// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "../../Core/MemMap.h" #include "../GPUState.h" #include "Rasterizer.h" #include "Colors.h" extern u8* fb; extern u8* depthbuf; extern u32 clut[4096]; namespace Rasterizer { static inline int orient2d(const DrawingCoords& v0, const DrawingCoords& v1, const DrawingCoords& v2) { return ((int)v1.x-(int)v0.x)*((int)v2.y-(int)v0.y) - ((int)v1.y-(int)v0.y)*((int)v2.x-(int)v0.x); } static inline int GetPixelDataOffset(unsigned int texel_size_bits, unsigned int row_pitch_bits, unsigned int u, unsigned int v) { if (!(gstate.texmode & 1)) return v * row_pitch_bits *texel_size_bits/8 / 8 + u * texel_size_bits / 8; int tile_size_bits = 32; int tiles_in_block_horizontal = 4; int tiles_in_block_vertical = 8; int texels_per_tile = tile_size_bits / texel_size_bits; int tile_u = u / texels_per_tile; int tile_idx = (v % tiles_in_block_vertical) * (tiles_in_block_horizontal) + // TODO: not sure if the *texel_size_bits/8 factor is correct (v / tiles_in_block_vertical) * ((row_pitch_bits*texel_size_bits/8/tile_size_bits)*tiles_in_block_vertical) + (tile_u % tiles_in_block_horizontal) + (tile_u / tiles_in_block_horizontal) * (tiles_in_block_horizontal*tiles_in_block_vertical); return tile_idx * tile_size_bits/8 + ((u % (tile_size_bits / texel_size_bits))); } static inline u32 LookupColor(unsigned int index, unsigned int level) { const bool mipmapShareClut = (gstate.texmode & 0x100) == 0; const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; // TODO: No idea if these bswaps are correct switch (gstate.getClutPaletteFormat()) { case GE_TFMT_5650: return DecodeRGB565(reinterpret_cast(clut)[index + clutSharingOffset]); case GE_TFMT_5551: return DecodeRGBA5551(reinterpret_cast(clut)[index + clutSharingOffset]); case GE_TFMT_4444: return DecodeRGBA4444(reinterpret_cast(clut)[index + clutSharingOffset]); case GE_TFMT_8888: return DecodeRGBA8888(clut[index + clutSharingOffset]); default: ERROR_LOG(G3D, "Unsupported palette format: %x", gstate.getClutPaletteFormat()); return 0; } } static inline u32 GetClutIndex(u32 index) { const u32 clutBase = gstate.getClutIndexStartPos(); const u32 clutMask = gstate.getClutIndexMask(); const u8 clutShift = gstate.getClutIndexShift(); return ((index >> clutShift) & clutMask) | clutBase; } static inline u32 SampleNearest(int level, float s, float t) { GETextureFormat texfmt = gstate.getTextureFormat(); u32 texaddr = (gstate.texaddr[level] & 0xFFFFF0) | ((gstate.texbufwidth[level] << 8) & 0x0F000000); u8* srcptr = (u8*)Memory::GetPointer(texaddr); // TODO: not sure if this is the right place to load from...? int width = 1 << (gstate.texsize[level] & 0xf); int height = 1 << ((gstate.texsize[level]>>8) & 0xf); // Special rules for kernel textures (PPGe), TODO: Verify! int texbufwidth = (texaddr < PSP_GetUserMemoryBase()) ? gstate.texbufwidth[level] & 0x1FFF : gstate.texbufwidth[level] & 0x7FF; // TODO: Should probably check if textures are aligned properly... unsigned int u, v; if (gstate.isModeThrough()) { // TODO: Is it really this simple? u = s; v = t; } else { if (gstate.getUVGenMode() == 0) { s *= getFloat24(gstate.texscaleu); t *= getFloat24(gstate.texscalev); s += getFloat24(gstate.texoffsetu); t += getFloat24(gstate.texoffsetv); // TODO: Is this really only necessary for UV mapping? if (gstate.isTexCoordClampedS()) { if (s > 1.0) s = 1.0; if (s < 0) s = 0; } else { // TODO: Does this work for negative coords? s = fmod(s, 1.0f); } if (gstate.isTexCoordClampedT()) { if (t > 1.0) t = 1.0; if (t < 0.0) t = 0.0; } else { // TODO: Does this work for negative coords? t = fmod(t, 1.0f); } } u = s * width; // TODO: width-1 instead? v = t * height; // TODO: width-1 instead? } // TODO: Assert tmap.tmn == 0 (uv texture mapping mode) if (texfmt == GE_TFMT_4444) { srcptr += GetPixelDataOffset(16, texbufwidth*8, u, v); return DecodeRGBA4444(*(u16*)srcptr); } else if (texfmt == GE_TFMT_5551) { srcptr += GetPixelDataOffset(16, texbufwidth*8, u, v); return DecodeRGBA5551(*(u16*)srcptr); } else if (texfmt == GE_TFMT_5650) { srcptr += GetPixelDataOffset(16, texbufwidth*8, u, v); return DecodeRGB565(*(u16*)srcptr); } else if (texfmt == GE_TFMT_8888) { srcptr += GetPixelDataOffset(32, texbufwidth*8, u, v); return DecodeRGBA8888(*(u32*)srcptr); } else if (texfmt == GE_TFMT_CLUT32) { srcptr += GetPixelDataOffset(32, texbufwidth*8, u, v); u32 val = srcptr[0] + (srcptr[1] << 8) + (srcptr[2] << 16) + (srcptr[3] << 24); return LookupColor(GetClutIndex(val), level); } else if (texfmt == GE_TFMT_CLUT16) { srcptr += GetPixelDataOffset(16, texbufwidth*8, u, v); u16 val = srcptr[0] + (srcptr[1] << 8); return LookupColor(GetClutIndex(val), level); } else if (texfmt == GE_TFMT_CLUT8) { srcptr += GetPixelDataOffset(8, texbufwidth*8, u, v); u8 val = *srcptr; return LookupColor(GetClutIndex(val), level); } else if (texfmt == GE_TFMT_CLUT4) { srcptr += GetPixelDataOffset(4, texbufwidth*8, u, v); u8 val = (u & 1) ? (srcptr[0] >> 4) : (srcptr[0] & 0xF); return LookupColor(GetClutIndex(val), level); } else { ERROR_LOG(G3D, "Unsupported texture format: %x", texfmt); return 0; } } // NOTE: These likely aren't endian safe static inline u32 GetPixelColor(int x, int y) { switch (gstate.FrameBufFormat()) { case GE_FORMAT_565: return DecodeRGB565(*(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()]); case GE_FORMAT_5551: return DecodeRGBA5551(*(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()]); case GE_FORMAT_4444: return DecodeRGBA4444(*(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()]); case GE_FORMAT_8888: return *(u32*)&fb[4*x + 4*y*gstate.FrameBufStride()]; } return 0; } static inline void SetPixelColor(int x, int y, u32 value) { switch (gstate.FrameBufFormat()) { case GE_FORMAT_565: *(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()] = RGBA8888To565(value); break; case GE_FORMAT_5551: *(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()] = RGBA8888To5551(value); break; case GE_FORMAT_4444: *(u16*)&fb[2*x + 2*y*gstate.FrameBufStride()] = RGBA8888To4444(value); break; case GE_FORMAT_8888: *(u32*)&fb[4*x + 4*y*gstate.FrameBufStride()] = value; break; } } static inline u16 GetPixelDepth(int x, int y) { return *(u16*)&depthbuf[2*x + 2*y*gstate.DepthBufStride()]; } static inline void SetPixelDepth(int x, int y, u16 value) { *(u16*)&depthbuf[2*x + 2*y*gstate.DepthBufStride()] = value; } static inline u8 GetPixelStencil(int x, int y) { // TODO: Fix for other pixel formats ? return (((*(u32*)&fb[4*x + 4*y*gstate.FrameBufStride()]) & 0x80000000) != 0) ? 0xFF : 0; } static inline void SetPixelStencil(int x, int y, u8 value) { // TODO: Fix for other pixel formats ? *(u32*)&fb[4*x + 4*y*gstate.FrameBufStride()] = (*(u32*)&fb[4*x + 4*y*gstate.FrameBufStride()] & ~0x80000000) | ((value&0x80)<<24); } static inline bool DepthTestPassed(int x, int y, u16 z) { u16 reference_z = GetPixelDepth(x, y); if (gstate.isModeClear()) return true; switch (gstate.getDepthTestFunc()) { case GE_COMP_NEVER: return false; case GE_COMP_ALWAYS: return true; case GE_COMP_EQUAL: return (z == reference_z); case GE_COMP_NOTEQUAL: return (z != reference_z); case GE_COMP_LESS: return (z < reference_z); case GE_COMP_LEQUAL: return (z <= reference_z); case GE_COMP_GREATER: return (z > reference_z); case GE_COMP_GEQUAL: return (z >= reference_z); default: return 0; } } static inline bool IsRightSideOrFlatBottomLine(const Vec2& vertex, const Vec2& line1, const Vec2& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vertex.y < line1.y; } else { // check if vertex is on our left => right side return vertex.x < line1.x + (line2.x - line1.x) * (vertex.y - line1.y) / (line2.y - line1.y); } } static inline void ApplyStencilOp(int op, int x, int y) { u8 old_stencil = GetPixelStencil(x, y); // TODO: Apply mask? u8 reference_stencil = gstate.getStencilTestRef(); // TODO: Apply mask? switch (op) { case GE_STENCILOP_KEEP: return; case GE_STENCILOP_ZERO: SetPixelStencil(x, y, 0); return; case GE_STENCILOP_REPLACE: SetPixelStencil(x, y, reference_stencil); break; case GE_STENCILOP_INVERT: SetPixelStencil(x, y, ~old_stencil); break; case GE_STENCILOP_INCR: // TODO: Does this overflow? SetPixelStencil(x, y, old_stencil+1); break; case GE_STENCILOP_DECR: // TODO: Does this underflow? SetPixelStencil(x, y, old_stencil-1); break; } } static inline Vec4 GetTextureFunctionOutput(const Vec3& prim_color_rgb, int prim_color_a, float s, float t) { Vec4 texcolor = Vec4::FromRGBA(/*TextureDecoder::*/SampleNearest(0, s, t)); Vec3 out_rgb; int out_a; bool rgba = (gstate.texfunc & 0x100) != 0; switch (gstate.getTextureFunction()) { case GE_TEXFUNC_MODULATE: out_rgb = prim_color_rgb * texcolor.rgb() / 255; out_a = (rgba) ? (prim_color_a * texcolor.a() / 255) : prim_color_a; break; case GE_TEXFUNC_DECAL: { int t = (rgba) ? texcolor.a() : 255; int invt = (rgba) ? 255 - t : 0; out_rgb = (invt * prim_color_rgb + t * texcolor.rgb()) / 255; out_a = prim_color_a; break; } case GE_TEXFUNC_BLEND: { const Vec3 const255(255, 255, 255); const Vec3 texenv(gstate.getTextureEnvColR(), gstate.getTextureEnvColG(), gstate.getTextureEnvColB()); out_rgb = ((const255 - texcolor.rgb()) * prim_color_rgb + texcolor.rgb() * texenv) / 255; out_a = prim_color_a * ((rgba) ? texcolor.a() : 255) / 255; break; } case GE_TEXFUNC_REPLACE: out_rgb = texcolor.rgb(); out_a = (rgba) ? texcolor.a() : prim_color_a; break; case GE_TEXFUNC_ADD: out_rgb = prim_color_rgb + texcolor.rgb(); if (out_rgb.r() > 255) out_rgb.r() = 255; if (out_rgb.g() > 255) out_rgb.g() = 255; if (out_rgb.b() > 255) out_rgb.b() = 255; out_a = prim_color_a * ((rgba) ? texcolor.a() : 255) / 255; break; default: ERROR_LOG(G3D, "Unknown texture function %x", gstate.getTextureFunction()); } return Vec4(out_rgb.r(), out_rgb.g(), out_rgb.b(), out_a); } // Draws triangle, vertices specified in counter-clockwise direction (TODO: Make sure this is actually enforced) void DrawTriangle(const VertexData& v0, const VertexData& v1, const VertexData& v2) { int minX = std::min(std::min(v0.drawpos.x, v1.drawpos.x), v2.drawpos.x); int minY = std::min(std::min(v0.drawpos.y, v1.drawpos.y), v2.drawpos.y); int maxX = std::max(std::max(v0.drawpos.x, v1.drawpos.x), v2.drawpos.x); int maxY = std::max(std::max(v0.drawpos.y, v1.drawpos.y), v2.drawpos.y); minX = std::max(minX, gstate.getScissorX1()); maxX = std::min(maxX, gstate.getScissorX2()); minY = std::max(minY, gstate.getScissorY1()); maxY = std::min(maxY, gstate.getScissorY2()); int bias0 = IsRightSideOrFlatBottomLine(v0.drawpos.xy(), v1.drawpos.xy(), v2.drawpos.xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomLine(v1.drawpos.xy(), v2.drawpos.xy(), v0.drawpos.xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomLine(v2.drawpos.xy(), v0.drawpos.xy(), v1.drawpos.xy()) ? -1 : 0; DrawingCoords p(minX, minY, 0); for (p.y = minY; p.y <= maxY; ++p.y) { for (p.x = minX; p.x <= maxX; ++p.x) { int w0 = orient2d(v1.drawpos, v2.drawpos, p); int w1 = orient2d(v2.drawpos, v0.drawpos, p); int w2 = orient2d(v0.drawpos, v1.drawpos, p); // If p is on or inside all edges, render pixel // TODO: Should we render if the pixel is both on the left and the right side? (i.e. degenerated triangle) if (w0 + bias0 >=0 && w1 + bias1 >= 0 && w2 + bias2 >= 0) { // TODO: Check if this check is still necessary if (w0 == w1 && w1 == w2 && w2 == 0) continue; // TODO: Make sure this is not ridiculously small? float den = 1.0f/v0.clippos.w * w0 + 1.0f/v1.clippos.w * w1 + 1.0f/v2.clippos.w * w2; float s = (v0.texturecoords.s() * w0 / v0.clippos.w + v1.texturecoords.s() * w1 / v1.clippos.w + v2.texturecoords.s() * w2 / v2.clippos.w) / den; float t = (v0.texturecoords.t() * w0 / v0.clippos.w + v1.texturecoords.t() * w1 / v1.clippos.w + v2.texturecoords.t() * w2 / v2.clippos.w) / den; Vec3 prim_color_rgb(0, 0, 0); int prim_color_a = 0; Vec3 sec_color(0, 0, 0); if ((gstate.shademodel&1) == GE_SHADE_GOURAUD) { // NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues. // Not sure if that should be regarded as a bug or if casting to float is a valid fix. // TODO: Is that the correct way to interpolate? prim_color_rgb = ((v0.color0.rgb().Cast() * w0 + v1.color0.rgb().Cast() * w1 + v2.color0.rgb().Cast() * w2) / (w0+w1+w2)).Cast(); prim_color_a = (int)((v0.color0.a() * w0 + v1.color0.a() * w1 + v2.color0.a() * w2) / (w0+w1+w2)); sec_color = ((v0.color1.Cast() * w0 + v1.color1.Cast() * w1 + v2.color1.Cast() * w2) / (w0+w1+w2)).Cast(); } else { prim_color_rgb = v2.color0.rgb(); prim_color_a = v2.color0.a(); sec_color = v2.color1; } // TODO: Also disable if vertex has no texture coordinates? if (gstate.isTextureMapEnabled() && !gstate.isModeClear()) { Vec4 out = GetTextureFunctionOutput(prim_color_rgb, prim_color_a, s, t); prim_color_rgb = out.rgb(); prim_color_a = out.a(); } if (gstate.isColorDoublingEnabled()) { // TODO: Do we need to clamp here? prim_color_rgb *= 2; sec_color *= 2; } prim_color_rgb += sec_color; // TODO: Fogging // TODO: Is that the correct way to interpolate? u16 z = (u16)((v0.drawpos.z * w0 + v1.drawpos.z * w1 + v2.drawpos.z * w2) / (w0+w1+w2)); // Depth range test if (!gstate.isModeThrough()) if (z < gstate.getDepthRangeMin() || z > gstate.getDepthRangeMax()) continue; if (gstate.isColorTestEnabled() && !gstate.isModeClear()) { bool pass = false; Vec3 ref = Vec3::FromRGB(gstate.colorref&(gstate.colormask&0xFFFFFF)); Vec3 color = Vec3::FromRGB(prim_color_rgb.ToRGB()&(gstate.colormask&0xFFFFFF)); switch (gstate.colortest & 0x3) { case GE_COMP_NEVER: pass = false; break; case GE_COMP_ALWAYS: pass = true; break; case GE_COMP_EQUAL: pass = (color.r() == ref.r() && color.g() == ref.g() && color.b() == ref.b()); break; case GE_COMP_NOTEQUAL: pass = (color.r() != ref.r() || color.g() != ref.g() || color.b() != ref.b()); break; } if (!pass) continue; } if (gstate.isAlphaTestEnabled() && !gstate.isModeClear()) { bool pass = false; u8 ref = ((gstate.alphatest>>8) & (gstate.alphatest>>16)) & 0xFF; u8 alpha = (prim_color_a & (gstate.alphatest>>16)) & 0xFF; switch (gstate.alphatest & 0x7) { case GE_COMP_NEVER: pass = false; break; case GE_COMP_ALWAYS: pass = true; break; case GE_COMP_EQUAL: pass = (alpha == ref); break; case GE_COMP_NOTEQUAL: pass = (alpha != ref); break; case GE_COMP_LESS: pass = (alpha < ref); break; case GE_COMP_LEQUAL: pass = (alpha <= ref); break; case GE_COMP_GREATER: pass = (alpha > ref); break; case GE_COMP_GEQUAL: pass = (alpha >= ref); break; } if (!pass) continue; } if (gstate.isStencilTestEnabled() && !gstate.isModeClear()) { bool pass = false; u8 stencil = GetPixelStencil(p.x, p.y) & gstate.getStencilTestMask(); // TODO: Magic? u8 ref = gstate.getStencilTestRef() & gstate.getStencilTestMask(); switch (gstate.getStencilTestFunction()) { case GE_COMP_NEVER: pass = false; break; case GE_COMP_ALWAYS: pass = true; break; case GE_COMP_EQUAL: pass = (stencil == ref); break; case GE_COMP_NOTEQUAL: pass = (stencil != ref); break; case GE_COMP_LESS: pass = (stencil < ref); break; case GE_COMP_LEQUAL: pass = (stencil <= ref); break; case GE_COMP_GREATER: pass = (stencil > ref); break; case GE_COMP_GEQUAL: pass = (stencil >= ref); break; } if (!pass) { ApplyStencilOp(gstate.getStencilOpSFail(), p.x, p.y); continue; } } // TODO: Is it safe to ignore gstate.isDepthTestEnabled() when clear mode is enabled? if ((gstate.isDepthTestEnabled() && !gstate.isModeThrough()) || gstate.isModeClear()) { // TODO: Verify that stencil op indeed needs to be applied here even if stencil testing is disabled if (!DepthTestPassed(p.x, p.y, z)) { ApplyStencilOp(gstate.getStencilOpZFail(), p.x, p.y); continue; } else { ApplyStencilOp(gstate.getStencilOpZPass(), p.x, p.y); } if (gstate.isModeClear() && gstate.isClearModeDepthWriteEnabled()) SetPixelDepth(p.x, p.y, z); else if (!gstate.isModeClear() && gstate.isDepthWriteEnabled()) SetPixelDepth(p.x, p.y, z); } if (gstate.isAlphaBlendEnabled() && !gstate.isModeClear()) { Vec4 dst = Vec4::FromRGBA(GetPixelColor(p.x, p.y)); Vec3 srccol(0, 0, 0); Vec3 dstcol(0, 0, 0); switch (gstate.getBlendFuncA()) { case GE_SRCBLEND_DSTCOLOR: srccol = dst.rgb(); break; case GE_SRCBLEND_INVDSTCOLOR: srccol = Vec3::AssignToAll(255) - dst.rgb(); break; case GE_SRCBLEND_SRCALPHA: srccol = Vec3::AssignToAll(prim_color_a); break; case GE_SRCBLEND_INVSRCALPHA: srccol = Vec3::AssignToAll(255 - prim_color_a); break; case GE_SRCBLEND_DSTALPHA: srccol = Vec3::AssignToAll(dst.a()); break; case GE_SRCBLEND_INVDSTALPHA: srccol = Vec3::AssignToAll(255 - dst.a()); break; case GE_SRCBLEND_DOUBLESRCALPHA: srccol = Vec3::AssignToAll(2 * prim_color_a); break; case GE_SRCBLEND_DOUBLEINVSRCALPHA: srccol = Vec3::AssignToAll(255 - 2 * prim_color_a); break; case GE_SRCBLEND_DOUBLEDSTALPHA: srccol = Vec3::AssignToAll(2 * dst.a()); break; case GE_SRCBLEND_DOUBLEINVDSTALPHA: // TODO: Clamping? srccol = Vec3::AssignToAll(255 - 2 * dst.a()); break; case GE_SRCBLEND_FIXA: srccol = Vec4::FromRGBA(gstate.getFixA()).rgb(); break; } switch (gstate.getBlendFuncB()) { case GE_DSTBLEND_SRCCOLOR: dstcol = prim_color_rgb; break; case GE_DSTBLEND_INVSRCCOLOR: dstcol = Vec3::AssignToAll(255) - prim_color_rgb; break; case GE_DSTBLEND_SRCALPHA: dstcol = Vec3::AssignToAll(prim_color_a); break; case GE_DSTBLEND_INVSRCALPHA: dstcol = Vec3::AssignToAll(255 - prim_color_a); break; case GE_DSTBLEND_DSTALPHA: dstcol = Vec3::AssignToAll(dst.a()); break; case GE_DSTBLEND_INVDSTALPHA: dstcol = Vec3::AssignToAll(255 - dst.a()); break; case GE_DSTBLEND_DOUBLESRCALPHA: dstcol = Vec3::AssignToAll(2 * prim_color_a); break; case GE_DSTBLEND_DOUBLEINVSRCALPHA: dstcol = Vec3::AssignToAll(255 - 2 * prim_color_a); break; case GE_DSTBLEND_DOUBLEDSTALPHA: dstcol = Vec3::AssignToAll(2 * dst.a()); break; case GE_DSTBLEND_DOUBLEINVDSTALPHA: dstcol = Vec3::AssignToAll(255 - 2 * dst.a()); break; case GE_DSTBLEND_FIXB: dstcol = Vec4::FromRGBA(gstate.getFixB()).rgb(); break; } switch (gstate.getBlendEq()) { case GE_BLENDMODE_MUL_AND_ADD: prim_color_rgb = (prim_color_rgb * srccol + dst.rgb() * dstcol) / 255; break; case GE_BLENDMODE_MUL_AND_SUBTRACT: prim_color_rgb = (prim_color_rgb * srccol - dst.rgb() * dstcol) / 255; break; case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE: prim_color_rgb = (dst.rgb() * dstcol - prim_color_rgb * srccol) / 255; break; case GE_BLENDMODE_MIN: prim_color_rgb.r() = std::min(prim_color_rgb.r(), dst.r()); prim_color_rgb.g() = std::min(prim_color_rgb.g(), dst.g()); prim_color_rgb.b() = std::min(prim_color_rgb.b(), dst.b()); break; case GE_BLENDMODE_MAX: prim_color_rgb.r() = std::max(prim_color_rgb.r(), dst.r()); prim_color_rgb.g() = std::max(prim_color_rgb.g(), dst.g()); prim_color_rgb.b() = std::max(prim_color_rgb.b(), dst.b()); break; case GE_BLENDMODE_ABSDIFF: prim_color_rgb.r() = ::abs(prim_color_rgb.r() - dst.r()); prim_color_rgb.g() = ::abs(prim_color_rgb.g() - dst.g()); prim_color_rgb.b() = ::abs(prim_color_rgb.b() - dst.b()); break; } } if (prim_color_rgb.r() > 255) prim_color_rgb.r() = 255; if (prim_color_rgb.g() > 255) prim_color_rgb.g() = 255; if (prim_color_rgb.b() > 255) prim_color_rgb.b() = 255; if (prim_color_a > 255) prim_color_a = 255; if (prim_color_rgb.r() < 0) prim_color_rgb.r() = 0; if (prim_color_rgb.g() < 0) prim_color_rgb.g() = 0; if (prim_color_rgb.b() < 0) prim_color_rgb.b() = 0; if (prim_color_a < 0) prim_color_a = 0; u32 new_color = Vec4(prim_color_rgb.r(), prim_color_rgb.g(), prim_color_rgb.b(), prim_color_a).ToRGBA(); u32 old_color = GetPixelColor(p.x, p.y); // TODO: Is alpha blending still performed if logic ops are enabled? if (gstate.isLogicOpEnabled() && !gstate.isModeClear()) { switch (gstate.getLogicOp()) { case GE_LOGIC_CLEAR: new_color = 0; break; case GE_LOGIC_AND: new_color = new_color & old_color; break; case GE_LOGIC_AND_REVERSE: new_color = new_color & ~old_color; break; case GE_LOGIC_COPY: //new_color = new_color; break; case GE_LOGIC_AND_INVERTED: new_color = ~new_color & old_color; break; case GE_LOGIC_NOOP: new_color = old_color; break; case GE_LOGIC_XOR: new_color = new_color ^ old_color; break; case GE_LOGIC_OR: new_color = new_color | old_color; break; case GE_LOGIC_NOR: new_color = ~(new_color | old_color); break; case GE_LOGIC_EQUIV: new_color = ~(new_color ^ old_color); break; case GE_LOGIC_INVERTED: new_color = ~old_color; break; case GE_LOGIC_OR_REVERSE: new_color = new_color | ~old_color; break; case GE_LOGIC_COPY_INVERTED: new_color = ~new_color; break; case GE_LOGIC_OR_INVERTED: new_color = ~new_color | old_color; break; case GE_LOGIC_NAND: new_color = ~(new_color & old_color); break; case GE_LOGIC_SET: new_color = 0xFFFFFFFF; break; } } if (gstate.isModeClear()) { new_color = (new_color & gstate.getClearModeColorMask()) | (old_color & ~gstate.getClearModeColorMask()); } else { new_color = (new_color & ~gstate.getColorMask()) | (old_color & gstate.getColorMask()); } SetPixelColor(p.x, p.y, new_color); } } } } } // namespace