// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "Common/ColorConv.h" #include "Common/MemoryUtil.h" #include "Core/Config.h" #include "Core/Host.h" #include "Core/Reporting.h" #include "Core/System.h" #include "GPU/Common/FramebufferCommon.h" #include "GPU/Common/TextureCacheCommon.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/ShaderId.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/GPUState.h" #include "GPU/GPUInterface.h" #if defined(_M_SSE) #include #endif // Videos should be updated every few frames, so we forge quickly. #define VIDEO_DECIMATE_AGE 4 TextureCacheCommon::TextureCacheCommon(Draw::DrawContext *draw) : draw_(draw), clearCacheNextFrame_(false), lowMemoryMode_(false), texelsScaledThisFrame_(0), cacheSizeEstimate_(0), secondCacheSizeEstimate_(0), nextTexture_(nullptr), clutLastFormat_(0xFFFFFFFF), clutTotalBytes_(0), clutMaxBytes_(0), clutRenderAddress_(0xFFFFFFFF), clutAlphaLinear_(false) { // TODO: Clamp down to 256/1KB? Need to check mipmapShareClut and clamp loadclut. clutBufRaw_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB clutBufConverted_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB // Zap so we get consistent behavior if the game fails to load some of the CLUT. memset(clutBufRaw_, 0, 1024 * sizeof(u32)); memset(clutBufConverted_, 0, 1024 * sizeof(u32)); clutBuf_ = clutBufConverted_; // These buffers will grow if necessary, but most won't need more than this. tmpTexBuf32.resize(512 * 512); // 1MB tmpTexBuf16.resize(512 * 512); // 0.5MB tmpTexBufRearrange.resize(512 * 512); // 1MB replacer.Init(); } TextureCacheCommon::~TextureCacheCommon() { FreeAlignedMemory(clutBufConverted_); FreeAlignedMemory(clutBufRaw_); } int TextureCacheCommon::AttachedDrawingHeight() { if (nextTexture_) { if (nextTexture_->framebuffer) { return nextTexture_->framebuffer->height; } u16 dim = nextTexture_->dim; const u8 dimY = dim >> 8; return 1 << dimY; } return 0; } void TextureCacheCommon::GetSamplingParams(int &minFilt, int &magFilt, bool &sClamp, bool &tClamp, float &lodBias, u8 maxLevel, u32 addr) { minFilt = gstate.texfilter & 0x7; magFilt = (gstate.texfilter >> 8) & 1; sClamp = gstate.isTexCoordClampedS(); tClamp = gstate.isTexCoordClampedT(); bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001 || (gstate.texlevel & 0xFFFFFF) == 0x100001 ; // Fix texlevel at 0 if (maxLevel == 0) { // Enforce no mip filtering, for safety. minFilt &= 1; // no mipmaps yet lodBias = 0.0f; } else { // Texture lod bias should be signed. lodBias = (float)(int)(s8)((gstate.texlevel >> 16) & 0xFF) / 16.0f; } if (g_Config.iTexFiltering == TEX_FILTER_LINEAR_VIDEO) { bool isVideo = videos_.find(addr & 0x3FFFFFFF) != videos_.end(); if (isVideo) { magFilt |= 1; minFilt |= 1; } } if (g_Config.iTexFiltering == TEX_FILTER_LINEAR && (!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue())) { if (!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue()) { magFilt |= 1; minFilt |= 1; } } bool forceNearest = g_Config.iTexFiltering == TEX_FILTER_NEAREST; // Force Nearest when color test enabled and rendering resolution greater than 480x272 if ((gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue()) && g_Config.iInternalResolution != 1 && gstate.isModeThrough()) { // Some games use 0 as the color test color, which won't be too bad if it bleeds. // Fuchsia and green, etc. are the problem colors. if (gstate.getColorTestRef() != 0) { forceNearest = true; } } if (forceNearest) { magFilt &= ~1; minFilt &= ~1; } if (!g_Config.bMipMap || noMip) { minFilt &= 1; } } void TextureCacheCommon::UpdateMaxSeenV(TexCacheEntry *entry, bool throughMode) { // If the texture is >= 512 pixels tall... if (entry->dim >= 0x900) { // Texture scale/offset and gen modes don't apply in through. // So we can optimize how much of the texture we look at. if (throughMode) { if (entry->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) { // Let's not hash less than 272, we might use more later and have to rehash. 272 is very common. entry->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV); } else if (gstate_c.vertBounds.maxV > entry->maxSeenV) { // The max height changed, so we're better off hashing the entire thing. entry->maxSeenV = 512; entry->status |= TexCacheEntry::STATUS_FREE_CHANGE; } } else { // Otherwise, we need to reset to ensure we use the whole thing. // Can't tell how much is used. // TODO: We could tell for texcoord UV gen, and apply scale to max? entry->maxSeenV = 512; } } } void TextureCacheCommon::DecimateVideos() { if (!videos_.empty()) { for (auto iter = videos_.begin(); iter != videos_.end(); ) { if (iter->second + VIDEO_DECIMATE_AGE < gpuStats.numFlips) { videos_.erase(iter++); } else { ++iter; } } } } void TextureCacheCommon::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer, FramebufferNotification msg) { // Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors. // These checks are mainly to reduce scanning all textures. const u32 addr = (address | 0x04000000) & 0x3F9FFFFF; const u32 bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2; const u64 cacheKey = (u64)addr << 32; // If it has a clut, those are the low 32 bits, so it'll be inside this range. // Also, if it's a subsample of the buffer, it'll also be within the FBO. const u64 cacheKeyEnd = cacheKey + ((u64)(framebuffer->fb_stride * framebuffer->height * bpp) << 32); // The first mirror starts at 0x04200000 and there are 3. We search all for framebuffers. const u64 mirrorCacheKey = (u64)0x04200000 << 32; const u64 mirrorCacheKeyEnd = (u64)0x04800000 << 32; switch (msg) { case NOTIFY_FB_CREATED: case NOTIFY_FB_UPDATED: // Ensure it's in the framebuffer cache. if (std::find(fbCache_.begin(), fbCache_.end(), framebuffer) == fbCache_.end()) { fbCache_.push_back(framebuffer); } for (auto it = cache.lower_bound(cacheKey), end = cache.upper_bound(cacheKeyEnd); it != end; ++it) { AttachFramebuffer(&it->second, addr, framebuffer); } // Let's assume anything in mirrors is fair game to check. for (auto it = cache.lower_bound(mirrorCacheKey), end = cache.upper_bound(mirrorCacheKeyEnd); it != end; ++it) { const u64 mirrorlessKey = it->first & ~0x0060000000000000ULL; // Let's still make sure it's in the cache range. if (mirrorlessKey >= cacheKey && mirrorlessKey <= cacheKeyEnd) { AttachFramebuffer(&it->second, addr, framebuffer); } } break; case NOTIFY_FB_DESTROYED: fbCache_.erase(std::remove(fbCache_.begin(), fbCache_.end(), framebuffer), fbCache_.end()); // We may have an offset texture attached. So we use fbTexInfo as a guide. // We're not likely to have many attached framebuffers. for (auto it = fbTexInfo_.begin(); it != fbTexInfo_.end(); ) { u64 cachekey = it->first; // We might erase, so move to the next one already (which won't become invalid.) ++it; DetachFramebuffer(&cache[cachekey], addr, framebuffer); } break; } } void TextureCacheCommon::AttachFramebufferValid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { const u64 cachekey = entry->CacheKey(); const bool hasInvalidFramebuffer = entry->framebuffer == nullptr || entry->invalidHint == -1; const bool hasOlderFramebuffer = entry->framebuffer != nullptr && entry->framebuffer->last_frame_render < framebuffer->last_frame_render; bool hasFartherFramebuffer = false; if (!hasInvalidFramebuffer && !hasOlderFramebuffer) { // If it's valid, but the offset is greater, then we still win. if (fbTexInfo_[cachekey].yOffset == fbInfo.yOffset) hasFartherFramebuffer = fbTexInfo_[cachekey].xOffset > fbInfo.xOffset; else hasFartherFramebuffer = fbTexInfo_[cachekey].yOffset > fbInfo.yOffset; } if (hasInvalidFramebuffer || hasOlderFramebuffer || hasFartherFramebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = 0; entry->status &= ~TextureCacheCommon::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[cachekey] = fbInfo; framebuffer->last_frame_attached = gpuStats.numFlips; host->GPUNotifyTextureAttachment(entry->addr); } else if (entry->framebuffer == framebuffer) { framebuffer->last_frame_attached = gpuStats.numFlips; } } void TextureCacheCommon::AttachFramebufferInvalid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { const u64 cachekey = entry->CacheKey(); if (entry->framebuffer == nullptr || entry->framebuffer == framebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = -1; entry->status &= ~TextureCacheCommon::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[cachekey] = fbInfo; host->GPUNotifyTextureAttachment(entry->addr); } } void TextureCacheCommon::DetachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer) { const u64 cachekey = entry->CacheKey(); if (entry->framebuffer == framebuffer) { cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); entry->framebuffer = 0; fbTexInfo_.erase(cachekey); host->GPUNotifyTextureAttachment(entry->addr); } } void TextureCacheCommon::NotifyConfigChanged() { int scaleFactor; // 0 means automatic texture scaling, up to 5x, based on resolution. if (g_Config.iTexScalingLevel == 0) { scaleFactor = g_Config.iInternalResolution; // Automatic resolution too? Okay. if (scaleFactor == 0) { if (!g_Config.IsPortrait()) { scaleFactor = (PSP_CoreParameter().pixelWidth + 479) / 480; } else { scaleFactor = (PSP_CoreParameter().pixelHeight + 479) / 480; } } // Mobile devices don't get the higher scale factors, too expensive. Very rough way to decide though... if (!gstate_c.Supports(GPU_IS_MOBILE)) { scaleFactor = std::min(5, scaleFactor); } else { scaleFactor = std::min(3, scaleFactor); } } else { scaleFactor = g_Config.iTexScalingLevel; } if (!gstate_c.Supports(GPU_SUPPORTS_OES_TEXTURE_NPOT)) { // Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two. while ((scaleFactor & (scaleFactor - 1)) != 0) { --scaleFactor; } } // Just in case, small display with auto resolution or something. if (scaleFactor <= 0) { scaleFactor = 1; } standardScaleFactor_ = scaleFactor; replacer.NotifyConfigChanged(); } void TextureCacheCommon::NotifyVideoUpload(u32 addr, int size, int width, GEBufferFormat fmt) { addr &= 0x3FFFFFFF; videos_[addr] = gpuStats.numFlips; } void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) { clutTotalBytes_ = loadBytes; clutRenderAddress_ = 0xFFFFFFFF; if (Memory::IsValidAddress(clutAddr)) { if (Memory::IsVRAMAddress(clutAddr)) { // Clear the uncached bit, etc. to match framebuffers. const u32 clutFramebufAddr = clutAddr & 0x3FFFFFFF; const u32 clutFramebufEnd = clutFramebufAddr + loadBytes; static const u32 MAX_CLUT_OFFSET = 4096; clutRenderOffset_ = MAX_CLUT_OFFSET; for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; const u32 fb_address = framebuffer->fb_address | 0x04000000; const u32 bpp = framebuffer->drawnFormat == GE_FORMAT_8888 ? 4 : 2; u32 offset = clutFramebufAddr - fb_address; // Is this inside the framebuffer at all? bool matchRange = fb_address + framebuffer->fb_stride * bpp > clutFramebufAddr && fb_address < clutFramebufEnd; // And is it inside the rendered area? Sometimes games pack data outside. bool matchRegion = ((offset / bpp) % framebuffer->fb_stride) < framebuffer->width; if (matchRange && matchRegion && offset < clutRenderOffset_) { framebuffer->last_frame_clut = gpuStats.numFlips; framebuffer->usageFlags |= FB_USAGE_CLUT; clutRenderAddress_ = framebuffer->fb_address; clutRenderOffset_ = offset; if (offset == 0) { break; } } } } // It's possible for a game to (successfully) access outside valid memory. u32 bytes = Memory::ValidSize(clutAddr, loadBytes); if (clutRenderAddress_ != 0xFFFFFFFF && !g_Config.bDisableSlowFramebufEffects) { DownloadFramebufferForClut(clutRenderAddress_, clutRenderOffset_ + bytes); Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } } else { #ifdef _M_SSE if (bytes == loadBytes) { const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr); __m128i *dest = (__m128i *)clutBufRaw_; int numBlocks = bytes / 32; for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) { __m128i data1 = _mm_loadu_si128(source); __m128i data2 = _mm_loadu_si128(source + 1); _mm_store_si128(dest, data1); _mm_store_si128(dest + 1, data2); } } else { Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } } #else Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } #endif } } else { memset(clutBufRaw_, 0x00, loadBytes); } // Reload the clut next time. clutLastFormat_ = 0xFFFFFFFF; clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes); } void TextureCacheCommon::UnswizzleFromMem(u32 *dest, u32 destPitch, const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) { // Note: bufw is always aligned to 16 bytes, so rowWidth is always >= 16. const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2); // A visual mapping of unswizzling, where each letter is 16-byte and 8 letters is a block: // // ABCDEFGH IJKLMNOP // -> // AI // BJ // CK // ... // // bxc is the number of blocks in the x direction, and byc the number in the y direction. const int bxc = rowWidth / 16; // The height is not always aligned to 8, but rounds up. int byc = (height + 7) / 8; DoUnswizzleTex16(texptr, dest, bxc, byc, destPitch); } bool TextureCacheCommon::GetCurrentClutBuffer(GPUDebugBuffer &buffer) { const u32 bpp = gstate.getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 4 : 2; const u32 pixels = 1024 / bpp; buffer.Allocate(pixels, 1, (GEBufferFormat)gstate.getClutPaletteFormat()); memcpy(buffer.GetData(), clutBufRaw_, 1024); return true; } u32 TextureCacheCommon::EstimateTexMemoryUsage(const TexCacheEntry *entry) { const u16 dim = entry->dim; const u8 dimW = ((dim >> 0) & 0xf); const u8 dimH = ((dim >> 8) & 0xf); u32 pixelSize = 2; switch (entry->format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: // We assume cluts always point to 8888 for simplicity. pixelSize = 4; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: break; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: pixelSize = 4; break; } // This in other words multiplies by w and h. return pixelSize << (dimW + dimH); } static void ReverseColors(void *dstBuf, const void *srcBuf, GETextureFormat fmt, int numPixels, bool useBGRA) { switch (fmt) { case GE_TFMT_4444: ConvertRGBA4444ToABGR4444((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; // Final Fantasy 2 uses this heavily in animated textures. case GE_TFMT_5551: ConvertRGBA5551ToABGR1555((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; case GE_TFMT_5650: ConvertRGB565ToBGR565((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; default: if (useBGRA) { ConvertRGBA8888ToBGRA8888((u32 *)dstBuf, (const u32 *)srcBuf, numPixels); } else { // No need to convert RGBA8888, right order already if (dstBuf != srcBuf) memcpy(dstBuf, srcBuf, numPixels * sizeof(u32)); } break; } } bool TextureCacheCommon::DecodeTextureLevel(u8 *out, int outPitch, GETextureFormat format, GEPaletteFormat clutformat, uint32_t texaddr, int level, int bufw, bool reverseColors, bool useBGRA) { bool swizzled = gstate.isTextureSwizzled(); if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) { // This means it's in a mirror, possibly a swizzled mirror. Let's report. WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0); if ((texaddr & 0x00200000) == 0x00200000) { // Technically 2 and 6 are slightly different, but this is better than nothing probably. swizzled = !swizzled; } // Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing. } int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); const u8 *texptr = Memory::GetPointer(texaddr); switch (format) { case GE_TFMT_CLUT4: { const bool mipmapShareClut = gstate.isClutSharedForMipmaps(); const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; if (swizzled) { tmpTexBuf32.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32.data(), bufw / 2, texptr, bufw, h, 0); texptr = (u8 *)tmpTexBuf32.data(); } switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { const u16 *clut = GetCurrentClut() + clutSharingOffset; if (clutAlphaLinear_ && mipmapShareClut) { // Here, reverseColors means the CLUT is already reversed. if (reverseColors) { for (int y = 0; y < h; ++y) { DeIndexTexture4Optimal((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_); } } else { for (int y = 0; y < h; ++y) { DeIndexTexture4OptimalRev((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_); } } } else { for (int y = 0; y < h; ++y) { DeIndexTexture4((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut); } } } break; case GE_CMODE_32BIT_ABGR8888: { const u32 *clut = GetCurrentClut() + clutSharingOffset; for (int y = 0; y < h; ++y) { DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut); } } break; default: ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat()); return false; } } break; case GE_TFMT_CLUT8: if (!ReadIndexedTex(out, outPitch, level, texptr, 1, bufw)) { return false; } break; case GE_TFMT_CLUT16: if (!ReadIndexedTex(out, outPitch, level, texptr, 2, bufw)) { return false; } break; case GE_TFMT_CLUT32: if (!ReadIndexedTex(out, outPitch, level, texptr, 4, bufw)) { return false; } break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: if (!swizzled) { // Just a simple copy, we swizzle the color format. if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u16) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, texptr + bufw * sizeof(u16) * y, w * sizeof(u16)); } } } else if (h >= 8) { UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 2); if (reverseColors) { ReverseColors(out, out, format, h * outPitch / 2, useBGRA); } } else { // We don't have enough space for all rows in out, so use a temp buffer. tmpTexBuf32.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32.data(), bufw * 2, texptr, bufw, h, 2); const u8 *unswizzled = (u8 *)tmpTexBuf32.data(); if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, w * sizeof(u16)); } } } break; case GE_TFMT_8888: if (!swizzled) { if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u32) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, texptr + bufw * sizeof(u32) * y, w * sizeof(u32)); } } } else if (h >= 8) { UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 4); if (reverseColors) { ReverseColors(out, out, format, h * outPitch / 4, useBGRA); } } else { // We don't have enough space for all rows in out, so use a temp buffer. tmpTexBuf32.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32.data(), bufw * 4, texptr, bufw, h, 4); const u8 *unswizzled = (u8 *)tmpTexBuf32.data(); if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, w * sizeof(u32)); } } } break; case GE_TFMT_DXT1: { int minw = std::min(bufw, w); u32 *dst = (u32 *)out; int outPitch32 = outPitch / sizeof(u32); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT1Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32); blockIndex++; } } // TODO: Not height also? w = (w + 3) & ~3; if (reverseColors) { ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA); } } break; case GE_TFMT_DXT3: { int minw = std::min(bufw, w); u32 *dst = (u32 *)out; int outPitch32 = outPitch / sizeof(u32); DXT3Block *src = (DXT3Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT3Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32); blockIndex++; } } // TODO: Not height also? w = (w + 3) & ~3; if (reverseColors) { ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA); } } break; case GE_TFMT_DXT5: { int minw = std::min(bufw, w); u32 *dst = (u32 *)out; int outPitch32 = outPitch / sizeof(u32); DXT5Block *src = (DXT5Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT5Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32); blockIndex++; } } // TODO: Not height also? w = (w + 3) & ~3; if (reverseColors) { ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA); } } break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format); return false; } return true; } bool TextureCacheCommon::ReadIndexedTex(u8 *out, int outPitch, int level, const u8 *texptr, int bytesPerIndex, int bufw) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); if (gstate.isTextureSwizzled()) { tmpTexBuf32.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32.data(), bufw * bytesPerIndex, texptr, bufw, h, bytesPerIndex); texptr = (u8 *)tmpTexBuf32.data(); } switch (gstate.getClutPaletteFormat()) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { const u16 *clut = GetCurrentClut(); switch (bytesPerIndex) { case 1: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut); } break; case 2: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut); } break; case 4: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut); } break; } } break; case GE_CMODE_32BIT_ABGR8888: { const u32 *clut = GetCurrentClut(); switch (bytesPerIndex) { case 1: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut); } break; case 2: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut); } break; case 4: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut); } break; } } break; default: ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", gstate.getClutPaletteFormat()); return false; } return true; } bool TextureCacheCommon::CheckFullHash(TexCacheEntry *const entry, bool &doDelete) { bool hashFail = false; int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); u32 fullhash = QuickTexHash(replacer, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry); if (fullhash != entry->fullhash) { hashFail = true; } else { if (g_Config.bTextureBackoffCache) { if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) { entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } if (hashFail) { entry->status |= TexCacheEntry::STATUS_UNRELIABLE; if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) { if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) { entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE; } else { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } entry->numFrames = 0; // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. if (g_Config.bTextureSecondaryCache) { if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { u64 secondKey = fullhash | (u64)entry->cluthash << 32; TexCache::iterator secondIter = secondCache.find(secondKey); if (secondIter != secondCache.end()) { TexCacheEntry *secondEntry = &secondIter->second; if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } nextTexture_ = secondEntry; return true; } } else { secondKey = entry->fullhash | ((u64)entry->cluthash << 32); secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry); secondCache[secondKey] = *entry; doDelete = false; } } } // We know it failed, so update the full hash right away. entry->fullhash = fullhash; return false; } return true; } void TextureCacheCommon::Invalidate(u32 addr, int size, GPUInvalidationType type) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } addr &= 0x3FFFFFFF; const u32 addr_end = addr + size; // They could invalidate inside the texture, let's just give a bit of leeway. const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4; const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32; u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32; if (endKey < startKey) { endKey = (u64)-1; } for (TexCache::iterator iter = cache.lower_bound(startKey), end = cache.upper_bound(endKey); iter != end; ++iter) { u32 texAddr = iter->second.addr; u32 texEnd = iter->second.addr + iter->second.sizeInRAM; if (texAddr < addr_end && addr < texEnd) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (type != GPU_INVALIDATE_ALL) { gpuStats.numTextureInvalidations++; // Start it over from 0 (unless it's safe.) iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0; if (type == GPU_INVALIDATE_SAFE) { u32 diff = gpuStats.numFlips - iter->second.lastFrame; // We still need to mark if the texture is frequently changing, even if it's safely changing. if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) { iter->second.status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } iter->second.framesUntilNextFullHash = 0; } else if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } } void TextureCacheCommon::InvalidateAll(GPUInvalidationType /*unused*/) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } if (timesInvalidatedAllThisFrame_ > 5) { return; } timesInvalidatedAllThisFrame_++; for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } void TextureCacheCommon::ClearNextFrame() { clearCacheNextFrame_ = true; }