit, G3D, "4 and 8-bit CLUT format not supported for framebuffers"); } // This is either normal or we failed to generate a shader to depalettize if (framebuffer->format == entry->format || clutFormat) { if (framebuffer->format != entry->format) { WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with different formats %d != %d at %08x", entry->format, framebuffer->format, address); AttachFramebufferValid(entry, framebuffer, fbInfo); return true; } else { WARN_LOG_REPORT_ONCE(subarea, G3D, "Render to area containing texture at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset); // If "AttachFramebufferValid" , God of War Ghost of Sparta/Chains of Olympus will be missing special effect. AttachFramebufferInvalid(entry, framebuffer, fbInfo); return true; } } else { WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with incompatible formats %d != %d at %08x", entry->format, framebuffer->format, address); } } return false; } inline void TextureCache::DetachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer) { if (entry->framebuffer == framebuffer) { cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); entry->framebuffer = 0; host->GPUNotifyTextureAttachment(entry->addr); } } void TextureCache::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer, FramebufferNotification msg) { // Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors. // These checks are mainly to reduce scanning all textures. const u32 addr = (address | 0x04000000) & 0x3F9FFFFF; const u32 bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2; const u64 cacheKey = (u64)addr << 32; // If it has a clut, those are the low 32 bits, so it'll be inside this range. // Also, if it's a subsample of the buffer, it'll also be within the FBO. const u64 cacheKeyEnd = cacheKey + ((u64)(framebuffer->fb_stride * framebuffer->height * bpp) << 32); // The first mirror starts at 0x04200000 and there are 3. We search all for framebuffers. const u64 mirrorCacheKey = (u64)0x04200000 << 32; const u64 mirrorCacheKeyEnd = (u64)0x04800000 << 32; switch (msg) { case NOTIFY_FB_CREATED: case NOTIFY_FB_UPDATED: // Ensure it's in the framebuffer cache. if (std::find(fbCache_.begin(), fbCache_.end(), framebuffer) == fbCache_.end()) { fbCache_.push_back(framebuffer); } for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) { AttachFramebuffer(&it->second, addr, framebuffer); } // Let's assume anything in mirrors is fair game to check. for (auto it = cache.lower_bound(mirrorCacheKey), end = cache.upper_bound(mirrorCacheKeyEnd); it != end; ++it) { AttachFramebuffer(&it->second, addr, framebuffer); } break; case NOTIFY_FB_DESTROYED: fbCache_.erase(std::remove(fbCache_.begin(), fbCache_.end(), framebuffer), fbCache_.end()); for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) { DetachFramebuffer(&it->second, addr, framebuffer); } for (auto it = cache.lower_bound(mirrorCacheKey), end = cache.upper_bound(mirrorCacheKeyEnd); it != end; ++it) { DetachFramebuffer(&it->second, addr, framebuffer); } break; } } void *TextureCache::UnswizzleFromMem(const u8 *texptr, u32 bufw, u32 bytesPerPixel, u32 level) { const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2); const u32 pitch = rowWidth / 4; const int bxc = rowWidth / 16; int byc = (gstate.getTextureHeight(level) + 7) / 8; if (byc == 0) byc = 1; u32 ydest = 0; if (rowWidth >= 16) { u32 *ydestp = tmpTexBuf32.data(); // The most common one, so it gets an optimized implementation. DoUnswizzleTex16(texptr, ydestp, bxc, byc, pitch, rowWidth); } else if (rowWidth == 8) { const u32 *src = (const u32 *) texptr; for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest += 2) { tmpTexBuf32[ydest + 0] = *src++; tmpTexBuf32[ydest + 1] = *src++; src += 2; // skip two u32 } } } else if (rowWidth == 4) { const u32 *src = (const u32 *) texptr; for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest++) { tmpTexBuf32[ydest] = *src++; src += 3; } } } else if (rowWidth == 2) { const u16 *src = (const u16 *) texptr; for (int by = 0; by < byc; by++) { for (int n = 0; n < 4; n++, ydest++) { u16 n1 = src[0]; u16 n2 = src[8]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16); src += 16; } } } else if (rowWidth == 1) { const u8 *src = (const u8 *) texptr; for (int by = 0; by < byc; by++) { for (int n = 0; n < 2; n++, ydest++) { u8 n1 = src[ 0]; u8 n2 = src[16]; u8 n3 = src[32]; u8 n4 = src[48]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24); src += 64; } } } return tmpTexBuf32.data(); } void *TextureCache::ReadIndexedTex(int level, const u8 *texptr, int bytesPerIndex, GLuint dstFmt, int bufw) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); int length = bufw * h; void *buf = NULL; switch (gstate.getClutPaletteFormat()) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut(); if (!gstate.isTextureSwizzled()) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (const u8 *)texptr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (const u16_le *)texptr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (const u32_le *)texptr, length, clut); break; } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texptr, bufw, bytesPerIndex, level); switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (u8 *) tmpTexBuf32.data(), length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (u16 *) tmpTexBuf32.data(), length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (u32 *) tmpTexBuf32.data(), length, clut); break; } } buf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut(); if (!gstate.isTextureSwizzled()) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf32.data(), (const u8 *)texptr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf32.data(), (const u16_le *)texptr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf32.data(), (const u32_le *)texptr, length, clut); break; } buf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texptr, bufw, bytesPerIndex, level); // Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); u32 *dest32 = (u32 *) tmpTexBuf16.data(); switch (bytesPerIndex) { case 1: DeIndexTexture(dest32, (u8 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 2: DeIndexTexture(dest32, (u16 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 4: // TODO: If a game actually uses this mode, check if using dest32 or tmpTexBuf32 is faster. DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut); buf = tmpTexBuf32.data(); break; } } } break; default: ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3)); break; } return buf; } GLenum getClutDestFormat(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return GL_UNSIGNED_SHORT_4_4_4_4; case GE_CMODE_16BIT_ABGR5551: return GL_UNSIGNED_SHORT_5_5_5_1; case GE_CMODE_16BIT_BGR5650: return GL_UNSIGNED_SHORT_5_6_5; case GE_CMODE_32BIT_ABGR8888: return GL_UNSIGNED_BYTE; } return 0; } static const u8 texByteAlignMap[] = {2, 2, 2, 4}; static const GLuint MinFiltGL[8] = { GL_NEAREST, GL_LINEAR, GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR, }; static const GLuint MagFiltGL[2] = { GL_NEAREST, GL_LINEAR }; void TextureCache::GetSamplingParams(int &minFilt, int &magFilt, bool &sClamp, bool &tClamp, float &lodBias, int maxLevel) { minFilt = gstate.texfilter & 0x7; magFilt = (gstate.texfilter>>8) & 1; sClamp = gstate.isTexCoordClampedS(); tClamp = gstate.isTexCoordClampedT(); bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001 || (gstate.texlevel & 0xFFFFFF) == 0x100001 ; // Fix texlevel at 0 if (maxLevel == 0) { // Enforce no mip filtering, for safety. minFilt &= 1; // no mipmaps yet lodBias = 0.0f; } else { // Texture lod bias should be signed. lodBias = (float)(int)(s8)((gstate.texlevel >> 16) & 0xFF) / 16.0f; } if (g_Config.iTexFiltering == LINEARFMV && g_iNumVideos > 0 && (gstate.getTextureDimension(0) & 0xF) >= 9) { magFilt |= 1; minFilt |= 1; } if (g_Config.iTexFiltering == LINEAR && (!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue())) { // TODO: IsAlphaTestTriviallyTrue() is unsafe here. vertexFullAlpha is not calculated yet. if (!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue()) { magFilt |= 1; minFilt |= 1; } } bool forceNearest = g_Config.iTexFiltering == NEAREST; // Force Nearest when color test enabled and rendering resolution greater than 480x272 if ((gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue()) && g_Config.iInternalResolution != 1 && gstate.isModeThrough()) { // Some games use 0 as the color test color, which won't be too bad if it bleeds. // Fuchsia and green, etc. are the problem colors. if (gstate.getColorTestRef() != 0) { forceNearest = true; } } if (forceNearest) { magFilt &= ~1; minFilt &= ~1; } if (!g_Config.bMipMap || noMip) { minFilt &= 1; } } // This should not have to be done per texture! OpenGL is silly yo void TextureCache::UpdateSamplingParams(TexCacheEntry &entry, bool force) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, entry.maxLevel); if (entry.maxLevel != 0) { if (force || entry.lodBias != lodBias) { #ifndef USING_GLES2 GETexLevelMode mode = gstate.getTexLevelMode(); switch (mode) { case GE_TEXLEVEL_MODE_AUTO: // TODO break; case GE_TEXLEVEL_MODE_CONST: glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, lodBias); break; case GE_TEXLEVEL_MODE_SLOPE: // TODO break; } #endif entry.lodBias = lodBias; } } if (force || entry.minFilt != minFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]); entry.minFilt = minFilt; } if (force || entry.magFilt != magFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]); entry.magFilt = magFilt; } if (entry.framebuffer) { WARN_LOG_REPORT_ONCE(wrongFramebufAttach, G3D, "Framebuffer still attached in UpdateSamplingParams()?"); } if (force || entry.sClamp != sClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.sClamp = sClamp; } if (force || entry.tClamp != tClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.tClamp = tClamp; } } void TextureCache::SetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, 0); minFilt &= 1; // framebuffers can't mipmap. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]); // Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case. // This happens whether we have OES_texture_npot or not. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (w != bufferWidth || h != bufferHeight) { return; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); } static void ConvertColors(void *dstBuf, const void *srcBuf, GLuint dstFmt, int numPixels) { const u32 *src = (const u32 *)srcBuf; u32 *dst = (u32 *)dstBuf; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: { #ifdef _M_SSE const __m128i maskB = _mm_set1_epi16(0x00F0); const __m128i maskG = _mm_set1_epi16(0x0F00); __m128i *srcp = (__m128i *)src; __m128i *dstp = (__m128i *)dst; const int sseChunks = numPixels / 8; for (int i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 12); v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 4), maskB)); v = _mm_or_si128(v, _mm_and_si128(_mm_slli_epi16(c, 4), maskG)); v = _mm_or_si128(v, _mm_slli_epi16(c, 12)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. int i = sseChunks * 8 / 2; #else int i = 0; // TODO: NEON. #endif for (; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 12) & 0x000F000F) | ((c >> 4) & 0x00F000F0) | ((c << 4) & 0x0F000F00) | ((c << 12) & 0xF000F000); } } break; // Final Fantasy 2 uses this heavily in animated textures. case GL_UNSIGNED_SHORT_5_5_5_1: { #ifdef _M_SSE const __m128i maskB = _mm_set1_epi16(0x003E); const __m128i maskG = _mm_set1_epi16(0x07C0); __m128i *srcp = (__m128i *)src; __m128i *dstp = (__m128i *)dst; const int sseChunks = numPixels / 8; for (int i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 15); v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 9), maskB)); v = _mm_or_si128(v, _mm_and_si128(_mm_slli_epi16(c, 1), maskG)); v = _mm_or_si128(v, _mm_slli_epi16(c, 11)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. int i = sseChunks * 8 / 2; #else int i = 0; // TODO: NEON. #endif for (; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 15) & 0x00010001) | ((c >> 9) & 0x003E003E) | ((c << 1) & 0x07C007C0) | ((c << 11) & 0xF800F800); } } break; case GL_UNSIGNED_SHORT_5_6_5: { #ifdef _M_SSE const __m128i maskG = _mm_set1_epi16(0x07E0); __m128i *srcp = (__m128i *)src; __m128i *dstp = (__m128i *)dst; const int sseChunks = numPixels / 8; for (int i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i v = _mm_srli_epi16(c, 11); v = _mm_or_si128(v, _mm_and_si128(c, maskG)); v = _mm_or_si128(v, _mm_slli_epi16(c, 11)); _mm_store_si128(&dstp[i], v); } // The remainder is done in chunks of 2, SSE was chunks of 8. int i = sseChunks * 8 / 2; #else int i = 0; // TODO: NEON. #endif for (; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 11) & 0x001F001F) | ((c >> 0) & 0x07E007E0) | ((c << 11) & 0xF800F800); } } break; default: if (UseBGRA8888()) { #ifdef _M_SSE const __m128i maskGA = _mm_set1_epi32(0xFF00FF00); __m128i *srcp = (__m128i *)src; __m128i *dstp = (__m128i *)dst; const int sseChunks = numPixels / 4; for (int i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i rb = _mm_andnot_si128(maskGA, c); c = _mm_and_si128(c, maskGA); __m128i b = _mm_srli_epi32(rb, 16); __m128i r = _mm_slli_epi32(rb, 16); c = _mm_or_si128(_mm_or_si128(c, r), b); _mm_store_si128(&dstp[i], c); } // The remainder starts right after those done via SSE. int i = sseChunks * 4; #else int i = 0; #endif for (; i < numPixels; i++) { u32 c = src[i]; dst[i] = ((c >> 16) & 0x000000FF) | ((c >> 0) & 0xFF00FF00) | ((c << 16) & 0x00FF0000); } } else { // No need to convert RGBA8888, right order already if (dst != src) memcpy(dst, src, numPixels * sizeof(u32)); } break; } } void TextureCache::StartFrame() { lastBoundTexture = -1; timesInvalidatedAllThisFrame_ = 0; if (texelsScaledThisFrame_) { // INFO_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_); } texelsScaledThisFrame_ = 0; if (clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { Decimate(); } } static inline u32 MiniHash(const u32 *ptr) { return ptr[0]; } static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, GETextureFormat format) { const u32 sizeInRAM = (textureBitsPerPixel[format] * bufw * h) / 8; const u32 *checkp = (const u32 *) Memory::GetPointer(addr); return DoQuickTexHash(checkp, sizeInRAM); } inline bool TextureCache::TexCacheEntry::Matches(u16 dim2, u8 format2, int maxLevel2) { return dim == dim2 && format == format2 && maxLevel == maxLevel2; } void TextureCache::LoadClut() { u32 clutAddr = gstate.getClutAddress(); clutTotalBytes_ = gstate.getClutLoadBytes(); if (Memory::IsValidAddress(clutAddr)) { // It's possible for a game to (successfully) access outside valid memory. u32 bytes = Memory::ValidSize(clutAddr, clutTotalBytes_); #ifdef _M_SSE int numBlocks = bytes / 16; if (bytes == clutTotalBytes_) { const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr); __m128i *dest = (__m128i *)clutBufRaw_; for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) { __m128i data1 = _mm_loadu_si128(source); __m128i data2 = _mm_loadu_si128(source + 1); _mm_store_si128(dest, data1); _mm_store_si128(dest + 1, data2); } } else { Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < clutTotalBytes_) { memset((u8 *)clutBufRaw_ + bytes, 0x00, clutTotalBytes_ - bytes); } } #else Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < clutTotalBytes_) { memset((u8 *)clutBufRaw_ + bytes, 0x00, clutTotalBytes_ - bytes); } #endif } else { memset(clutBufRaw_, 0x00, clutTotalBytes_); } // Reload the clut next time. clutLastFormat_ = 0xFFFFFFFF; clutMaxBytes_ = std::max(clutMaxBytes_, clutTotalBytes_); } void TextureCache::UpdateCurrentClut() { const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); const u32 clutBase = gstate.getClutIndexStartPos(); const u32 clutBaseBytes = clutBase * (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. const u32 clutExtendedBytes = clutTotalBytes_ + clutBaseBytes; clutHash_ = DoReliableHash32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888); // Avoid a copy when we don't need to convert colors. if (UseBGRA8888() || clutFormat != GE_CMODE_32BIT_ABGR8888) { const int numColors = (clutMaxBytes_ + clutBaseBytes) / (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16)); ConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormat(clutFormat), numColors); clutBuf_ = clutBufConverted_; } else { clutBuf_ = clutBufRaw_; } // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (gstate.getClutPaletteFormat() == GE_CMODE_16BIT_ABGR4444 && gstate.isClutIndexSimple()) { const u16_le *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0xFFF0; for (int i = 0; i < 16; ++i) { if ((clut[i] & 0xf) != i) { clutAlphaLinear_ = false; break; } // Alpha 0 doesn't matter. // TODO: Well, depending on blend mode etc, it can actually matter, although unlikely. if (i != 0 && (clut[i] & 0xFFF0) != clutAlphaLinearColor_) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } template inline const T *TextureCache::GetCurrentClut() { return (const T *)clutBuf_; } inline u32 TextureCache::GetCurrentClutHash() { return clutHash_; } // #define DEBUG_TEXTURES #ifdef DEBUG_TEXTURES bool SetDebugTexture() { static const int highlightFrames = 30; static int numTextures = 0; static int lastFrames = 0; static int mostTextures = 1; if (lastFrames != gpuStats.numFlips) { mostTextures = std::max(mostTextures, numTextures); numTextures = 0; lastFrames = gpuStats.numFlips; } static GLuint solidTexture = 0; bool changed = false; if (((gpuStats.numFlips / highlightFrames) % mostTextures) == numTextures) { if (gpuStats.numFlips % highlightFrames == 0) { NOTICE_LOG(G3D, "Highlighting texture # %d / %d", numTextures, mostTextures); } static const u32 solidTextureData[] = {0x99AA99FF}; if (solidTexture == 0) { glGenTextures(1, &solidTexture); glBindTexture(GL_TEXTURE_2D, solidTexture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_PACK_ALIGNMENT, 1); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTextureData); } else { glBindTexture(GL_TEXTURE_2D, solidTexture); } changed = true; } ++numTextures; return changed; } #endif void TextureCache::SetTextureFramebuffer(TexCacheEntry *entry, VirtualFramebuffer *framebuffer) { _dbg_assert_msg_(G3D, framebuffer != nullptr, "Framebuffer must not be null."); framebuffer->usageFlags |= FB_USAGE_TEXTURE; bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) { DepalShader *depal = nullptr; if ((entry->status & TexCacheEntry::STATUS_DEPALETTIZE) && !g_Config.bDisableSlowFramebufEffects) { depal = depalShaderCache_->GetDepalettizeShader(framebuffer->drawnFormat); } if (depal) { GLuint clutTexture = depalShaderCache_->GetClutTexture(clutHash_, clutBuf_); FBO *depalFBO = framebufferManager_->GetTempFBO(framebuffer->renderWidth, framebuffer->renderHeight, FBO_8888); fbo_bind_as_render_target(depalFBO); static const float pos[12] = { -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1 }; static const float uv[8] = { 0, 0, 1, 0, 1, 1, 0, 1, }; static const GLubyte indices[4] = { 0, 1, 3, 2 }; shaderManager_->DirtyLastShader(); glUseProgram(depal->program); glstate.arrayBuffer.unbind(); glstate.elementArrayBuffer.unbind(); glEnableVertexAttribArray(depal->a_position); glEnableVertexAttribArray(depal->a_texcoord0); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, clutTexture); glActiveTexture(GL_TEXTURE0); framebufferManager_->BindFramebufferColor(GL_TEXTURE0, framebuffer, true); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glDisable(GL_BLEND); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDisable(GL_SCISSOR_TEST); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_STENCIL_TEST); #if !defined(USING_GLES2) glDisable(GL_LOGIC_OP); #endif glViewport(0, 0, framebuffer->renderWidth, framebuffer->renderHeight); glVertexAttribPointer(depal->a_position, 3, GL_FLOAT, GL_FALSE, 12, pos); glVertexAttribPointer(depal->a_texcoord0, 2, GL_FLOAT, GL_FALSE, 8, uv); glDrawElements(GL_TRIANGLE_STRIP, 4, GL_UNSIGNED_BYTE, indices); glDisableVertexAttribArray(depal->a_position); glDisableVertexAttribArray(depal->a_texcoord0); fbo_bind_color_as_texture(depalFBO, 0); glstate.Restore(); framebufferManager_->RebindFramebuffer(); const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); const u32 clutBase = gstate.getClutIndexStartPos(); const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutExtendedColors = (clutTotalBytes_ / bytesPerColor) + clutBase; TexCacheEntry::Status alphaStatus = CheckAlpha(clutBuf_, getClutDestFormat(gstate.getClutPaletteFormat()), clutExtendedColors, clutExtendedColors, 1); gstate_c.textureFullAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_SIMPLE; } else { entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE; framebufferManager_->BindFramebufferColor(GL_TEXTURE0, framebuffer); gstate_c.textureFullAlpha = gstate.getTextureFormat() == GE_TFMT_5650; gstate_c.textureSimpleAlpha = gstate_c.textureFullAlpha; } // Keep the framebuffer alive. framebuffer->last_frame_used = gpuStats.numFlips; // We need to force it, since we may have set it on a texture before attaching. gstate_c.curTextureWidth = framebuffer->bufferWidth; gstate_c.curTextureHeight = framebuffer->bufferHeight; gstate_c.flipTexture = true; gstate_c.curTextureXOffset = fbTexInfo_[entry->addr].xOffset; gstate_c.curTextureYOffset = fbTexInfo_[entry->addr].yOffset; gstate_c.needShaderTexClamp = gstate_c.curTextureWidth != (u32)gstate.getTextureWidth(0) || gstate_c.curTextureHeight != (u32)gstate.getTextureHeight(0); if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) { gstate_c.needShaderTexClamp = true; } SetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight); } else { if (framebuffer->fbo) { fbo_destroy(framebuffer->fbo); framebuffer->fbo = 0; } glBindTexture(GL_TEXTURE_2D, 0); gstate_c.needShaderTexClamp = false; } } bool TextureCache::SetOffsetTexture(u32 offset) { if (g_Config.iRenderingMode != FB_BUFFERED_MODE) { return false; } u32 texaddr = gstate.getTextureAddress(0); if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + offset)) { return false; } u64 cachekey = (u64)(texaddr & 0x3FFFFFFF) << 32; TexCache::iterator iter = cache.find(cachekey); if (iter == cache.end()) { return false; } TexCacheEntry *entry = &iter->second; bool success = false; for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; if (AttachFramebuffer(entry, framebuffer->fb_address, framebuffer, offset)) { success = true; } } if (success && entry->framebuffer) { SetTextureFramebuffer(entry, entry->framebuffer); lastBoundTexture = -1; entry->lastFrame = gpuStats.numFlips; return true; } return false; } void TextureCache::SetTexture(bool force) { #ifdef DEBUG_TEXTURES if (SetDebugTexture()) { // A different texture was bound, let's rebind next time. lastBoundTexture = -1; return; } #endif if (force) { lastBoundTexture = -1; } u32 texaddr = gstate.getTextureAddress(0); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; return; } int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); GETextureFormat format = gstate.getTextureFormat(); if (format >= 11) { ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format); // TODO: Better assumption? format = GE_TFMT_5650; } bool hasClut = gstate.isTextureFormatIndexed(); // Ignore uncached/kernel when caching. u64 cachekey = (u64)(texaddr & 0x3FFFFFFF) << 32; u32 cluthash; if (hasClut) { if (clutLastFormat_ != gstate.clutformat) { // We update here because the clut format can be specified after the load. UpdateCurrentClut(); } cluthash = GetCurrentClutHash() ^ gstate.clutformat; cachekey |= cluthash; } else { cluthash = 0; } int bufw = GetTextureBufw(0, texaddr, format); int maxLevel = gstate.getTextureMaxLevel(); u32 texhash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr)); u32 fullhash = 0; TexCache::iterator iter = cache.find(cachekey); TexCacheEntry *entry = NULL; gstate_c.flipTexture = false; gstate_c.needShaderTexClamp = false; gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; bool replaceImages = false; if (iter != cache.end()) { entry = &iter->second; // Validate the texture still matches the cache entry. u16 dim = gstate.getTextureDimension(0); bool match = entry->Matches(dim, format, maxLevel); // Check for FBO - slow! if (entry->framebuffer) { if (match) { SetTextureFramebuffer(entry, entry->framebuffer); lastBoundTexture = -1; entry->lastFrame = gpuStats.numFlips; return; } else { // Make sure we re-evaluate framebuffers. DetachFramebuffer(entry, texaddr, entry->framebuffer); match = false; } } bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE; bool doDelete = true; // First let's see if another texture with the same address had a hashfail. if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) { // Always rehash in this case, if one changed the rest all probably did. rehash = true; entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK; } else if ((gstate_c.textureChanged & TEXCHANGE_UPDATED) == 0) { // Okay, just some parameter change - the data didn't change, no need to rehash. rehash = false; } if (match) { if (entry->lastFrame != gpuStats.numFlips) { u32 diff = gpuStats.numFlips - entry->lastFrame; entry->numFrames++; if (entry->framesUntilNextFullHash < diff) { // Exponential backoff up to 512 frames. Textures are often reused. if (entry->numFrames > 32) { // Also, try to add some "randomness" to avoid rehashing several textures the same frame. entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (entry->texture & 15); } else { entry->framesUntilNextFullHash = entry->numFrames; } rehash = true; } else { entry->framesUntilNextFullHash -= diff; } } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) { entry->invalidHint = 0; rehash = true; } bool hashFail = false; if (texhash != entry->hash) { fullhash = QuickTexHash(texaddr, bufw, w, h, format); hashFail = true; rehash = false; } if (rehash && entry->GetHashStatus() != TexCacheEntry::STATUS_RELIABLE) { fullhash = QuickTexHash(texaddr, bufw, w, h, format); if (fullhash != entry->fullhash) { hashFail = true; } else if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. if (g_Config.bTextureBackoffCache) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } if (hashFail) { match = false; entry->status |= TexCacheEntry::STATUS_UNRELIABLE; if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } entry->numFrames = 0; // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. if (g_Config.bTextureSecondaryCache) { if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { u64 secondKey = fullhash | (u64)cluthash << 32; TexCache::iterator secondIter = secondCache.find(secondKey); if (secondIter != secondCache.end()) { TexCacheEntry *secondEntry = &secondIter->second; if (secondEntry->Matches(dim, format, maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } entry = secondEntry; match = true; } } else { secondKey = entry->fullhash | ((u64)entry->cluthash << 32); secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry); secondCache[secondKey] = *entry; doDelete = false; } } } } } if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && g_Config.iTexScalingLevel != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) { if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // INFO_LOG(G3D, "Reloading texture to do the scaling we skipped.."); match = false; } } if (match) { // TODO: Mark the entry reliable if it's been safe for long enough? //got one! entry->lastFrame = gpuStats.numFlips; if (entry->texture != lastBoundTexture) { glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; gstate_c.textureFullAlpha = entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = entry->GetAlphaStatus() != TexCacheEntry::STATUS_ALPHA_UNKNOWN; } UpdateSamplingParams(*entry, false); VERBOSE_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr); return; //Done! } else { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); entry->numInvalidated++; gpuStats.numTextureInvalidations++; DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr); if (doDelete) { if (entry->maxLevel == maxLevel && entry->dim == gstate.getTextureDimension(0) && entry->format == format && g_Config.iTexScalingLevel == 1) { // Actually, if size and number of levels match, let's try to avoid deleting and recreating. // Instead, let's use glTexSubImage to replace the images. replaceImages = true; } else { if (entry->texture == lastBoundTexture) { lastBoundTexture = -1; } glDeleteTextures(1, &entry->texture); } } // Clear the reliable bit if set. if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } // Also, mark any textures with the same address but different clut. They need rechecking. if (cluthash != 0) { const u64 cachekeyMin = (u64)(texaddr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache.lower_bound(cachekeyMin), end = cache.upper_bound(cachekeyMax); it != end; ++it) { if (it->second.cluthash != cluthash) { it->second.status |= TexCacheEntry::STATUS_CLUT_RECHECK; } } } } } else { VERBOSE_LOG(G3D, "No texture in cache, decoding..."); TexCacheEntry entryNew = {0}; cache[cachekey] = entryNew; entry = &cache[cachekey]; if (g_Config.bTextureBackoffCache) { entry->status = TexCacheEntry::STATUS_HASHING; } else { entry->status = TexCacheEntry::STATUS_UNRELIABLE; } } if ((bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && texaddr >= PSP_GetKernelMemoryEnd()) { ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); } // We have to decode it, let's setup the cache entry first. entry->addr = texaddr; entry->hash = texhash; entry->format = format; entry->lastFrame = gpuStats.numFlips; entry->framebuffer = 0; entry->maxLevel = maxLevel; entry->lodBias = 0.0f; entry->dim = gstate.getTextureDimension(0); entry->bufw = bufw; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->fullhash = fullhash == 0 ? QuickTexHash(texaddr, bufw, w, h, format) : fullhash; entry->cluthash = cluthash; entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; // For the estimate, we assume cluts always point to 8888 for simplicity. cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); // Always generate a texture name, we might need it if the texture is replaced later. if (!replaceImages) { entry->texture = AllocTextureName(); } // Before we go reading the texture from memory, let's check for render-to-texture. for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; AttachFramebuffer(entry, framebuffer->fb_address, framebuffer); } // If we ended up with a framebuffer, attach it - no texture decoding needed. if (entry->framebuffer) { SetTextureFramebuffer(entry, entry->framebuffer); lastBoundTexture = -1; entry->lastFrame = gpuStats.numFlips; return; } glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; // Adjust maxLevel to actually present levels.. bool badMipSizes = false; for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = gstate.getTextureAddress(i); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } #ifndef USING_GLES2 if (i > 0) { int tw = gstate.getTextureWidth(i); int th = gstate.getTextureHeight(i); if (tw != 1 && tw != (gstate.getTextureWidth(i - 1) >> 1)) badMipSizes = true; else if (th != 1 && th != (gstate.getTextureHeight(i - 1) >> 1)) badMipSizes = true; } #endif } // In addition, simply don't load more than level 0 if g_Config.bMipMap is false. if (!g_Config.bMipMap) { maxLevel = 0; } // If GLES3 is available, we can preallocate the storage, which makes texture loading more efficient. GLenum dstFmt = GetDestFormat(format, gstate.getClutPaletteFormat()); int scaleFactor; // Auto-texture scale upto 5x rendering resolution if (g_Config.iTexScalingLevel == 0) { scaleFactor = g_Config.iInternalResolution; if (scaleFactor == 0) { scaleFactor = (PSP_CoreParameter().renderWidth + 479) / 480; } #ifndef MOBILE_DEVICE scaleFactor = std::min(gl_extensions.OES_texture_npot ? 5 : 4, scaleFactor); if (!gl_extensions.OES_texture_npot && scaleFactor == 3) { scaleFactor = 2; } #else scaleFactor = std::min(gl_extensions.OES_texture_npot ? 3 : 2, scaleFactor); #endif } else { scaleFactor = g_Config.iTexScalingLevel; } // Don't scale the PPGe texture. if (entry->addr > 0x05000000 && entry->addr < 0x08800000) scaleFactor = 1; if (scaleFactor != 1 && (entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED) { entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; // INFO_LOG(G3D, "Skipped scaling for now.."); } else { entry->status &= ~TexCacheEntry::STATUS_TO_SCALE; texelsScaledThisFrame_ += w * h; } } // Disabled this due to issue #6075: https://github.com/hrydgard/ppsspp/issues/6075 // This breaks Dangan Ronpa 2 with mipmapping enabled. Why? No idea, it shouldn't. // glTexStorage2D probably has few benefits for us anyway. if (false && gl_extensions.GLES3 && maxLevel > 0) { // glTexStorage2D requires the use of sized formats. GLenum storageFmt = GL_RGBA8; switch (dstFmt) { case GL_UNSIGNED_BYTE: storageFmt = GL_RGBA8; break; case GL_UNSIGNED_SHORT_5_6_5: storageFmt = GL_RGB565; break; case GL_UNSIGNED_SHORT_4_4_4_4: storageFmt = GL_RGBA4; break; case GL_UNSIGNED_SHORT_5_5_5_1: storageFmt = GL_RGB5_A1; break; default: ERROR_LOG(G3D, "Unknown dstfmt %i", (int)dstFmt); break; } // TODO: This may cause bugs, since it hard-sets the texture w/h, and we might try to reuse it later with a different size. glTexStorage2D(GL_TEXTURE_2D, maxLevel + 1, storageFmt, w * scaleFactor, h * scaleFactor); // Make sure we don't use glTexImage2D after glTexStorage2D. replaceImages = true; } // GLES2 doesn't have support for a "Max lod" which is critical as PSP games often // don't specify mips all the way down. As a result, we either need to manually generate // the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not // be as good quality as the game's own (might even be better in some cases though). // Always load base level texture here LoadTextureLevel(*entry, 0, replaceImages, scaleFactor, dstFmt); // Mipmapping only enable when texture scaling disable if (maxLevel > 0 && g_Config.iTexScalingLevel == 1) { #ifndef USING_GLES2 if (badMipSizes) { // WARN_LOG(G3D, "Bad mipmap for texture sized %dx%dx%d - autogenerating", w, h, (int)format); glGenerateMipmap(GL_TEXTURE_2D); } else { for (int i = 1; i <= maxLevel; i++) { LoadTextureLevel(*entry, i, replaceImages, scaleFactor, dstFmt); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel); } #else // Avoid PowerVR driver bug if (w > 1 && h > 1 && !(gl_extensions.gpuVendor == GPU_VENDOR_POWERVR && h > w)) { // Really! only seems to fail if height > width // NOTICE_LOG(G3D, "Generating mipmap for texture sized %dx%d%d", w, h, (int)format); glGenerateMipmap(GL_TEXTURE_2D); } else { entry->maxLevel = 0; } #endif } else { #ifndef USING_GLES2 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); #else if (gl_extensions.GLES3) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); } #endif } int aniso = 1 << g_Config.iAnisotropyLevel; float anisotropyLevel = (float) aniso > maxAnisotropyLevel ? maxAnisotropyLevel : (float) aniso; glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel); gstate_c.textureFullAlpha = entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = entry->GetAlphaStatus() != TexCacheEntry::STATUS_ALPHA_UNKNOWN; UpdateSamplingParams(*entry, true); //glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); //glPixelStorei(GL_PACK_ROW_LENGTH, 0); glPixelStorei(GL_PACK_ALIGNMENT, 1); } u32 TextureCache::AllocTextureName() { if (nameCache_.empty()) { nameCache_.resize(TEXCACHE_NAME_CACHE_SIZE); glGenTextures(TEXCACHE_NAME_CACHE_SIZE, &nameCache_[0]); } u32 name = nameCache_.back(); nameCache_.pop_back(); return name; } GLenum TextureCache::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const { switch (format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: return getClutDestFormat(clutFormat); case GE_TFMT_4444: return GL_UNSIGNED_SHORT_4_4_4_4; case GE_TFMT_5551: return GL_UNSIGNED_SHORT_5_5_5_1; case GE_TFMT_5650: return GL_UNSIGNED_SHORT_5_6_5; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: return GL_UNSIGNED_BYTE; } } void *TextureCache::DecodeTextureLevel(GETextureFormat format, GEPaletteFormat clutformat, int level, u32 &texByteAlign, GLenum dstFmt, int *bufwout) { void *finalBuf = NULL; u32 texaddr = gstate.getTextureAddress(level); if (texaddr & 0x00600000 && Memory::IsVRAMAddress(texaddr)) { // This means it's in a mirror, possibly a swizzled mirror. Let's report. WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, gstate.isTextureSwizzled() ? 1 : 0); } int bufw = GetTextureBufw(level, texaddr, format); if (bufwout) *bufwout = bufw; int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); const u8 *texptr = Memory::GetPointer(texaddr); switch (format) { case GE_TFMT_CLUT4: { const bool mipmapShareClut = gstate.isClutSharedForMipmaps(); const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut() + clutSharingOffset; texByteAlign = 2; if (!gstate.isTextureSwizzled()) { if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), texptr, bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), texptr, bufw * h, clut); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texptr, bufw, 0, level); if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), (const u8 *)tmpTexBuf32.data(), bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), (const u8 *)tmpTexBuf32.data(), bufw * h, clut); } } finalBuf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut() + clutSharingOffset; if (!gstate.isTextureSwizzled()) { DeIndexTexture4(tmpTexBuf32.data(), texptr, bufw * h, clut); finalBuf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texptr, bufw, 0, level); // Let's reuse tmpTexBuf16, just need double the space. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); DeIndexTexture4((u32 *)tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut); finalBuf = tmpTexBuf16.data(); } } break; default: ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat()); return NULL; } } break; case GE_TFMT_CLUT8: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 1, dstFmt, bufw); break; case GE_TFMT_CLUT16: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 2, dstFmt, bufw); break; case GE_TFMT_CLUT32: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 4, dstFmt, bufw); break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: texByteAlign = 2; if (!gstate.isTextureSwizzled()) { int len = std::max(bufw, w) * h; tmpTexBuf16.resize(len); tmpTexBufRearrange.resize(len); finalBuf = tmpTexBuf16.data(); ConvertColors(finalBuf, texptr, dstFmt, bufw * h); } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texptr, bufw, 2, level); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_8888: if (!gstate.isTextureSwizzled()) { // Special case: if we don't need to deal with packing, we don't need to copy. if ((g_Config.iTexScalingLevel == 1 && gl_extensions.EXT_unpack_subimage) || w == bufw) { if (UseBGRA8888()) { finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, texptr, dstFmt, bufw * h); } else { finalBuf = (void *)texptr; } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, texptr, dstFmt, bufw * h); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texptr, bufw, 4, level); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_DXT1: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); w = (w + 3) & ~3; } break; case GE_TFMT_DXT3: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT3Block *src = (DXT3Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_DXT5: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT5Block *src = (DXT5Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format); return NULL; } if (!finalBuf) { ERROR_LOG_REPORT(G3D, "NO finalbuf! Will crash!"); } if (!(g_Config.iTexScalingLevel == 1 && gl_extensions.EXT_unpack_subimage) && w != bufw) { int pixelSize; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_5_6_5: pixelSize = 2; break; default: pixelSize = 4; break; } // Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc. int inRowBytes = bufw * pixelSize; int outRowBytes = w * pixelSize; const u8 *read = (const u8 *)finalBuf; u8 *write = 0; if (w > bufw) { write = (u8 *)tmpTexBufRearrange.data(); finalBuf = tmpTexBufRearrange.data(); } else { write = (u8 *)finalBuf; } for (int y = 0; y < h; y++) { memmove(write, read, outRowBytes); read += inRowBytes; write += outRowBytes; } } return finalBuf; } TextureCache::TexCacheEntry::Status TextureCache::CheckAlpha(const u32 *pixelData, GLenum dstFmt, int stride, int w, int h) { // TODO: Could probably be optimized more. u32 hitZeroAlpha = 0; u32 hitSomeAlpha = 0; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: { const u32 *p = pixelData; for (int y = 0; y < h && hitSomeAlpha == 0; ++y) { for (int i = 0; i < (w + 1) / 2; ++i) { u32 a = p[i] & 0x000F000F; hitZeroAlpha |= a ^ 0x000F000F; if (a != 0x000F000F && a != 0x0000000F && a != 0x000F0000 && a != 0) { hitSomeAlpha = 1; break; } } p += stride/2; } } break; case GL_UNSIGNED_SHORT_5_5_5_1: { const u32 *p = pixelData; for (int y = 0; y < h; ++y) { for (int i = 0; i < (w + 1) / 2; ++i) { u32 a = p[i] & 0x00010001; hitZeroAlpha |= a ^ 0x00010001; } p += stride/2; } } break; case GL_UNSIGNED_SHORT_5_6_5: { // Never has any alpha. } break; default: { const u32 *p = pixelData; for (int y = 0; y < h && hitSomeAlpha == 0; ++y) { for (int i = 0; i < w; ++i) { u32 a = p[i] & 0xFF000000; hitZeroAlpha |= a ^ 0xFF000000; if (a != 0xFF000000 && a != 0) { hitSomeAlpha = 1; break; } } p += stride; } } break; } if (hitSomeAlpha != 0) return TexCacheEntry::STATUS_ALPHA_UNKNOWN; else if (hitZeroAlpha != 0) return TexCacheEntry::STATUS_ALPHA_SIMPLE; else return TexCacheEntry::STATUS_ALPHA_FULL; } void TextureCache::LoadTextureLevel(TexCacheEntry &entry, int level, bool replaceImages, int scaleFactor, GLenum dstFmt) { // TODO: only do this once u32 texByteAlign = 1; GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); int bufw; void *finalBuf = DecodeTextureLevel(GETextureFormat(entry.format), clutformat, level, texByteAlign, dstFmt, &bufw); if (finalBuf == NULL) { return; } int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); gpuStats.numTexturesDecoded++; // Can restore these and remove the fixup at the end of DecodeTextureLevel on desktop GL and GLES 3. bool useUnpack = false; if ((g_Config.iTexScalingLevel == 1 && gl_extensions.EXT_unpack_subimage) && w != bufw) { glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw); useUnpack = true; } glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign); bool useBGRA = UseBGRA8888() && dstFmt == GL_UNSIGNED_BYTE; u32 *pixelData = (u32 *)finalBuf; if (scaleFactor > 1 && (entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) scaler.Scale(pixelData, dstFmt, w, h, scaleFactor); if ((entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { TexCacheEntry::Status alphaStatus = CheckAlpha(pixelData, dstFmt, useUnpack ? bufw : w, w, h); entry.SetAlphaStatus(alphaStatus, level); } else { entry.SetAlphaStatus(TexCacheEntry::STATUS_ALPHA_UNKNOWN); } GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA; GLuint components2 = components; if (useBGRA) { components2 = GL_BGRA_EXT; } if (replaceImages) { glTexSubImage2D(GL_TEXTURE_2D, level, 0, 0, w, h, components2, dstFmt, pixelData); } else { glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components2, dstFmt, pixelData); if (!lowMemoryMode_) { GLenum err = glGetError(); if (err == GL_OUT_OF_MEMORY) { WARN_LOG_REPORT(G3D, "Texture cache ran out of GPU memory; switching to low memory mode"); lowMemoryMode_ = true; decimationCounter_ = 0; Decimate(); // Try again, now that we've cleared out textures in lowMemoryMode_. glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components2, dstFmt, pixelData); } } } if (useUnpack) { glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); } } // Only used by Qt UI? bool TextureCache::DecodeTexture(u8* output, const GPUgstate &state) { GPUgstate oldState = gstate; gstate = state; u32 texaddr = gstate.getTextureAddress(0); if (!Memory::IsValidAddress(texaddr)) { return false; } u32 texByteAlign = 1; GLenum dstFmt = 0; GETextureFormat format = gstate.getTextureFormat(); GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); u8 level = 0; int bufw = GetTextureBufw(level, texaddr, format); int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); void *finalBuf = DecodeTextureLevel(format, clutformat, level, texByteAlign, dstFmt); if (finalBuf == NULL) { return false; } switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: for (int y = 0; y < h; y++) for (int x = 0; x < bufw; x++) { u32 val = ((u16*)finalBuf)[y*bufw + x]; u32 r = ((val>>12) & 0xF) * 17; u32 g = ((val>> 8) & 0xF) * 17; u32 b = ((val>> 4) & 0xF) * 17; u32 a = ((val>> 0) & 0xF) * 17; ((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b; } break; case GL_UNSIGNED_SHORT_5_5_5_1: for (int y = 0; y < h; y++) for (int x = 0; x < bufw; x++) { u32 val = ((u16*)finalBuf)[y*bufw + x]; u32 r = Convert5To8((val>>11) & 0x1F); u32 g = Convert5To8((val>> 6) & 0x1F); u32 b = Convert5To8((val>> 1) & 0x1F); u32 a = (val & 0x1) * 255; ((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b; } break; case GL_UNSIGNED_SHORT_5_6_5: for (int y = 0; y < h; y++) for (int x = 0; x < bufw; x++) { u32 val = ((u16*)finalBuf)[y*bufw + x]; u32 a = 0xFF; u32 r = Convert5To8((val>>11) & 0x1F); u32 g = Convert6To8((val>> 5) & 0x3F); u32 b = Convert5To8((val ) & 0x1F); ((u32*)output)[y*w + x] = (a << 24) | (r << 16) | (g << 8) | b; } break; default: for (int y = 0; y < h; y++) for (int x = 0; x < bufw; x++) { u32 val = ((u32*)finalBuf)[y*bufw + x]; ((u32*)output)[y*w + x] = ((val & 0xFF000000)) | ((val & 0x00FF0000)>>16) | ((val & 0x0000FF00)) | ((val & 0x000000FF)<<16); } break; } gstate = oldState; return true; }