// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/logging.h" #include "base/timeutil.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "gfx/gl_debug_log.h" #include "profiler/profiler.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/GLES/FragmentTestCacheGLES.h" #include "GPU/GLES/StateMappingGLES.h" #include "GPU/GLES/TextureCacheGLES.h" #include "GPU/GLES/DrawEngineGLES.h" #include "GPU/GLES/ShaderManagerGLES.h" #include "GPU/GLES/GPU_GLES.h" const GLuint glprim[8] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, // Rectangles need to be expanded into triangles. }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 #define VERTEXCACHE_NAME_DECIMATION_INTERVAL 41 #define VERTEXCACHE_NAME_DECIMATION_MAX 100 #define VERTEXCACHE_NAME_CACHE_SIZE 64 #define VERTEXCACHE_NAME_CACHE_FULL_BYTES (1024 * 1024) #define VERTEXCACHE_NAME_CACHE_MAX_AGE 120 enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; DrawEngineGLES::DrawEngineGLES(Draw::DrawContext *draw) : vai_(256), draw_(draw), inputLayoutMap_(16) { render_ = (GLRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); decOptions_.expandAllWeightsToFloat = false; decOptions_.expand8BitNormalsToFloat = false; decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; bufferDecimationCounter_ = VERTEXCACHE_NAME_DECIMATION_INTERVAL; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); InitDeviceObjects(); tessDataTransfer = new TessellationDataTransferGLES(render_); } DrawEngineGLES::~DrawEngineGLES() { DestroyDeviceObjects(); FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); delete tessDataTransfer; } void DrawEngineGLES::DeviceLost() { DestroyDeviceObjects(); } void DrawEngineGLES::DeviceRestore(Draw::DrawContext *draw) { draw_ = draw; render_ = (GLRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); InitDeviceObjects(); } void DrawEngineGLES::InitDeviceObjects() { _assert_msg_(G3D, render_ != nullptr, "Render manager must be set"); for (int i = 0; i < GLRenderManager::MAX_INFLIGHT_FRAMES; i++) { frameData_[i].pushVertex = render_->CreatePushBuffer(i, GL_ARRAY_BUFFER, 1024 * 1024); frameData_[i].pushIndex = render_->CreatePushBuffer(i, GL_ELEMENT_ARRAY_BUFFER, 256 * 1024); } int vertexSize = sizeof(TransformedVertex); std::vector entries; entries.push_back({ ATTR_POSITION, 4, GL_FLOAT, GL_FALSE, vertexSize, 0 }); entries.push_back({ ATTR_TEXCOORD, 3, GL_FLOAT, GL_FALSE, vertexSize, offsetof(TransformedVertex, u) }); entries.push_back({ ATTR_COLOR0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, offsetof(TransformedVertex, color0) }); entries.push_back({ ATTR_COLOR1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, offsetof(TransformedVertex, color1) }); softwareInputLayout_ = render_->CreateInputLayout(entries); } void DrawEngineGLES::DestroyDeviceObjects() { // Beware: this could be called twice in a row, sometimes. for (int i = 0; i < GLRenderManager::MAX_INFLIGHT_FRAMES; i++) { if (!frameData_[i].pushVertex && !frameData_[i].pushIndex) continue; if (frameData_[i].pushVertex) render_->DeletePushBuffer(frameData_[i].pushVertex); if (frameData_[i].pushIndex) render_->DeletePushBuffer(frameData_[i].pushIndex); frameData_[i].pushVertex = nullptr; frameData_[i].pushIndex = nullptr; } ClearTrackedVertexArrays(); if (softwareInputLayout_) render_->DeleteInputLayout(softwareInputLayout_); softwareInputLayout_ = nullptr; ClearInputLayoutMap(); } void DrawEngineGLES::ClearInputLayoutMap() { inputLayoutMap_.Iterate([&](const uint32_t &key, GLRInputLayout *il) { render_->DeleteInputLayout(il); }); inputLayoutMap_.Clear(); } void DrawEngineGLES::BeginFrame() { FrameData &frameData = frameData_[render_->GetCurFrame()]; render_->BeginPushBuffer(frameData.pushIndex); render_->BeginPushBuffer(frameData.pushVertex); } void DrawEngineGLES::EndFrame() { FrameData &frameData = frameData_[render_->GetCurFrame()]; render_->EndPushBuffer(frameData.pushIndex); render_->EndPushBuffer(frameData.pushVertex); tessDataTransfer->EndFrame(); } struct GlTypeInfo { u16 type; u8 count; u8 normalized; }; static const GlTypeInfo GLComp[] = { {0}, // DEC_NONE, {GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1, {GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2, {GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3, {GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4, {GL_BYTE, 4, GL_TRUE}, // DEC_S8_3, {GL_SHORT, 4, GL_TRUE},// DEC_S16_3, {GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1, {GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2, {GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3, {GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4, {GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1, {GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2, {GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3, {GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4, }; static inline void VertexAttribSetup(int attrib, int fmt, int stride, int offset, std::vector &entries) { if (fmt) { const GlTypeInfo &type = GLComp[fmt]; GLRInputLayout::Entry entry; entry.offset = offset; entry.location = attrib; entry.normalized = type.normalized; entry.type = type.type; entry.stride = stride; entry.count = type.count; entries.push_back(entry); } } // TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets GLRInputLayout *DrawEngineGLES::SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt) { uint32_t key = decFmt.id; GLRInputLayout *inputLayout = inputLayoutMap_.Get(key); if (inputLayout) { return inputLayout; } std::vector entries; VertexAttribSetup(ATTR_W1, decFmt.w0fmt, decFmt.stride, decFmt.w0off, entries); VertexAttribSetup(ATTR_W2, decFmt.w1fmt, decFmt.stride, decFmt.w1off, entries); VertexAttribSetup(ATTR_TEXCOORD, decFmt.uvfmt, decFmt.stride, decFmt.uvoff, entries); VertexAttribSetup(ATTR_COLOR0, decFmt.c0fmt, decFmt.stride, decFmt.c0off, entries); VertexAttribSetup(ATTR_COLOR1, decFmt.c1fmt, decFmt.stride, decFmt.c1off, entries); VertexAttribSetup(ATTR_NORMAL, decFmt.nrmfmt, decFmt.stride, decFmt.nrmoff, entries); VertexAttribSetup(ATTR_POSITION, decFmt.posfmt, decFmt.stride, decFmt.posoff, entries); inputLayout = render_->CreateInputLayout(entries); inputLayoutMap_.Insert(key, inputLayout); return inputLayout; } void DrawEngineGLES::DecodeVertsToPushBuffer(GLPushBuffer *push, uint32_t *bindOffset, GLRBuffer **buf) { u8 *dest = decoded; // Figure out how much pushbuffer space we need to allocate. if (push) { int vertsToDecode = ComputeNumVertsToDecode(); dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, buf); } DecodeVerts(dest); } void DrawEngineGLES::MarkUnreliable(VertexArrayInfo *vai) { vai->status = VertexArrayInfo::VAI_UNRELIABLE; if (vai->vbo) { render_->DeleteBuffer(vai->vbo); vai->vbo = 0; } if (vai->ebo) { render_->DeleteBuffer(vai->ebo); vai->ebo = 0; } } void DrawEngineGLES::ClearTrackedVertexArrays() { vai_.Iterate([&](uint32_t hash, VertexArrayInfo *vai){ FreeVertexArray(vai); delete vai; }); vai_.Clear(); } void DrawEngineGLES::DecimateTrackedVertexArrays() { if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; } else { return; } const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; vai_.Iterate([&](uint32_t hash, VertexArrayInfo *vai) { bool kill; if (vai->status == VertexArrayInfo::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = vai->lastFrame < threshold; } if (kill) { FreeVertexArray(vai); delete vai; vai_.Remove(hash); } }); vai_.Maintain(); } void DrawEngineGLES::FreeVertexArray(VertexArrayInfo *vai) { if (vai->vbo) { render_->DeleteBuffer(vai->vbo); vai->vbo = nullptr; } if (vai->ebo) { render_->DeleteBuffer(vai->ebo); vai->ebo = nullptr; } } void DrawEngineGLES::DoFlush() { PROFILE_THIS_SCOPE("flush"); FrameData &frameData = frameData_[render_->GetCurFrame()]; gpuStats.numFlushes++; gpuStats.numTrackedVertexArrays = (int)vai_.size(); bool textureNeedsApply = false; if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) { textureCache_->SetTexture(); gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); textureNeedsApply = true; } GEPrimitiveType prim = prevPrim_; VShaderID vsid; Shader *vshader = shaderManager_->ApplyVertexShader(prim, lastVType_, &vsid); GLRBuffer *vertexBuffer = nullptr; GLRBuffer *indexBuffer = nullptr; uint32_t vertexBufferOffset = 0; uint32_t indexBufferOffset = 0; if (vshader->UseHWTransform()) { int vertexCount = 0; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) useCache = false; // TEMPORARY useCache = false; if (useCache) { u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263 VertexArrayInfo *vai = vai_.Get(id); if (!vai) { vai = new VertexArrayInfo(); vai_.Insert(id, vai); } switch (vai->status) { case VertexArrayInfo::VAI_NEW: { // Haven't seen this one before. ReliableHashType dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfo::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVerts(decoded); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth creating a vertex buffer. case VertexArrayInfo::VAI_HASHING: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); ReliableHashType newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVerts(decoded); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 32 vai->drawsUntilNextFullHash = std::min(32, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVerts(decoded); goto rotateVBO; } } if (vai->vbo == 0) { DecodeVerts(decoded); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } _dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); size_t vsz = dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(); vai->vbo = render_->CreateBuffer(GL_ARRAY_BUFFER, vsz, GL_STATIC_DRAW); render_->BufferSubdata(vai->vbo, 0, vsz, decoded); // If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS, // there is no need for the index buffer we built. We can then use glDrawArrays instead // for a very minor speed boost. if (useElements) { size_t esz = sizeof(short) * indexGen.VertexCount(); vai->ebo = render_->CreateBuffer(GL_ARRAY_BUFFER, esz, GL_STATIC_DRAW); render_->BufferSubdata(vai->ebo, 0, esz, (uint8_t *)decIndex, false); } else { vai->ebo = 0; render_->BindIndexBuffer(vai->ebo); } } else { gpuStats.numCachedDrawCalls++; useElements = vai->ebo ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; } vertexBuffer = vai->vbo; indexBuffer = vai->ebo; vertexCount = vai->numVerts; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfo::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vertexBuffer = vai->vbo; indexBuffer = vai->ebo; vertexCount = vai->numVerts; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfo::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVerts(decoded); goto rotateVBO; } } vai->lastFrame = gpuStats.numFlips; } else { if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { // If software skinning, we've already predecoded into "decoded". So push that content. size_t size = decodedVerts_ * dec_->GetDecVtxFmt().stride; u8 *dest = (u8 *)frameData.pushVertex->Push(size, &vertexBufferOffset, &vertexBuffer); memcpy(dest, decoded, size); } else { // Decode directly into the pushbuffer DecodeVertsToPushBuffer(frameData.pushVertex, &vertexBufferOffset, &vertexBuffer); } rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); } VERBOSE_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } if (textureNeedsApply) textureCache_->ApplyTexture(); // Need to ApplyDrawState after ApplyTexture because depal can launch a render pass and that wrecks the state. ApplyDrawState(prim); ApplyDrawStateLate(false, 0); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); GLRInputLayout *inputLayout = SetupDecFmtForDraw(program, dec_->GetDecVtxFmt()); render_->BindVertexBuffer(inputLayout, vertexBuffer, vertexBufferOffset); if (useElements) { if (!indexBuffer) { indexBufferOffset = (uint32_t)frameData.pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &indexBuffer); render_->BindIndexBuffer(indexBuffer); } if (gstate_c.bezier || gstate_c.spline) render_->DrawIndexed(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, (GLvoid*)(intptr_t)indexBufferOffset, numPatches); else render_->DrawIndexed(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, (GLvoid*)(intptr_t)indexBufferOffset); } else { render_->Draw(glprim[prim], 0, vertexCount); } } else { DecodeVerts(decoded); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; TransformedVertex *drawBuffer = NULL; int numTrans; bool drawIndexed = false; u16 *inds = decIndex; SoftwareTransformResult result{}; // TODO: Keep this static? Faster than repopulating? SoftwareTransformParams params{}; params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; params.allowClear = true; params.allowSeparateAlphaClear = true; int maxIndex = indexGen.MaxIndex(); int vertexCount = indexGen.VertexCount(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000 / 3) vertexCount = 0x10000 / 3; #endif SoftwareTransform( prim, vertexCount, dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, drawBuffer, numTrans, drawIndexed, ¶ms, &result); if (textureNeedsApply) textureCache_->ApplyTexture(); ApplyDrawState(prim); ApplyDrawStateLate(result.setStencil, result.stencilValue); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); if (result.action == SW_DRAW_PRIMITIVES) { const int vertexSize = sizeof(transformed[0]); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; if (drawIndexed) { vertexBufferOffset = (uint32_t)frameData.pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vertexBuffer); indexBufferOffset = (uint32_t)frameData.pushIndex->Push(inds, sizeof(uint16_t) * numTrans, &indexBuffer); render_->BindVertexBuffer(softwareInputLayout_, vertexBuffer, vertexBufferOffset); render_->BindIndexBuffer(indexBuffer); render_->DrawIndexed(glprim[prim], numTrans, GL_UNSIGNED_SHORT, (void *)(intptr_t)indexBufferOffset); } else { vertexBufferOffset = (uint32_t)frameData.pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vertexBuffer); render_->BindVertexBuffer(softwareInputLayout_, vertexBuffer, vertexBufferOffset); render_->Draw(glprim[prim], 0, numTrans); } } else if (result.action == SW_CLEAR) { u32 clearColor = result.color; float clearDepth = result.depth; bool colorMask = gstate.isClearModeColorMask(); bool alphaMask = gstate.isClearModeAlphaMask(); bool depthMask = gstate.isClearModeDepthMask(); if (depthMask) { framebufferManager_->SetDepthUpdated(); } GLbitfield target = 0; // Without this, we will clear RGB when clearing stencil, which breaks games. uint8_t rgbaMask = (colorMask ? 7 : 0) | (alphaMask ? 8 : 0); if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT; if (alphaMask) target |= GL_STENCIL_BUFFER_BIT; if (depthMask) target |= GL_DEPTH_BUFFER_BIT; int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; render_->Clear(clearColor, clearDepth, clearColor >> 24, target, rgbaMask, vpAndScissor.scissorX, vpAndScissor.scissorY, vpAndScissor.scissorW, vpAndScissor.scissorH); framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); framebufferManager_->SetSafeSize(scissorX2, scissorY2); if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && colorMask && (alphaMask || gstate.FrameBufFormat() == GE_FORMAT_565)) { framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, clearColor); } gstate_c.Dirty(DIRTY_BLEND_STATE); // Make sure the color mask gets re-applied. } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls_; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls_ = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; #ifndef MOBILE_DEVICE host->GPUNotifyDraw(); #endif } bool DrawEngineGLES::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); } void DrawEngineGLES::TessellationDataTransferGLES::SendDataToShader(const float *pos, const float *tex, const float *col, int size, bool hasColor, bool hasTexCoords) { // Removed the 1D texture support, it's unlikely to be relevant for performance. if (data_tex[0]) renderManager_->DeleteTexture(data_tex[0]); uint8_t *pos_data = new uint8_t[size * sizeof(float) * 4]; memcpy(pos_data, pos, size * sizeof(float) * 4); data_tex[0] = renderManager_->CreateTexture(GL_TEXTURE_2D); renderManager_->TextureImage(data_tex[0], 0, size, 1, GL_RGBA32F, GL_RGBA, GL_FLOAT, pos_data, GLRAllocType::NEW, false); renderManager_->FinalizeTexture(data_tex[0], 0, false); renderManager_->BindTexture(TEX_SLOT_SPLINE_POS, data_tex[0]); // Texcoords if (hasTexCoords) { if (data_tex[1]) renderManager_->DeleteTexture(data_tex[1]); uint8_t *tex_data = new uint8_t[size * sizeof(float) * 4]; memcpy(tex_data, pos, size * sizeof(float) * 4); data_tex[1] = renderManager_->CreateTexture(GL_TEXTURE_2D); renderManager_->TextureImage(data_tex[1], 0, size, 1, GL_RGBA32F, GL_RGBA, GL_FLOAT, tex_data, GLRAllocType::NEW, false); renderManager_->FinalizeTexture(data_tex[1], 0, false); renderManager_->BindTexture(TEX_SLOT_SPLINE_NRM, data_tex[1]); } if (data_tex[2]) renderManager_->DeleteTexture(data_tex[2]); data_tex[2] = renderManager_->CreateTexture(GL_TEXTURE_2D); int sizeColor = hasColor ? size : 1; uint8_t *col_data = new uint8_t[sizeColor * sizeof(float) * 4]; memcpy(col_data, col, sizeColor * sizeof(float) * 4); renderManager_->TextureImage(data_tex[2], 0, sizeColor, 1, GL_RGBA32F, GL_RGBA, GL_FLOAT, col_data, GLRAllocType::NEW, false); renderManager_->FinalizeTexture(data_tex[2], 0, false); renderManager_->BindTexture(TEX_SLOT_SPLINE_COL, data_tex[2]); } void DrawEngineGLES::TessellationDataTransferGLES::EndFrame() { for (int i = 0; i < 3; i++) { if (data_tex[i]) { renderManager_->DeleteTexture(data_tex[i]); data_tex[i] = nullptr; } } }