// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #if PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64) #include "Common/Data/Convert/SmallDataConvert.h" #include "Common/Profiler/Profiler.h" #include "Core/Config.h" #include "Core/Core.h" #include "Core/Reporting.h" #include "Core/HLE/HLE.h" #include "Core/HLE/HLETables.h" #include "Core/MemMap.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/MIPS/MIPSTables.h" #include "Core/MIPS/x86/Jit.h" #include "Core/MIPS/x86/RegCache.h" #include "Core/MIPS/JitCommon/JitBlockCache.h" #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM26 (op & 0x03FFFFFF) #define TARGET16 ((int)(SignExtend16ToU32(op) << 2)) #define TARGET26 (_IMM26 << 2) #define LOOPOPTIMIZATION 0 using namespace MIPSAnalyst; // NOTE: Can't use CONDITIONAL_DISABLE in this file, branches are so special // that they cannot be interpreted in the context of the Jit. // But we can at least log and compare. // #define DO_CONDITIONAL_LOG 1 #define DO_CONDITIONAL_LOG 0 // We can also disable nice delay slots. // #define CONDITIONAL_NICE_DELAYSLOT branchInfo.delaySlotIsNice = false; #define CONDITIONAL_NICE_DELAYSLOT ; #if DO_CONDITIONAL_LOG #define CONDITIONAL_LOG BranchLog(op); #define CONDITIONAL_LOG_EXIT(addr) BranchLogExit(op, addr, false); #define CONDITIONAL_LOG_EXIT_EAX() BranchLogExit(op, 0, true); #else #define CONDITIONAL_LOG ; #define CONDITIONAL_LOG_EXIT(addr) ; #define CONDITIONAL_LOG_EXIT_EAX() ; #endif namespace MIPSComp { using namespace Gen; static void JitBranchLog(MIPSOpcode op, u32 pc) { currentMIPS->pc = pc; currentMIPS->inDelaySlot = false; MIPSInterpretFunc func = MIPSGetInterpretFunc(op); MIPSInfo info = MIPSGetInfo(op); func(op); // Branch taken, use nextPC. if (currentMIPS->inDelaySlot) currentMIPS->intBranchExit = currentMIPS->nextPC; else { // Branch not taken, likely delay slot skipped. if (info & LIKELY) currentMIPS->intBranchExit = currentMIPS->pc; // Branch not taken, so increment over delay slot. else currentMIPS->intBranchExit = currentMIPS->pc + 4; } currentMIPS->pc = pc; currentMIPS->inDelaySlot = false; } static void JitBranchLogMismatch(MIPSOpcode op, u32 pc) { char temp[256]; MIPSDisAsm(op, pc, temp, true); ERROR_LOG(JIT, "Bad jump: %s - int:%08x jit:%08x", temp, currentMIPS->intBranchExit, currentMIPS->jitBranchExit); Core_EnableStepping(true, "jit.branchdebug", pc); } void Jit::BranchLog(MIPSOpcode op) { FlushAll(); ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLog), op.encoding, GetCompilerPC()); } void Jit::BranchLogExit(MIPSOpcode op, u32 dest, bool useEAX) { OpArg destArg = useEAX ? R(EAX) : Imm32(dest); CMP(32, MIPSSTATE_VAR(intBranchExit), destArg); FixupBranch skip = J_CC(CC_E); MOV(32, MIPSSTATE_VAR(jitBranchExit), destArg); ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLogMismatch), op.encoding, GetCompilerPC()); // Restore EAX, we probably ruined it. if (useEAX) MOV(32, R(EAX), MIPSSTATE_VAR(jitBranchExit)); SetJumpTarget(skip); } CCFlags Jit::FlipCCFlag(CCFlags flag) { switch (flag) { case CC_O: return CC_NO; case CC_NO: return CC_O; case CC_B: return CC_NB; case CC_NB: return CC_B; case CC_Z: return CC_NZ; case CC_NZ: return CC_Z; case CC_BE: return CC_NBE; case CC_NBE: return CC_BE; case CC_S: return CC_NS; case CC_NS: return CC_S; case CC_P: return CC_NP; case CC_NP: return CC_P; case CC_L: return CC_NL; case CC_NL: return CC_L; case CC_LE: return CC_NLE; case CC_NLE: return CC_LE; } ERROR_LOG_REPORT(JIT, "FlipCCFlag: Unexpected CC flag: %d", flag); return CC_O; } CCFlags Jit::SwapCCFlag(CCFlags flag) { // This swaps the comparison for an lhs/rhs swap, but doesn't flip/invert the logic. switch (flag) { case CC_O: return CC_O; case CC_NO: return CC_NO; case CC_B: return CC_A; case CC_NB: return CC_NA; case CC_Z: return CC_Z; case CC_NZ: return CC_NZ; case CC_BE: return CC_AE; case CC_NBE: return CC_NAE; case CC_S: return CC_S; case CC_NS: return CC_NS; case CC_P: return CC_P; case CC_NP: return CC_NP; case CC_L: return CC_G; case CC_NL: return CC_NG; case CC_LE: return CC_GE; case CC_NLE: return CC_NGE; } ERROR_LOG_REPORT(JIT, "SwapCCFlag: Unexpected CC flag: %d", flag); return CC_O; } bool Jit::PredictTakeBranch(u32 targetAddr, bool likely) { // If it's likely, it's... probably likely, right? if (likely) return true; // TODO: Normal branch prediction would be to take branches going upward to lower addresses. // However, this results in worse performance as of this comment's writing. // The reverse check generally gives better or same performance. return targetAddr > GetCompilerPC(); } void Jit::CompBranchExits(CCFlags cc, u32 targetAddr, u32 notTakenAddr, const BranchInfo &branchInfo) { if (branchInfo.andLink) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8); // We may want to try to continue along this branch a little while, to reduce reg flushing. bool predictTakeBranch = PredictTakeBranch(targetAddr, branchInfo.likely); if (!branchInfo.delaySlotIsBranch && CanContinueBranch(predictTakeBranch ? targetAddr : notTakenAddr)) { if (predictTakeBranch) cc = FlipCCFlag(cc); Gen::FixupBranch ptr; RegCacheState state; if (!branchInfo.likely) { if (!branchInfo.delaySlotIsNice) CompileDelaySlot(DELAYSLOT_SAFE); ptr = J_CC(cc, true); GetStateAndFlushAll(state); } else { ptr = J_CC(cc, true); if (predictTakeBranch) GetStateAndFlushAll(state); else { // We need to get the state BEFORE the delay slot is compiled. gpr.GetState(state.gpr); fpr.GetState(state.fpr); CompileDelaySlot(DELAYSLOT_FLUSH); } } if (predictTakeBranch) { // We flipped the cc, the not taken case is first. CONDITIONAL_LOG_EXIT(notTakenAddr); WriteExit(notTakenAddr, js.nextExit++); // Now our taken path. Bring the regs back, we didn't flush 'em after all. SetJumpTarget(ptr); RestoreState(state); CONDITIONAL_LOG_EXIT(targetAddr); // Don't forget to run the delay slot if likely. if (branchInfo.likely) CompileDelaySlot(DELAYSLOT_NICE); AddContinuedBlock(targetAddr); // Account for the increment in the loop. js.compilerPC = targetAddr - 4; // In case the delay slot was a break or something. js.compiling = true; } else { // Take the branch CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, js.nextExit++); // Not taken SetJumpTarget(ptr); RestoreState(state); CONDITIONAL_LOG_EXIT(notTakenAddr); // Account for the delay slot. js.compilerPC += 4; // In case the delay slot was a break or something. js.compiling = true; } } else { Gen::FixupBranch ptr; if (!branchInfo.likely) { if (!branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_SAFE_FLUSH); else FlushAll(); ptr = J_CC(cc, true); } else { FlushAll(); ptr = J_CC(cc, true); if (!branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_FLUSH); } // Handle the linkage of a delay slot, even when we're taking the branch. if (branchInfo.delaySlotIsBranch) { // We still link when the branch is taken (targetAddr case.) // Remember, it's from the perspective of the delay slot, so +12. if ((branchInfo.delaySlotInfo & OUT_RA) != 0) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 12); if ((branchInfo.delaySlotInfo & OUT_RD) != 0) gpr.SetImm(MIPS_GET_RD(branchInfo.delaySlotOp), GetCompilerPC() + 12); FlushAll(); } // Take the branch CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, js.nextExit++); // Not taken SetJumpTarget(ptr); CONDITIONAL_LOG_EXIT(notTakenAddr); WriteExit(notTakenAddr, js.nextExit++); js.compiling = false; } } void Jit::CompBranchExit(bool taken, u32 targetAddr, u32 notTakenAddr, const BranchInfo &branchInfo) { // Continuing is handled in the imm branch case... TODO: move it here? if (branchInfo.andLink) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8); if (branchInfo.delaySlotIsBranch) { if (taken) { // We still link when the branch is taken (targetAddr case.) // Remember, it's from the perspective of the delay slot, so +12. if ((branchInfo.delaySlotInfo & OUT_RA) != 0) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 12); if ((branchInfo.delaySlotInfo & OUT_RD) != 0) gpr.SetImm(MIPS_GET_RD(branchInfo.delaySlotOp), GetCompilerPC() + 12); } FlushAll(); } else if (taken || !branchInfo.likely) { CompileDelaySlot(DELAYSLOT_FLUSH); } else { FlushAll(); } const u32 destAddr = taken ? targetAddr : notTakenAddr; CONDITIONAL_LOG_EXIT(destAddr); WriteExit(destAddr, js.nextExit++); js.compiling = false; } void Jit::BranchRSRTComp(MIPSOpcode op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in RSRTComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } int offset = TARGET16; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; u32 targetAddr = GetCompilerPC() + offset + 4; BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely); branchInfo.delaySlotIsNice = IsDelaySlotNiceReg(op, branchInfo.delaySlotOp, rt, rs); CONDITIONAL_NICE_DELAYSLOT; bool immBranch = false; bool immBranchTaken = false; if (gpr.IsImm(rs) && gpr.IsImm(rt) && !branchInfo.delaySlotIsBranch) { // The cc flags are opposites: when NOT to take the branch. bool immBranchNotTaken; s32 rsImm = (s32)gpr.GetImm(rs); s32 rtImm = (s32)gpr.GetImm(rt); switch (cc) { case CC_E: immBranchNotTaken = rsImm == rtImm; break; case CC_NE: immBranchNotTaken = rsImm != rtImm; break; default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSRTComp()."); } immBranch = true; immBranchTaken = !immBranchNotTaken; } if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions) { if (!immBranchTaken) { // Skip the delay slot if likely, otherwise it'll be the next instruction. if (likely) js.compilerPC += 4; return; } // Branch taken. Always compile the delay slot, and then go to dest. CompileDelaySlot(DELAYSLOT_NICE); AddContinuedBlock(targetAddr); // Account for the increment in the loop. js.compilerPC = targetAddr - 4; // In case the delay slot was a break or something. js.compiling = true; return; } js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp); u32 notTakenTarget = ResolveNotTakenTarget(branchInfo); if (immBranch) CompBranchExit(immBranchTaken, targetAddr, notTakenTarget, branchInfo); else { if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_NICE); if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0) { gpr.KillImmediate(rs, true, false); CMP(32, gpr.R(rs), Imm32(0)); } else { gpr.MapReg(rs, true, false); CMP(32, gpr.R(rs), gpr.R(rt)); } CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo); } } void Jit::BranchRSZeroComp(MIPSOpcode op, Gen::CCFlags cc, bool andLink, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in RSZeroComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } int offset = TARGET16; MIPSGPReg rs = _RS; u32 targetAddr = GetCompilerPC() + offset + 4; BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), andLink, likely); branchInfo.delaySlotIsNice = IsDelaySlotNiceReg(op, branchInfo.delaySlotOp, rs); js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp); CONDITIONAL_NICE_DELAYSLOT; bool immBranch = false; bool immBranchTaken = false; if (gpr.IsImm(rs) && !branchInfo.delaySlotIsBranch) { // The cc flags are opposites: when NOT to take the branch. bool immBranchNotTaken; s32 imm = (s32)gpr.GetImm(rs); switch (cc) { case CC_G: immBranchNotTaken = imm > 0; break; case CC_GE: immBranchNotTaken = imm >= 0; break; case CC_L: immBranchNotTaken = imm < 0; break; case CC_LE: immBranchNotTaken = imm <= 0; break; default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSZeroComp()."); } immBranch = true; immBranchTaken = !immBranchNotTaken; } if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions) { if (!immBranchTaken) { // Skip the delay slot if likely, otherwise it'll be the next instruction. if (andLink) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8); if (likely) js.compilerPC += 4; return; } // Branch taken. Always compile the delay slot, and then go to dest. if (andLink) gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8); CompileDelaySlot(DELAYSLOT_NICE); AddContinuedBlock(targetAddr); // Account for the increment in the loop. js.compilerPC = targetAddr - 4; // In case the delay slot was a break or something. js.compiling = true; return; } js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp); u32 notTakenTarget = ResolveNotTakenTarget(branchInfo); if (immBranch) CompBranchExit(immBranchTaken, targetAddr, notTakenTarget, branchInfo); else { if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_NICE); gpr.MapReg(rs, true, false); CMP(32, gpr.R(rs), Imm32(0)); CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo); } } void Jit::Comp_RelBranch(MIPSOpcode op) { switch (op>>26) { case 4: BranchRSRTComp(op, CC_NZ, false); break;//beq case 5: BranchRSRTComp(op, CC_Z, false); break;//bne case 6: BranchRSZeroComp(op, CC_G, false, false); break;//blez case 7: BranchRSZeroComp(op, CC_LE, false, false); break;//bgtz case 20: BranchRSRTComp(op, CC_NZ, true); break;//beql case 21: BranchRSRTComp(op, CC_Z, true); break;//bnel case 22: BranchRSZeroComp(op, CC_G, false, true); break;//blezl case 23: BranchRSZeroComp(op, CC_LE, false, true); break;//bgtzl default: _dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled"); break; } } void Jit::Comp_RelBranchRI(MIPSOpcode op) { switch ((op >> 16) & 0x1F) { case 0: BranchRSZeroComp(op, CC_GE, false, false); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltz case 1: BranchRSZeroComp(op, CC_L, false, false); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgez case 2: BranchRSZeroComp(op, CC_GE, false, true); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 8; break;//bltzl case 3: BranchRSZeroComp(op, CC_L, false, true); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 8; break;//bgezl case 16: BranchRSZeroComp(op, CC_GE, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltzal case 17: BranchRSZeroComp(op, CC_L, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgezal case 18: BranchRSZeroComp(op, CC_GE, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else SkipLikely(); break;//bltzall case 19: BranchRSZeroComp(op, CC_L, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else SkipLikely(); break;//bgezall default: _dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled"); break; } } // If likely is set, discard the branch slot if NOT taken. void Jit::BranchFPFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in FPFlag delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } int offset = TARGET16; u32 targetAddr = GetCompilerPC() + offset + 4; BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely); branchInfo.delaySlotIsNice = IsDelaySlotNiceFPU(op, branchInfo.delaySlotOp); CONDITIONAL_NICE_DELAYSLOT; js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp); if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_NICE); gpr.KillImmediate(MIPS_REG_FPCOND, true, false); TEST(32, gpr.R(MIPS_REG_FPCOND), Imm32(1)); u32 notTakenTarget = ResolveNotTakenTarget(branchInfo); CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo); } void Jit::Comp_FPUBranch(MIPSOpcode op) { switch((op >> 16) & 0x1f) { case 0: BranchFPFlag(op, CC_NZ, false); break; //bc1f case 1: BranchFPFlag(op, CC_Z, false); break; //bc1t case 2: BranchFPFlag(op, CC_NZ, true); break; //bc1fl case 3: BranchFPFlag(op, CC_Z, true); break; //bc1tl default: _dbg_assert_msg_(false,"Trying to interpret instruction that can't be interpreted"); break; } } // If likely is set, discard the branch slot if NOT taken. void Jit::BranchVFPUFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { // I think we can safely just warn-log this without reporting, it's pretty clear that this type // of branch is ignored. WARN_LOG(JIT, "Branch in VFPU delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } int offset = TARGET16; u32 targetAddr = GetCompilerPC() + offset + 4; BranchInfo branchInfo(GetCompilerPC(), op, GetOffsetInstruction(1), false, likely); // Sometimes there's a VFPU branch in a delay slot (Disgaea 2: Dark Hero Days, Zettai Hero Project, La Pucelle) // The behavior is undefined - the CPU may take the second branch even if the first one passes. // However, it does consistently try each branch, which these games seem to expect. branchInfo.delaySlotIsNice = IsDelaySlotNiceVFPU(op, branchInfo.delaySlotOp); CONDITIONAL_NICE_DELAYSLOT; js.downcountAmount += MIPSGetInstructionCycleEstimate(branchInfo.delaySlotOp); if (!likely && branchInfo.delaySlotIsNice && !branchInfo.delaySlotIsBranch) CompileDelaySlot(DELAYSLOT_NICE); // THE CONDITION int imm3 = (op >> 18) & 7; gpr.KillImmediate(MIPS_REG_VFPUCC, true, false); TEST(32, gpr.R(MIPS_REG_VFPUCC), Imm32(1 << imm3)); u32 notTakenTarget = ResolveNotTakenTarget(branchInfo); CompBranchExits(cc, targetAddr, notTakenTarget, branchInfo); } void Jit::Comp_VBranch(MIPSOpcode op) { switch ((op >> 16) & 3) { case 0: BranchVFPUFlag(op, CC_NZ, false); break; //bvf case 1: BranchVFPUFlag(op, CC_Z, false); break; //bvt case 2: BranchVFPUFlag(op, CC_NZ, true); break; //bvfl case 3: BranchVFPUFlag(op, CC_Z, true); break; //bvtl default: _dbg_assert_msg_(false,"Comp_VBranch: Invalid instruction"); break; } } static void HitInvalidJump(uint32_t dest) { Core_ExecException(dest, currentMIPS->pc - 8, ExecExceptionType::JUMP); } void Jit::Comp_Jump(MIPSOpcode op) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in Jump delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } u32 off = TARGET26; u32 targetAddr = (GetCompilerPC() & 0xF0000000) | off; // Might be a stubbed address or something? if (!Memory::IsValidAddress(targetAddr) || (targetAddr & 3) != 0) { if (js.nextExit == 0) { ERROR_LOG_REPORT(JIT, "Jump to invalid address: %08x PC %08x LR %08x", targetAddr, GetCompilerPC(), currentMIPS->r[MIPS_REG_RA]); } else { js.compiling = false; } // TODO: Mark this block dirty or something? May be indication it will be changed by imports. CompileDelaySlot(DELAYSLOT_NICE); FlushAll(); MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 8)); ABI_CallFunctionC(&HitInvalidJump, targetAddr); WriteSyscallExit(); return; } switch (op >> 26) { case 2: //j CompileDelaySlot(DELAYSLOT_NICE); if (CanContinueJump(targetAddr)) { AddContinuedBlock(targetAddr); // Account for the increment in the loop. js.compilerPC = targetAddr - 4; // In case the delay slot was a break or something. js.compiling = true; return; } FlushAll(); CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, js.nextExit++); break; case 3: //jal // Special case for branches to "replace functions": if (ReplaceJalTo(targetAddr)) return; // Check for small function inlining (future) // Save return address - might be overwritten by delay slot. gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8); CompileDelaySlot(DELAYSLOT_NICE); if (CanContinueJump(targetAddr)) { AddContinuedBlock(targetAddr); // Account for the increment in the loop. js.compilerPC = targetAddr - 4; // In case the delay slot was a break or something. js.compiling = true; return; } FlushAll(); CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, js.nextExit++); break; default: _dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled"); break; } js.compiling = false; } void Jit::Comp_JumpReg(MIPSOpcode op) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in JumpReg delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart); return; } MIPSGPReg rs = _RS; MIPSGPReg rd = _RD; bool andLink = (op & 0x3f) == 9 && rd != MIPS_REG_ZERO; MIPSOpcode delaySlotOp = GetOffsetInstruction(1); js.downcountAmount += MIPSGetInstructionCycleEstimate(delaySlotOp); bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs); if (andLink && rs == rd) delaySlotIsNice = false; CONDITIONAL_NICE_DELAYSLOT; X64Reg destReg = EAX; if (IsSyscall(delaySlotOp)) { // If this is a syscall, write the pc (for thread switching and other good reasons.) gpr.MapReg(rs, true, false); MOV(32, MIPSSTATE_VAR(pc), gpr.R(rs)); if (andLink) gpr.SetImm(rd, GetCompilerPC() + 8); CompileDelaySlot(DELAYSLOT_FLUSH); // Syscalls write the exit code for us. _dbg_assert_msg_(!js.compiling, "Expected syscall to write an exit code."); return; } else if (delaySlotIsNice) { if (andLink) gpr.SetImm(rd, GetCompilerPC() + 8); CompileDelaySlot(DELAYSLOT_NICE); if (!andLink && rs == MIPS_REG_RA && g_Config.bDiscardRegsOnJRRA) { // According to the MIPS ABI, there are some regs we don't need to preserve. // Let's discard them so we don't need to write them back. // NOTE: Not all games follow the MIPS ABI! Tekken 6, for example, will crash // with this enabled. gpr.DiscardRegContentsIfCached(MIPS_REG_COMPILER_SCRATCH); for (int i = MIPS_REG_A0; i <= MIPS_REG_T7; i++) gpr.DiscardRegContentsIfCached((MIPSGPReg)i); gpr.DiscardRegContentsIfCached(MIPS_REG_T8); gpr.DiscardRegContentsIfCached(MIPS_REG_T9); } if (gpr.IsImm(rs) && CanContinueJump(gpr.GetImm(rs))) { AddContinuedBlock(gpr.GetImm(rs)); // Account for the increment in the loop. js.compilerPC = gpr.GetImm(rs) - 4; // In case the delay slot was a break or something. js.compiling = true; return; } if (gpr.R(rs).IsSimpleReg()) { destReg = gpr.R(rs).GetSimpleReg(); } else { MOV(32, R(EAX), gpr.R(rs)); } FlushAll(); } else { // Latch destination now - save it in memory. gpr.MapReg(rs, true, false); MOV(32, MIPSSTATE_VAR(savedPC), gpr.R(rs)); if (andLink) gpr.SetImm(rd, GetCompilerPC() + 8); CompileDelaySlot(DELAYSLOT_NICE); MOV(32, R(EAX), MIPSSTATE_VAR(savedPC)); FlushAll(); } switch (op & 0x3f) { case 8: //jr break; case 9: //jalr break; default: _dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled"); break; } CONDITIONAL_LOG_EXIT_EAX(); WriteExitDestInReg(destReg); js.compiling = false; } void Jit::Comp_Syscall(MIPSOpcode op) { if (op.encoding == 0x03FFFFcc) { WARN_LOG(JIT, "Encountered bad syscall instruction at %08x (%08x)", js.compilerPC, op.encoding); } if (!g_Config.bSkipDeadbeefFilling) { // All of these will be overwritten with DEADBEEF anyway. gpr.DiscardR(MIPS_REG_COMPILER_SCRATCH); // We need to keep A0 - T3, which are used for args. gpr.DiscardR(MIPS_REG_T4); gpr.DiscardR(MIPS_REG_T5); gpr.DiscardR(MIPS_REG_T6); gpr.DiscardR(MIPS_REG_T7); gpr.DiscardR(MIPS_REG_T8); gpr.DiscardR(MIPS_REG_T9); gpr.DiscardR(MIPS_REG_HI); gpr.DiscardR(MIPS_REG_LO); } FlushAll(); // If we're in a delay slot, this is off by one. const int offset = js.inDelaySlot ? -1 : 0; WriteDowncount(offset); RestoreRoundingMode(); js.downcountAmount = -offset; if (!js.inDelaySlot) { MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 4)); } #ifdef USE_PROFILER // When profiling, we can't skip CallSyscall, since it times syscalls. ABI_CallFunctionC(&CallSyscall, op.encoding); #else // Skip the CallSyscall where possible. void *quickFunc = GetQuickSyscallFunc(op); if (quickFunc) ABI_CallFunctionP(quickFunc, (void *)GetSyscallFuncPointer(op)); else ABI_CallFunctionC(&CallSyscall, op.encoding); #endif ApplyRoundingMode(); WriteSyscallExit(); js.compiling = false; } void Jit::Comp_Break(MIPSOpcode op) { Comp_Generic(op); WriteSyscallExit(); js.compiling = false; } } // namespace Mipscomp #endif // PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)