// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Core/Config.h" #include "GPU/Common/SplineCommon.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #define START_OPEN 1 #define END_OPEN 2 static void CopyQuad(u8 *&dest, const SimpleVertex *v1, const SimpleVertex *v2, const SimpleVertex* v3, const SimpleVertex *v4) { int vertexSize = sizeof(SimpleVertex); memcpy(dest, v1, vertexSize); dest += vertexSize; memcpy(dest, v2, vertexSize); dest += vertexSize; memcpy(dest, v3, vertexSize); dest += vertexSize; memcpy(dest, v4, vertexSize); dest += vertexSize; } #undef b2 // Bernstein basis functions inline float bern0(float x) { return (1 - x) * (1 - x) * (1 - x); } inline float bern1(float x) { return 3 * x * (1 - x) * (1 - x); } inline float bern2(float x) { return 3 * x * x * (1 - x); } inline float bern3(float x) { return x * x * x; } // Not sure yet if these have any use inline float bern0deriv(float x) { return -3 * (x - 1) * (x - 1); } inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; } inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; } inline float bern3deriv(float x) { return 3 * x * x; } // http://en.wikipedia.org/wiki/Bernstein_polynomial Vec3Packedf Bernstein3D(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) { if (x == 0) return p0; else if (x == 1) return p3; return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x); } Vec3Packedf Bernstein3DDerivative(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) { return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x); } void spline_n_4(int i, float t, float *knot, float *splineVal) { knot += i + 1; float t0 = (t - knot[0]); float t1 = (t - knot[1]); float t2 = (t - knot[2]); float f30 = t0/(knot[3]-knot[0]); float f41 = t1/(knot[4]-knot[1]); float f52 = t2/(knot[5]-knot[2]); float f31 = t1/(knot[3]-knot[1]); float f42 = t2/(knot[4]-knot[2]); float f32 = t2/(knot[3]-knot[2]); float a = (1-f30)*(1-f31); float b = (f31*f41); float c = (1-f41)*(1-f42); float d = (f42*f52); splineVal[0] = a-(a*f32); splineVal[1] = 1-a-b+((a+b+c-1)*f32); splineVal[2] = b+((1-b-c-d)*f32); splineVal[3] = d*f32; } // knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic)) void spline_knot(int n, int type, float *knot) { memset(knot, 0, sizeof(float) * (n + 5)); for (int i = 0; i < n - 1; ++i) knot[i + 3] = (float)i; if ((type & 1) == 0) { knot[0] = -3; knot[1] = -2; knot[2] = -1; } if ((type & 2) == 0) { knot[n + 2] = (float)(n - 1); knot[n + 3] = (float)(n); knot[n + 4] = (float)(n + 1); } else { knot[n + 2] = (float)(n - 2); knot[n + 3] = (float)(n - 2); knot[n + 4] = (float)(n - 2); } } void _SplinePatchLowQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) { // Fast and easy way - just draw the control points, generate some very basic normal vector substitutes. // Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast. const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1; const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1; const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2; const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2; float tu_width = spatch.count_u - 3; float tv_height = spatch.count_v - 3; tu_width /= (float)(tile_max_u - tile_min_u); tv_height /= (float)(tile_max_v - tile_min_v); for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { int point_index = tile_u + tile_v * spatch.count_u; SimpleVertex v0 = *spatch.points[point_index]; SimpleVertex v1 = *spatch.points[point_index + 1]; SimpleVertex v2 = *spatch.points[point_index + spatch.count_u]; SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1]; // Generate UV. TODO: Do this even if UV specified in control points? if ((origVertType & GE_VTYPE_TC_MASK) == 0) { float u = (tile_u - tile_min_u) * tu_width; float v = (tile_v - tile_min_v) * tv_height; v0.uv[0] = u; v0.uv[1] = v; v1.uv[0] = u + tu_width; v1.uv[1] = v; v2.uv[0] = u; v2.uv[1] = v + tv_height; v3.uv[0] = u + tu_width; v3.uv[1] = v + tv_height; } // Generate normal if lighting is enabled (otherwise there's no point). // This is a really poor quality algorithm, we get facet normals. if (gstate.isLightingEnabled()) { Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos); norm.Normalize(); if (gstate.patchfacing & 1) norm *= -1.0f; v0.nrm = norm; v1.nrm = norm; v2.nrm = norm; v3.nrm = norm; } CopyQuad(dest, &v0, &v1, &v2, &v3); count += 6; } } } void _SplinePatchFullQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality) { // Full (mostly) correct tessellation of spline patches. // Not very fast. // First, generate knot vectors. int n = spatch.count_u - 1; int m = spatch.count_v - 1; float *knot_u = new float[n + 5]; float *knot_v = new float[m + 5]; spline_knot(n, spatch.type_u, knot_u); spline_knot(m, spatch.type_v, knot_v); // Increase tesselation based on the size. Should be approximately right? // JPCSP is wrong at least because their method results in square loco roco. int patch_div_s = (spatch.count_u - 3) * gstate.getPatchDivisionU(); int patch_div_t = (spatch.count_v - 3) * gstate.getPatchDivisionV(); patch_div_s /= quality; patch_div_t /= quality; if (patch_div_s < 2) patch_div_s = 2; if (patch_div_t < 2) patch_div_t = 2; // First compute all the vertices and put them in an array SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)]; float tu_width = spatch.count_u - 3; float tv_height = spatch.count_v - 3; bool computeNormals = gstate.isLightingEnabled(); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s if (v < 0.0f) v = 0.0f; for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f)); if (u < 0.0f) u = 0.0f; SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; vert->pos.SetZero(); if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.SetZero(); } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origVertType & GE_VTYPE_COL_MASK) { memset(vert->color, 0, 4); } else { memcpy(vert->color, spatch.points[0]->color, 4); } if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] = 0.0f; vert->uv[1] = 0.0f; } else { vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s); vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t); } // Collect influences from surrounding control points. float u_weights[4]; float v_weights[4]; int iu = (int)u; int iv = (int)v; spline_n_4(iu, u, knot_u, u_weights); spline_n_4(iv, v, knot_v, v_weights); // Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points. int patch_w = std::min(spatch.count_u, 4); int patch_h = std::min(spatch.count_v, 4); for (int ii = 0; ii < patch_w; ++ii) { for (int jj = 0; jj < patch_h; ++jj) { float u_spline = u_weights[ii]; float v_spline = v_weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { int idx = spatch.count_u * (iv + jj) + (iu + ii); SimpleVertex *a = spatch.points[idx]; vert->pos += a->pos * f; if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] += a->uv[0] * f; vert->uv[1] += a->uv[1] * f; } if (origVertType & GE_VTYPE_COL_MASK) { // TODO: Accumulating values in u8s is crazy. We need floats or something. vert->color[0] += a->color[0] * f; vert->color[1] += a->color[1] * f; vert->color[2] += a->color[2] * f; vert->color[3] += a->color[3] * f; } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm += a->nrm * f; } } } } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.Normalize(); } } } delete[] knot_u; delete[] knot_v; // Hacky normal generation through central difference. if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) { for (int v = 0; v < patch_div_t + 1; v++) { for (int u = 0; u < patch_div_s + 1; u++) { int l = std::max(0, u - 1); int t = std::max(0, v - 1); int r = std::min(patch_div_s, u + 1); int b = std::min(patch_div_t, v + 1); const Vec3Packedf &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos; const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos; vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized(); if (gstate.patchfacing & 1) { vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f; } } } } // Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six. for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) { for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) { float u = ((float)tile_u / (float)patch_div_s); float v = ((float)tile_v / (float)patch_div_t); SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u]; SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1]; SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u]; SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1]; CopyQuad(dest, v0, v1, v2, v3); count += 6; } } delete[] vertices; } void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: _SplinePatchLowQuality(dest, count, spatch, origVertType); break; case MEDIUM_QUALITY: _SplinePatchFullQuality(dest, count, spatch, origVertType, 2); break; case HIGH_QUALITY: _SplinePatchFullQuality(dest, count, spatch, origVertType, 1); break; } } void _BezierPatchLowQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float third = 1.0f / 3.0f; // Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes. // Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option. float u_base = patch.u_index / 3.0f; float v_base = patch.v_index / 3.0f; for (int tile_v = 0; tile_v < 3; tile_v++) { for (int tile_u = 0; tile_u < 3; tile_u++) { int point_index = tile_u + tile_v * 4; SimpleVertex v0 = *patch.points[point_index]; SimpleVertex v1 = *patch.points[point_index + 1]; SimpleVertex v2 = *patch.points[point_index + 4]; SimpleVertex v3 = *patch.points[point_index + 5]; // Generate UV. TODO: Do this even if UV specified in control points? if ((origVertType & GE_VTYPE_TC_MASK) == 0) { float u = u_base + tile_u * third; float v = v_base + tile_v * third; v0.uv[0] = u; v0.uv[1] = v; v1.uv[0] = u + third; v1.uv[1] = v; v2.uv[0] = u; v2.uv[1] = v + third; v3.uv[0] = u + third; v3.uv[1] = v + third; } // Generate normal if lighting is enabled (otherwise there's no point). // This is a really poor quality algorithm, we get facet normals. if (gstate.isLightingEnabled()) { Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos); norm.Normalize(); if (gstate.patchfacing & 1) norm *= -1.0f; v0.nrm = norm; v1.nrm = norm; v2.nrm = norm; v3.nrm = norm; } CopyQuad(dest, &v0, &v1, &v2, &v3); count += 6; } } } void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float third = 1.0f / 3.0f; // Full correct tesselation of bezier patches. // Note: Does not handle splines correctly. // First compute all the vertices and put them in an array SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)]; Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4]; Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1; Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2; Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3; Vec3Packedf *derivU1 = new Vec3Packedf[(tess_u + 1) * 4]; Vec3Packedf *derivU2 = derivU1 + (tess_u + 1) * 1; Vec3Packedf *derivU3 = derivU1 + (tess_u + 1) * 2; Vec3Packedf *derivU4 = derivU1 + (tess_u + 1) * 3; bool computeNormals = gstate.isLightingEnabled(); // Precompute the horizontal curves to we only have to evaluate the vertical ones. for (int i = 0; i < tess_u + 1; i++) { float u = ((float)i / (float)tess_u); horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); if (computeNormals) { derivU1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); derivU2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); derivU3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); derivU4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); } } for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { float u = ((float)tile_u / (float)tess_u); float v = ((float)tile_v / (float)tess_v); float bu = u; float bv = v; // TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors. const Vec3Packedf &pos1 = horiz[tile_u]; const Vec3Packedf &pos2 = horiz2[tile_u]; const Vec3Packedf &pos3 = horiz3[tile_u]; const Vec3Packedf &pos4 = horiz4[tile_u]; SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; if (computeNormals) { const Vec3Packedf &derivU1_ = derivU1[tile_u]; const Vec3Packedf &derivU2_ = derivU2[tile_u]; const Vec3Packedf &derivU3_ = derivU3[tile_u]; const Vec3Packedf &derivU4_ = derivU4[tile_u]; Vec3Packedf derivU = Bernstein3D(derivU1_, derivU2_, derivU3_, derivU4_, bv); Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv); // TODO: Interpolate normals instead of generating them, if available? vert.nrm = Cross(derivU, derivV).Normalized(); if (gstate.patchfacing & 1) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv); if ((origVertType & GE_VTYPE_TC_MASK) == 0) { // Generate texcoord vert.uv[0] = u + patch.u_index * third; vert.uv[1] = v + patch.v_index * third; } else { // Sample UV from control points patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]); } if (origVertType & GE_VTYPE_COL_MASK) { patch.sampleColor(u, v, vert.color); } else { memcpy(vert.color, patch.points[0]->color, 4); } } } delete[] derivU1; delete[] horiz; // Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six. for (int tile_v = 0; tile_v < tess_v; ++tile_v) { for (int tile_u = 0; tile_u < tess_u; ++tile_u) { float u = ((float)tile_u / (float)tess_u); float v = ((float)tile_v / (float)tess_v); const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u]; const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1]; const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u]; const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1]; CopyQuad(dest, v0, v1, v2, v3); count += 6; } } delete[] vertices; } void TesselateBezierPatch(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: _BezierPatchLowQuality(dest, count, tess_u, tess_v, patch, origVertType); break; case MEDIUM_QUALITY: _BezierPatchHighQuality(dest, count, tess_u / 2, tess_v / 2, patch, origVertType); break; case HIGH_QUALITY: _BezierPatchHighQuality(dest, count, tess_u, tess_v, patch, origVertType); break; } }