// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "Common/MemoryUtil.h" #include "Core/Host.h" #include "Core/Config.h" #include "GPU/GPUState.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Software/TransformUnit.h" #include "GPU/Software/Clipper.h" #include "GPU/Software/Lighting.h" #define TRANSFORM_BUF_SIZE (65536 * 48) TransformUnit::TransformUnit() { buf = (u8 *)AllocateMemoryPages(TRANSFORM_BUF_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); } TransformUnit::~TransformUnit() { FreeMemoryPages(buf, DECODED_VERTEX_BUFFER_SIZE); } SoftwareDrawEngine::SoftwareDrawEngine() { // All this is a LOT of memory, need to see if we can cut down somehow. Used for splines. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); } SoftwareDrawEngine::~SoftwareDrawEngine() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); } void SoftwareDrawEngine::DispatchFlush() { } void SoftwareDrawEngine::DispatchSubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int *bytesRead) { transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this); } VertexDecoder *SoftwareDrawEngine::FindVertexDecoder(u32 vtype) { const u32 vertTypeID = (vtype & 0xFFFFFF) | (gstate.getUVGenMode() << 24); return DrawEngineCommon::GetVertexDecoder(vertTypeID); } WorldCoords TransformUnit::ModelToWorld(const ModelCoords& coords) { Mat3x3 world_matrix(gstate.worldMatrix); return WorldCoords(world_matrix * coords) + Vec3(gstate.worldMatrix[9], gstate.worldMatrix[10], gstate.worldMatrix[11]); } WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords& coords) { Mat3x3 world_matrix(gstate.worldMatrix); return WorldCoords(world_matrix * coords); } ViewCoords TransformUnit::WorldToView(const WorldCoords& coords) { Mat3x3 view_matrix(gstate.viewMatrix); return ViewCoords(view_matrix * coords) + Vec3(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]); } ClipCoords TransformUnit::ViewToClip(const ViewCoords& coords) { Vec4 coords4(coords.x, coords.y, coords.z, 1.0f); Mat4x4 projection_matrix(gstate.projMatrix); return ClipCoords(projection_matrix * coords4); } static inline ScreenCoords ClipToScreenInternal(const ClipCoords& coords, bool *outside_range_flag) { ScreenCoords ret; // Parameters here can seem invalid, but the PSP is fine with negative viewport widths etc. // The checking that OpenGL and D3D do is actually quite superflous as the calculations still "work" // with some pretty crazy inputs, which PSP games are happy to do at times. float xScale = gstate.getViewportXScale(); float xCenter = gstate.getViewportXCenter(); float yScale = gstate.getViewportYScale(); float yCenter = gstate.getViewportYCenter(); float zScale = gstate.getViewportZScale(); float zCenter = gstate.getViewportZCenter(); float x = coords.x * xScale / coords.w + xCenter; float y = coords.y * yScale / coords.w + yCenter; float z = coords.z * zScale / coords.w + zCenter; // Account for rounding for X and Y. const float SCREEN_BOUND = 4095.0f + (15.0f / 16.0f) + 0.375f; // TODO: Validate actual rounding range. const float DEPTH_BOUND = 65535.5f; // This matches hardware tests - depth is clamped when this flag is on. if (gstate.isDepthClampEnabled()) { // Note: if the depth is clamped, the outside_range_flag should NOT be set, even for x and y. if (z < 0.f) z = 0.f; else if (z > 65535.0f) z = 65535.0f; else if (outside_range_flag && (x >= SCREEN_BOUND || y >= SCREEN_BOUND || x < 0 || y < 0)) *outside_range_flag = true; } else if (outside_range_flag && (x > 4095.9675f || y >= SCREEN_BOUND || x < 0 || y < 0 || z < 0 || z >= DEPTH_BOUND)) { *outside_range_flag = true; } // 16 = 0xFFFF / 4095.9375 // Round up at 0.625 to the nearest subpixel. return ScreenCoords(x * 16.0f + 0.375f, y * 16.0f + 0.375f, z); } ScreenCoords TransformUnit::ClipToScreen(const ClipCoords& coords) { return ClipToScreenInternal(coords, nullptr); } DrawingCoords TransformUnit::ScreenToDrawing(const ScreenCoords& coords) { DrawingCoords ret; // TODO: What to do when offset > coord? ret.x = ((s32)coords.x - gstate.getOffsetX16()) / 16; ret.y = ((s32)coords.y - gstate.getOffsetY16()) / 16; ret.z = coords.z; return ret; } ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords& coords) { ScreenCoords ret; ret.x = (u32)coords.x * 16 + gstate.getOffsetX16(); ret.y = (u32)coords.y * 16 + gstate.getOffsetY16(); ret.z = coords.z; return ret; } VertexData TransformUnit::ReadVertex(VertexReader& vreader) { VertexData vertex; float pos[3]; // VertexDecoder normally scales z, but we want it unscaled. vreader.ReadPosThroughZ16(pos); if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) { float uv[2]; vreader.ReadUV(uv); vertex.texturecoords = Vec2(uv[0], uv[1]); } if (vreader.hasNormal()) { float normal[3]; vreader.ReadNrm(normal); vertex.normal = Vec3(normal[0], normal[1], normal[2]); if (gstate.areNormalsReversed()) vertex.normal = -vertex.normal; } if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3 tmppos(0.f, 0.f, 0.f); Vec3 tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) { Mat3x3 bone(&gstate.boneMatrix[12*i]); tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) + Vec3(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])) * W[i]; if (vreader.hasNormal()) tmpnrm += (bone * vertex.normal) * W[i]; } pos[0] = tmppos.x; pos[1] = tmppos.y; pos[2] = tmppos.z; if (vreader.hasNormal()) vertex.normal = tmpnrm; } if (vreader.hasColor0()) { float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4(col[0]*255, col[1]*255, col[2]*255, col[3]*255); } else { vertex.color0 = Vec4(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA()); } if (vreader.hasColor1()) { float col[3]; vreader.ReadColor1(col); vertex.color1 = Vec3(col[0]*255, col[1]*255, col[2]*255); } else { vertex.color1 = Vec3(0, 0, 0); } if (!gstate.isModeThrough()) { vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]); vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos)); ModelCoords viewpos = TransformUnit::WorldToView(vertex.worldpos); vertex.clippos = ClipCoords(TransformUnit::ViewToClip(viewpos)); if (gstate.isFogEnabled()) { // TODO: Validate inf/nan. vertex.fogdepth = (viewpos.z + getFloat24(gstate.fog1)) * getFloat24(gstate.fog2); } else { vertex.fogdepth = 1.0f; } vertex.screenpos = ClipToScreenInternal(vertex.clippos, &outside_range_flag); if (vreader.hasNormal()) { vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal); // TODO: Isn't there a flag that controls whether to normalize the normal? vertex.worldnormal /= vertex.worldnormal.Length(); } else { vertex.worldnormal = Vec3(0.0f, 0.0f, 1.0f); } Lighting::Process(vertex, vreader.hasColor0()); } else { vertex.screenpos.x = (int)(pos[0] * 16) + gstate.getOffsetX16(); vertex.screenpos.y = (int)(pos[1] * 16) + gstate.getOffsetY16(); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; vertex.fogdepth = 1.f; } return vertex; } #define START_OPEN_U 1 #define END_OPEN_U 2 #define START_OPEN_V 4 #define END_OPEN_V 8 struct SplinePatch { VertexData points[16]; int type; int pad[3]; }; void TransformUnit::SubmitPrimitive(void* vertices, void* indices, GEPrimitiveType prim_type, int vertex_count, u32 vertex_type, int *bytesRead, SoftwareDrawEngine *drawEngine) { VertexDecoder &vdecoder = *drawEngine->FindVertexDecoder(vertex_type); const DecVtxFormat &vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; IndexConverter idxConv(vertex_type, indices); if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; static VertexData data[max_vtcs_per_prim]; // This is the index of the next vert in data (or higher, may need modulus.) static int data_index = 0; static GEPrimitiveType prev_prim = GE_PRIM_POINTS; if (prim_type != GE_PRIM_KEEP_PREVIOUS) { data_index = 0; prev_prim = prim_type; } else { prim_type = prev_prim; } int vtcs_per_prim; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; default: vtcs_per_prim = 0; break; } // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: case GE_PRIM_RECTANGLES: { for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(idxConv.convert(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[data_index++] = ReadVertex(vreader); if (data_index < vtcs_per_prim) { // Keep reading. Note: an incomplete prim will stay read for GE_PRIM_KEEP_PREVIOUS. continue; } // Okay, we've got enough verts. Reset the index for next time. data_index = 0; if (outside_range_flag) { // Cull the prim if it was outside, and move to the next prim. outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) { Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } break; } case GE_PRIM_RECTANGLES: Clipper::ProcessRect(data[0], data[1]); break; case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1]); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0]); break; default: _dbg_assert_msg_(G3D, false, "Unexpected prim type: %d", prim_type); } } break; } case GE_PRIM_LINE_STRIP: { // Don't draw a line when loading the first vertex. // If data_index is 1 or 2, etc., it means we're continuing a line strip. int skip_count = data_index == 0 ? 1 : 0; for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(idxConv.convert(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[(data_index++) & 1] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { // We already incremented data_index, so data_index & 1 is previous one. Clipper::ProcessLine(data[data_index & 1], data[(data_index & 1) ^ 1]); } } break; } case GE_PRIM_TRIANGLE_STRIP: { // Don't draw a triangle when loading the first two vertices. int skip_count = data_index >= 2 ? 0 : 2 - data_index; for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(idxConv.convert(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[(data_index++) % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ ((data_index - 1) % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } case GE_PRIM_TRIANGLE_FAN: { // Don't draw a triangle when loading the first two vertices. // (this doesn't count the central one.) int skip_count = data_index <= 1 ? 1 : 0; int start_vtx = 0; // Only read the central vertex if we're not continuing. if (data_index == 0) { if (indices) { vreader.Goto(idxConv.convert(0) - index_lower_bound); } else { vreader.Goto(0); } data[0] = ReadVertex(vreader); data_index++; start_vtx = 1; } for (int vtx = start_vtx; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(idxConv.convert(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[2 - ((data_index++) % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ ((data_index - 1) % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } default: ERROR_LOG(G3D, "Unexpected prim type: %d", prim_type); break; } host->GPUNotifyDraw(); } // TODO: This probably is not the best interface. // Also, we should try to merge this into the similar function in DrawEngineCommon. bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector &vertices, std::vector &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16 *inds16 = (const u16 *)inds; const u32 *inds32 = (const u32 *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_32BIT: WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes"); for (int i = 0; i < count; ++i) { // These aren't documented and should be rare. Let's bounds check each one. if (inds32[i] != (u16)inds32[i]) { ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range"); } indices[i] = (u16)inds32[i]; } break; } } else { indices.clear(); } } else { indices.clear(); } static std::vector temp_buffer; static std::vector simpleVertices; temp_buffer.resize(65536 * 24 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); VertexDecoder vdecoder; VertexDecoderOptions options{}; vdecoder.SetVertexType(gstate.vertType, options); DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); vertices.resize(indexUpperBound + 1); for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if (gstate.isModeThrough()) { if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); ScreenCoords screenPos = ClipToScreen(clipPos); DrawingCoords drawPos = ScreenToDrawing(screenPos); if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0); vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0); } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = drawPos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } } // The GE debugger expects these to be set. gstate_c.curTextureWidth = gstate.getTextureWidth(0); gstate_c.curTextureHeight = gstate.getTextureHeight(0); return true; }