// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "../GPUState.h" #include "../GLES/VertexDecoder.h" #include "TransformUnit.h" #include "Clipper.h" #include "Lighting.h" WorldCoords TransformUnit::ModelToWorld(const ModelCoords& coords) { Mat3x3 world_matrix(gstate.worldMatrix); return WorldCoords(world_matrix * coords) + Vec3(gstate.worldMatrix[9], gstate.worldMatrix[10], gstate.worldMatrix[11]); } ViewCoords TransformUnit::WorldToView(const WorldCoords& coords) { Mat3x3 view_matrix(gstate.viewMatrix); return ViewCoords(view_matrix * coords) + Vec3(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]); } ClipCoords TransformUnit::ViewToClip(const ViewCoords& coords) { Vec4 coords4(coords.x, coords.y, coords.z, 1.0f); Mat4x4 projection_matrix(gstate.projMatrix); return ClipCoords(projection_matrix * coords4); } static bool outside_range_flag = false; // TODO: This is ugly static inline ScreenCoords ClipToScreenInternal(const ClipCoords& coords, bool set_flag = true) { ScreenCoords ret; // TODO: Check for invalid parameters (x2 < x1, etc) float vpx1 = getFloat24(gstate.viewportx1); float vpx2 = getFloat24(gstate.viewportx2); float vpy1 = getFloat24(gstate.viewporty1); float vpy2 = getFloat24(gstate.viewporty2); float vpz1 = getFloat24(gstate.viewportz1); float vpz2 = getFloat24(gstate.viewportz2); float retx = coords.x * vpx1 / coords.w + vpx2; float rety = coords.y * vpy1 / coords.w + vpy2; float retz = coords.z * vpz1 / coords.w + vpz2; if (gstate.clipEnable & 0x1) { if (retz < 0.f) retz = 0.f; if (retz > 65535.f) retz = 65535.f; } if (set_flag && (retx > 4095.9375f || rety > 4096.9375f || retx < 0 || rety < 0 || retz < 0 || retz > 65535.f)) outside_range_flag = true; // 16 = 0xFFFF / 4095.9375 return ScreenCoords(retx * 16, rety * 16, retz); } ScreenCoords TransformUnit::ClipToScreen(const ClipCoords& coords) { return ClipToScreenInternal(coords, false); } DrawingCoords TransformUnit::ScreenToDrawing(const ScreenCoords& coords) { DrawingCoords ret; // TODO: What to do when offset > coord? ret.x = (((u32)coords.x - gstate.getOffsetX16())/16) & 0x3ff; ret.y = (((u32)coords.y - gstate.getOffsetY16())/16) & 0x3ff; ret.z = coords.z; return ret; } ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords& coords) { ScreenCoords ret; ret.x = (((u32)coords.x * 16 + gstate.getOffsetX16())); ret.y = (((u32)coords.y * 16 + gstate.getOffsetY16())); ret.z = coords.z; return ret; } static VertexData ReadVertex(VertexReader& vreader) { VertexData vertex; float pos[3]; vreader.ReadPos(pos); if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) { float uv[2]; vreader.ReadUV(uv); vertex.texturecoords = Vec2(uv[0], uv[1]); } if (vreader.hasNormal()) { float normal[3]; vreader.ReadNrm(normal); vertex.normal = Vec3(normal[0], normal[1], normal[2]); if (gstate.areNormalsReversed()) vertex.normal = -vertex.normal; } if (gstate.isSkinningEnabled() && !gstate.isModeThrough()) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3 tmppos(0.f, 0.f, 0.f); Vec3 tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < gstate.getNumBoneWeights(); ++i) { Mat3x3 bone(&gstate.boneMatrix[12*i]); tmppos += W[i] * (bone * ModelCoords(pos[0], pos[1], pos[2]) + Vec3(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])); if (vreader.hasNormal()) tmpnrm += W[i] * (bone * vertex.normal); } pos[0] = tmppos.x; pos[1] = tmppos.y; pos[2] = tmppos.z; if (vreader.hasNormal()) vertex.normal = tmpnrm; } if (vreader.hasColor0()) { float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4(col[0]*255, col[1]*255, col[2]*255, col[3]*255); } else { vertex.color0 = Vec4(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA()); } if (vreader.hasColor1()) { float col[3]; vreader.ReadColor1(col); vertex.color1 = Vec3(col[0]*255, col[1]*255, col[2]*255); } else { vertex.color1 = Vec3(0, 0, 0); } if (!gstate.isModeThrough()) { vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]); vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos)); vertex.clippos = ClipCoords(TransformUnit::ViewToClip(TransformUnit::WorldToView(vertex.worldpos))); vertex.screenpos = ClipToScreenInternal(vertex.clippos); if (vreader.hasNormal()) { vertex.worldnormal = TransformUnit::ModelToWorld(vertex.normal) - Vec3(gstate.worldMatrix[9], gstate.worldMatrix[10], gstate.worldMatrix[11]); vertex.worldnormal /= vertex.worldnormal.Length(); // TODO: Shouldn't be necessary.. } Lighting::Process(vertex); } else { vertex.screenpos.x = (u32)pos[0] * 16 + gstate.getOffsetX16(); vertex.screenpos.y = (u32)pos[1] * 16 + gstate.getOffsetY16(); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; } return vertex; } #define START_OPEN_U 1 #define END_OPEN_U 2 #define START_OPEN_V 4 #define END_OPEN_V 8 struct SplinePatch { VertexData points[16]; int type; }; void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]); else vreader.Goto(idx); patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } delete[] patches; } void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1; else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2; else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3; else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2; else { // TODO: Unsupported } if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { VertexData data[max_vtcs_per_prim]; for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]); else vreader.Goto(vtx+i); data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessQuad(data[0], data[1]); break; } } } else if (prim_type == GE_PRIM_TRIANGLE_STRIP) { VertexData data[3]; unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } else if (prim_type == GE_PRIM_TRIANGLE_FAN) { VertexData data[3]; unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } } }