// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Core/MemMap.h" #include "Core/Reporting.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/GLES/TextureCache.h" #include "GPU/GLES/Framebuffer.h" #include "Core/Config.h" // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 u32 RoundUpToPowerOf2(u32 v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } TextureCache::TextureCache() { lastBoundTexture = -1; // This is 5MB of temporary storage. Might be possible to shrink it. tmpTexBuf32.resize(1024 * 512); // 2MB tmpTexBuf16.resize(1024 * 512); // 1MB tmpTexBufRearrange.resize(1024 * 512); // 2MB clutBuf32 = new u32[4096]; // 4K clutBuf16 = new u16[4096]; // 4K glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel); } TextureCache::~TextureCache() { delete [] clutBuf32; delete [] clutBuf16; } void TextureCache::Clear(bool delete_them) { glBindTexture(GL_TEXTURE_2D, 0); if (delete_them) { for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture); glDeleteTextures(1, &iter->second.texture); } } if (cache.size()) { INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)cache.size()); cache.clear(); } } // Removes old textures. void TextureCache::Decimate() { glBindTexture(GL_TEXTURE_2D, 0); for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) { if (iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) { glDeleteTextures(1, &iter->second.texture); cache.erase(iter++); } else ++iter; } } void TextureCache::Invalidate(u32 addr, int size, bool force) { addr &= 0xFFFFFFF; u32 addr_end = addr + size; for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { u32 texAddr = iter->second.addr; u32 texEnd = iter->second.addr + iter->second.sizeInRAM; // Clear if either the addr or clutaddr is in the range. bool invalidate = (texAddr >= addr && texAddr < addr_end) || (texEnd >= addr && texEnd < addr_end); invalidate = invalidate || (addr >= texAddr && addr < texEnd) || (addr_end >= texAddr && addr_end < texEnd); invalidate = invalidate || (iter->second.clutaddr >= addr && iter->second.clutaddr < addr_end); if (invalidate) { if (iter->second.status == TexCacheEntry::STATUS_RELIABLE) { iter->second.status = TexCacheEntry::STATUS_HASHING; } if (force) { gpuStats.numTextureInvalidations++; // Start it over from 0. iter->second.numFrames = 0; iter->second.framesUntilNextFullHash = 0; } else { iter->second.invalidHint++; } } } } void TextureCache::InvalidateAll(bool force) { Invalidate(0, 0xFFFFFFFF, force); } TextureCache::TexCacheEntry *TextureCache::GetEntryAt(u32 texaddr) { // If no CLUT, as in framebuffer textures, cache key is simply texaddr. auto iter = cache.find(texaddr); if (iter != cache.end() && iter->second.addr == texaddr) return &iter->second; else return 0; } void TextureCache::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer) { // Must be in VRAM so | 0x04000000 it is. TexCacheEntry *entry = GetEntryAt(address | 0x04000000); if (entry) { DEBUG_LOG(HLE, "Render to texture detected at %08x!", address); if (!entry->framebuffer) entry->framebuffer = framebuffer; // TODO: Delete the original non-fbo texture too. } } void TextureCache::NotifyFramebufferDestroyed(u32 address, VirtualFramebuffer *fbo) { TexCacheEntry *entry = GetEntryAt(address | 0x04000000); if (entry) entry->framebuffer = 0; } static u32 GetClutAddr(u32 clutEntrySize) { return ((gstate.clutaddr & 0xFFFFFF) | ((gstate.clutaddrupper << 8) & 0x0F000000)) + ((gstate.clutformat >> 16) & 0x1f) * clutEntrySize; } static u32 GetClutIndex(u32 index) { return ((((gstate.clutformat >> 16) & 0x1f) + index) >> ((gstate.clutformat >> 2) & 0x1f)) & ((gstate.clutformat >> 8) & 0xff); } static void ReadClut16(u16 *clutBuf16) { u32 clutNumEntries = (gstate.loadclut & 0x3f) * 16; u32 clutAddr = GetClutAddr(2); if (Memory::IsValidAddress(clutAddr)) { for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++) clutBuf16[i] = Memory::ReadUnchecked_U16(clutAddr + i * 2); } } static void ReadClut32(u32 *clutBuf32) { u32 clutNumEntries = (gstate.loadclut & 0x3f) * 8; u32 clutAddr = GetClutAddr(4); if (Memory::IsValidAddress(clutAddr)) { for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++) clutBuf32[i] = Memory::ReadUnchecked_U32(clutAddr + i * 4); } } void *TextureCache::UnswizzleFromMem(u32 texaddr, u32 bufw, u32 bytesPerPixel, u32 level) { const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : ((bufw & 0x3FF) / 2); const u32 pitch = rowWidth / 4; const int bxc = rowWidth / 16; int byc = ((1 << ((gstate.texsize[level] >> 8) & 0xf)) + 7) / 8; if (byc == 0) byc = 1; u32 ydest = 0; if (rowWidth >= 16) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); u32 *ydest = tmpTexBuf32.data(); for (int by = 0; by < byc; by++) { u32 *xdest = ydest; for (int bx = 0; bx < bxc; bx++) { u32 *dest = xdest; for (int n = 0; n < 8; n++) { memcpy(dest, src, 16); dest += pitch; src += 4; } xdest += 4; } ydest += (rowWidth * 8) / 4; } } else if (rowWidth == 8) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest += 2) { tmpTexBuf32[ydest + 0] = *src++; tmpTexBuf32[ydest + 1] = *src++; src += 2; // skip two u32 } } } else if (rowWidth == 4) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest++) { tmpTexBuf32[ydest] = *src++; src += 3; } } } else if (rowWidth == 2) { const u16 *src = (u16 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 4; n++, ydest++) { u16 n1 = src[0]; u16 n2 = src[8]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16); src += 16; } } } else if (rowWidth == 1) { const u8 *src = (u8 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 2; n++, ydest++) { u8 n1 = src[ 0]; u8 n2 = src[16]; u8 n3 = src[32]; u8 n4 = src[48]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24); src += 64; } } } return tmpTexBuf32.data(); } template inline void DeIndexTexture(ClutT *dest, const IndexT *indexed, int length, const ClutT *clut) { // Usually, there is no special offset, mask, or shift. const bool nakedIndex = (gstate.clutformat & ~3) == 0xC500FF00; if (nakedIndex) { if (sizeof(IndexT) == 1) { for (int i = 0; i < length; ++i) { *dest++ = clut[*indexed++]; } } else { for (int i = 0; i < length; ++i) { *dest++ = clut[(*indexed++) & 0xFF]; } } } else { for (int i = 0; i < length; ++i) { *dest++ = clut[GetClutIndex(*indexed++)]; } } } template inline void DeIndexTextureNoSwizzle(ClutT *dest, const u32 texaddr, int length, const ClutT *clut) { const IndexT *indexed = (const IndexT *) Memory::GetPointer(texaddr); DeIndexTexture(dest, indexed, length, clut); } void *TextureCache::readIndexedTex(int level, u32 texaddr, int bytesPerIndex) { // Special rules for kernel textures (PPGe): int mask = 0x3FF; if (texaddr < 0x08800000) mask = 0x1FFF; int bufw = gstate.texbufwidth[level] & mask; int length = bufw * (1 << ((gstate.texsize[level] >> 8) & 0xf)); void *buf = NULL; switch ((gstate.clutformat & 3)) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(length); tmpTexBufRearrange.resize(length); ReadClut16(clutBuf16); if (!(gstate.texmode & 1)) { switch (bytesPerIndex) { case 1: DeIndexTextureNoSwizzle(tmpTexBuf16.data(), texaddr, length, clutBuf16); break; case 2: DeIndexTextureNoSwizzle(tmpTexBuf16.data(), texaddr, length, clutBuf16); break; case 4: DeIndexTextureNoSwizzle(tmpTexBuf16.data(), texaddr, length, clutBuf16); break; } } else { const u16 *clut = clutBuf16; UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level); switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (u8 *) tmpTexBuf32.data(), length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (u16 *) tmpTexBuf32.data(), length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (u32 *) tmpTexBuf32.data(), length, clut); break; } } buf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(length); tmpTexBufRearrange.resize(length); ReadClut32(clutBuf32); if (!(gstate.texmode & 1)) { switch (bytesPerIndex) { case 1: DeIndexTextureNoSwizzle(tmpTexBuf32.data(), texaddr, length, clutBuf32); break; case 2: DeIndexTextureNoSwizzle(tmpTexBuf32.data(), texaddr, length, clutBuf32); break; case 4: DeIndexTextureNoSwizzle(tmpTexBuf32.data(), texaddr, length, clutBuf32); break; } buf = tmpTexBuf32.data(); } else { const u32 *clut = clutBuf32; UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level); // Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16. tmpTexBuf16.resize(length * 2); u32 *dest32 = (u32 *) tmpTexBuf16.data(); switch (bytesPerIndex) { case 1: DeIndexTexture(dest32, (u8 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 2: DeIndexTexture(dest32, (u16 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 4: // TODO: If a game actually uses this crazy mode, check if using dest32 or tmpTexBuf32 is faster. DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut); buf = tmpTexBuf32.data(); break; } } } break; default: ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3)); break; } return buf; } GLenum getClutDestFormat(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return GL_UNSIGNED_SHORT_4_4_4_4; case GE_CMODE_16BIT_ABGR5551: return GL_UNSIGNED_SHORT_5_5_5_1; case GE_CMODE_16BIT_BGR5650: return GL_UNSIGNED_SHORT_5_6_5; case GE_CMODE_32BIT_ABGR8888: return GL_UNSIGNED_BYTE; } return 0; } static const u8 texByteAlignMap[] = {2, 2, 2, 4}; static const GLuint MinFiltGL[8] = { GL_NEAREST, GL_LINEAR, GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR, }; static const GLuint MagFiltGL[2] = { GL_NEAREST, GL_LINEAR }; // OpenGL ES 2.0 workaround. This SHOULD be available but is NOT in the headers in Android. // Let's see if this hackery works. #ifndef GL_TEXTURE_LOD_BIAS #define GL_TEXTURE_LOD_BIAS 0x8501 #endif #ifndef GL_TEXTURE_MAX_LOD #define GL_TEXTURE_MAX_LOD 0x813B #endif // This should not have to be done per texture! OpenGL is silly yo // TODO: Dirty-check this against the current texture. void TextureCache::UpdateSamplingParams(TexCacheEntry &entry, bool force) { int minFilt = gstate.texfilter & 0x7; int magFilt = (gstate.texfilter>>8) & 1; bool sClamp = gstate.texwrap & 1; bool tClamp = (gstate.texwrap>>8) & 1; if (entry.maxLevel == 0) { // Enforce no mip filtering, for safety. minFilt &= 1; // no mipmaps yet } else { // TODO: Is this a signed value? Which direction? float lodBias = 0.0; // -(float)((gstate.texlevel >> 16) & 0xFF) / 16.0f; if (force || entry.lodBias != lodBias) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, lodBias); entry.lodBias = lodBias; } } if (g_Config.bLinearFiltering) { magFilt |= 1; minFilt |= 1; } if (!g_Config.bMipMap) { magFilt &= 1; minFilt &= 1; } if (force || entry.minFilt != minFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]); entry.minFilt = minFilt; } if (force || entry.magFilt != magFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]); entry.magFilt = magFilt; } if (force || entry.sClamp != sClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.sClamp = sClamp; } if (force || entry.tClamp != tClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.tClamp = tClamp; } } // All these DXT structs are in the reverse order, as compared to PC. // On PC, alpha comes before color, and interpolants are before the tile data. struct DXT1Block { u8 lines[4]; u16 color1; u16 color2; }; struct DXT3Block { DXT1Block color; u16 alphaLines[4]; }; struct DXT5Block { DXT1Block color; u32 alphadata2; u16 alphadata1; u8 alpha1; u8 alpha2; }; static inline u32 makecol(int r, int g, int b, int a) { return (a << 24) | (r << 16) | (g << 8) | b; } // This could probably be done faster by decoding two or four blocks at a time with SSE/NEON. static void decodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha = false) { // S3TC Decoder // Needs more speed and debugging. u16 c1 = (src->color1); u16 c2 = (src->color2); int red1 = Convert5To8(c1 & 0x1F); int red2 = Convert5To8(c2 & 0x1F); int green1 = Convert6To8((c1 >> 5) & 0x3F); int green2 = Convert6To8((c2 >> 5) & 0x3F); int blue1 = Convert5To8((c1 >> 11) & 0x1F); int blue2 = Convert5To8((c2 >> 11) & 0x1F); u32 colors[4]; colors[0] = makecol(red1, green1, blue1, 255); colors[1] = makecol(red2, green2, blue2, 255); if (c1 > c2 || ignore1bitAlpha) { int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3); int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3); int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3); colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255); colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255); } else { colors[2] = makecol((red1 + red2 + 1) / 2, // Average (green1 + green2 + 1) / 2, (blue1 + blue2 + 1) / 2, 255); colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent } for (int y = 0; y < 4; y++) { int val = src->lines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors[val & 3]; val >>= 2; } dst += pitch; } } static void decodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch) { decodeDXT1Block(dst, &src->color, pitch, true); // Alpha: TODO } static inline u8 lerp8(const DXT5Block *src, int n) { float d = n / 7.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } static inline u8 lerp6(const DXT5Block *src, int n) { float d = n / 5.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } // The alpha channel is not 100% correct static void decodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch) { decodeDXT1Block(dst, &src->color, pitch, true); u8 alpha[8]; alpha[0] = src->alpha1; alpha[1] = src->alpha2; if (alpha[0] > alpha[1]) { alpha[2] = lerp8(src, 1); alpha[3] = lerp8(src, 2); alpha[4] = lerp8(src, 3); alpha[5] = lerp8(src, 4); alpha[6] = lerp8(src, 5); alpha[7] = lerp8(src, 6); } else { alpha[2] = lerp6(src, 1); alpha[3] = lerp6(src, 2); alpha[4] = lerp6(src, 3); alpha[5] = lerp6(src, 4); alpha[6] = 0; alpha[7] = 255; } u64 data = ((u64)src->alphadata1 << 32) | src->alphadata2; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24); data >>= 3; } dst += pitch; } } static void convertColors(u8 *finalBuf, GLuint dstFmt, int numPixels) { // TODO: All these can be further sped up with SSE or NEON. switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: { u32 *p = (u32 *)finalBuf; for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = p[i]; p[i] = ((c >> 12) & 0x000F000F) | ((c >> 4) & 0x00F000F0) | ((c << 4) & 0x0F000F00) | ((c << 12) & 0xF000F000); } } break; case GL_UNSIGNED_SHORT_5_5_5_1: { u32 *p = (u32 *)finalBuf; for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = p[i]; p[i] = ((c >> 15) & 0x00010001) | ((c >> 9) & 0x003E003E) | ((c << 1) & 0x07C007C0) | ((c << 11) & 0xF800F800); } } break; case GL_UNSIGNED_SHORT_5_6_5: { u32 *p = (u32 *)finalBuf; for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = p[i]; p[i] = ((c >> 11) & 0x001F001F) | (c & 0x07E007E0) | ((c << 11) & 0xF800F800); } } break; default: { // No need to convert RGBA8888, right order already } break; } } void TextureCache::StartFrame() { lastBoundTexture = -1; Decimate(); } static const u8 bitsPerPixel[11] = { 16, //GE_TFMT_5650=16, 16, //GE_TFMT_5551=16, 16, //GE_TFMT_4444=16, 32, //GE_TFMT_8888=3, 4, //GE_TFMT_CLUT4=4, 8, //GE_TFMT_CLUT8=5, 16, //GE_TFMT_CLUT16=6, 32, //GE_TFMT_CLUT32=7, 4, //GE_TFMT_DXT1=4, 8, //GE_TFMT_DXT3=8, 8, //GE_TFMT_DXT5=8, }; static const bool formatUsesClut[11] = { false, false, false, false, true, true, true, true, false, false, false, }; static inline u32 MiniHash(const u32 *ptr) { return ptr[0]; } static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, u32 format) { u32 sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h / 2) / 8; const u32 *checkp = (const u32 *) Memory::GetPointer(addr); u32 check = 0; for (u32 i = 0; i < (sizeInRAM * 2) / 4; ++i) check += *checkp++; return check; } void TextureCache::SetTexture() { u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. glBindTexture(GL_TEXTURE_2D, 0); return; } u32 format = gstate.texformat & 0xF; if (format >= 11) { ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format); format = 0; } bool hasClut = formatUsesClut[format]; u64 cachekey = texaddr; u32 clutformat, clutaddr; if (hasClut) { clutformat = gstate.clutformat & 3; clutaddr = GetClutAddr(clutformat == GE_CMODE_32BIT_ABGR8888 ? 4 : 2); cachekey |= (u64)clutaddr << 32; } else { clutaddr = 0; } int maxLevel = ((gstate.texmode >> 16) & 0x7); u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr)); TexCache::iterator iter = cache.find(cachekey); TexCacheEntry *entry = NULL; gstate_c.flipTexture = false; gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; if (iter != cache.end()) { entry = &iter->second; // Check for FBO - slow! if (entry->framebuffer) { entry->framebuffer->usageFlags |= FB_USAGE_TEXTURE; if (!g_Config.bBufferedRendering) { glBindTexture(GL_TEXTURE_2D, 0); entry->lastFrame = gpuStats.numFrames; } else { if (entry->framebuffer->fbo) { fbo_bind_color_as_texture(entry->framebuffer->fbo, 0); } else { glBindTexture(GL_TEXTURE_2D, 0); gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE; } UpdateSamplingParams(*entry, false); } // This isn't right. gstate_c.curTextureWidth = entry->framebuffer->width; gstate_c.curTextureHeight = entry->framebuffer->height; int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); gstate_c.actualTextureHeight = h; gstate_c.flipTexture = true; entry->lastFrame = gpuStats.numFrames; return; } //Validate the texture here (width, height etc) int dim = gstate.texsize[0] & 0xF0F; bool match = true; bool rehash = entry->status == TexCacheEntry::STATUS_UNRELIABLE; //TODO: Check more texture parameters, compute real texture hash if (dim != entry->dim || entry->hash != texhash || entry->format != format || entry->maxLevel != maxLevel || (hasClut && (entry->clutformat != clutformat || entry->clutaddr != clutaddr || entry->cluthash != Memory::Read_U32(entry->clutaddr)))) match = false; if (match) { if (entry->lastFrame != gpuStats.numFrames) { entry->numFrames++; } if (entry->framesUntilNextFullHash == 0) { // Exponential backoff up to 2048 frames. Textures are often reused. entry->framesUntilNextFullHash = std::min(2048, entry->numFrames); rehash = true; } else { --entry->framesUntilNextFullHash; } } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && dim <= 0x909)) { entry->invalidHint = 0; rehash = true; } if (rehash && entry->status != TexCacheEntry::STATUS_RELIABLE) { int w = 1 << (gstate.texsize[0] & 0xf); int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); int bufw = gstate.texbufwidth[0] & 0x3ff; u32 check = QuickTexHash(texaddr, bufw, w, h, format); if (check != entry->fullhash) { match = false; gpuStats.numTextureInvalidations++; entry->status = TexCacheEntry::STATUS_UNRELIABLE; entry->numFrames = 0; } else if (entry->status == TexCacheEntry::STATUS_UNRELIABLE && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { entry->status = TexCacheEntry::STATUS_HASHING; } } if (match) { // TODO: Mark the entry reliable if it's been safe for long enough? //got one! entry->lastFrame = gpuStats.numFrames; if (entry->texture != lastBoundTexture) { glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; } UpdateSamplingParams(*entry, false); DEBUG_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr); return; //Done! } else { INFO_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr); if (entry->texture == lastBoundTexture) lastBoundTexture = -1; glDeleteTextures(1, &entry->texture); if (entry->status == TexCacheEntry::STATUS_RELIABLE) { entry->status = TexCacheEntry::STATUS_HASHING; } } } else { INFO_LOG(G3D,"No texture in cache, decoding..."); TexCacheEntry entryNew = {0}; cache[cachekey] = entryNew; entry = &cache[cachekey]; entry->status = TexCacheEntry::STATUS_HASHING; } int w = 1 << (gstate.texsize[0] & 0xf); int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); int bufw = gstate.texbufwidth[0] & 0x3ff; //we have to decode it entry->addr = texaddr; entry->hash = texhash; entry->format = format; entry->lastFrame = gpuStats.numFrames; entry->framebuffer = 0; entry->maxLevel = maxLevel; entry->lodBias = 0.0f; if (hasClut) { entry->clutformat = clutformat; entry->clutaddr = clutaddr; entry->cluthash = Memory::Read_U32(entry->clutaddr); } else { entry->clutaddr = 0; } entry->dim = gstate.texsize[0] & 0xF0F; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h / 2) / 8; entry->fullhash = QuickTexHash(texaddr, bufw, w, h, format); gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; glGenTextures(1, &entry->texture); glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; // Adjust maxLevel to actually present levels.. for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = (gstate.texaddr[i] & 0xFFFFF0) | ((gstate.texbufwidth[i] << 8) & 0x0F000000); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } } if (g_Config.bMipMap) { #ifdef USING_GLES2 // GLES2 doesn't have support for a "Max lod" which is critical as PSP games often // don't specify mips all the way down. As a result, we either need to manually generate // the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not // be as good quality as the game's own (might even be better in some cases though). // For now, I choose to use autogen mips on GLES2 and the game's own on other platforms. // As is usual, GLES3 will solve this problem nicely but wide distribution of that is // years away. LoadTextureLevel(*entry, 0); if (maxLevel > 0) glGenerateMipmap(GL_TEXTURE_2D); #else for (int i = 0; i <= maxLevel; i++) { LoadTextureLevel(*entry, i); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel); #endif glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel); } else { LoadTextureLevel(*entry, 0); #ifndef USING_GLES2 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); #endif } float anisotropyLevel = (float) g_Config.iAnisotropyLevel > maxAnisotropyLevel ? maxAnisotropyLevel : (float) g_Config.iAnisotropyLevel; glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel); // NOTICE_LOG(G3D,"AnisotropyLevel = %0.1f , MaxAnisotropyLevel = %0.1f ", anisotropyLevel, maxAnisotropyLevel ); UpdateSamplingParams(*entry, true); //glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); //glPixelStorei(GL_PACK_ROW_LENGTH, 0); glPixelStorei(GL_PACK_ALIGNMENT, 1); } void TextureCache::LoadTextureLevel(TexCacheEntry &entry, int level) { void *finalBuf = NULL; // TODO: only do this once u32 texByteAlign = 1; // TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips. GLenum dstFmt = 0; // TODO: Actually decode the mipmaps. u32 texaddr = (gstate.texaddr[level] & 0xFFFFF0) | ((gstate.texbufwidth[level] << 8) & 0x0F000000); int mask = 0x3ff; if (texaddr < 0x08800000) mask = 0x1FFF; int bufw = gstate.texbufwidth[level] & mask; int w = 1 << (gstate.texsize[level] & 0xf); int h = 1 << ((gstate.texsize[level] >> 8) & 0xf); const u8 *texptr = Memory::GetPointer(texaddr); switch (entry.format) { case GE_TFMT_CLUT4: dstFmt = getClutDestFormat((GEPaletteFormat)(entry.clutformat)); switch (entry.clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(bufw * h); tmpTexBufRearrange.resize(bufw * h); ReadClut16(clutBuf16); const u16 *clut = clutBuf16; u32 clutSharingOffset = 0; //(gstate.mipmapShareClut & 1) ? 0 : level * 16; texByteAlign = 2; if (!(gstate.texmode & 1)) { const u8 *addr = Memory::GetPointer(texaddr); for (int i = 0; i < bufw * h; i += 2) { u8 index = *addr++; tmpTexBuf16[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOffset]; tmpTexBuf16[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOffset]; } } else { UnswizzleFromMem(texaddr, bufw, 0, level); for (int i = 0, j = 0; i < bufw * h; i += 8, j++) { u32 n = tmpTexBuf32[j]; u32 k, index; for (k = 0; k < 8; k++) { index = (n >> (k * 4)) & 0xf; tmpTexBuf16[i + k] = clut[GetClutIndex(index) + clutSharingOffset]; } } } finalBuf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(bufw * h); ReadClut32(clutBuf32); const u32 *clut = clutBuf32; u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16; if (!(gstate.texmode & 1)) { const u8 *addr = Memory::GetPointer(texaddr); for (int i = 0; i < bufw * h; i += 2) { u8 index = *addr++; tmpTexBuf32[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff]; tmpTexBuf32[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff]; } } else { u32 pixels = bufw * h; UnswizzleFromMem(texaddr, bufw, 0, level); for (int i = pixels - 8, j = (pixels / 8) - 1; i >= 0; i -= 8, j--) { u32 n = tmpTexBuf32[j]; for (int k = 0; k < 8; k++) { u32 index = (n >> (k * 4)) & 0xf; tmpTexBuf32[i + k] = clut[GetClutIndex(index) + clutSharingOff]; } } } finalBuf = tmpTexBuf32.data(); } break; default: ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3)); return; } break; case GE_TFMT_CLUT8: finalBuf = readIndexedTex(level, texaddr, 1); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT16: finalBuf = readIndexedTex(level, texaddr, 2); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT32: finalBuf = readIndexedTex(level, texaddr, 4); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: if (entry.format == GE_TFMT_4444) dstFmt = GL_UNSIGNED_SHORT_4_4_4_4; else if (entry.format == GE_TFMT_5551) dstFmt = GL_UNSIGNED_SHORT_5_5_5_1; else if (entry.format == GE_TFMT_5650) dstFmt = GL_UNSIGNED_SHORT_5_6_5; texByteAlign = 2; if (!(gstate.texmode & 1)) { int len = std::max(bufw, w) * h; tmpTexBuf16.resize(len); tmpTexBufRearrange.resize(len); for (int i = 0; i < len; i++) tmpTexBuf16[i] = Memory::ReadUnchecked_U16(texaddr + i * 2); finalBuf = tmpTexBuf16.data(); } else finalBuf = UnswizzleFromMem(texaddr, bufw, 2, level); break; case GE_TFMT_8888: dstFmt = GL_UNSIGNED_BYTE; if (!(gstate.texmode & 1)) { int len = bufw * h; for (int i = 0; i < len; i++) tmpTexBuf32[i] = Memory::ReadUnchecked_U32(texaddr + i * 4); finalBuf = tmpTexBuf32.data(); } else finalBuf = UnswizzleFromMem(texaddr, bufw, 4, level); break; case GE_TFMT_DXT1: dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } finalBuf = tmpTexBuf32.data(); w = (w + 3) & ~3; } break; case GE_TFMT_DXT3: ERROR_LOG(G3D, "Warning: DXT3 textures not well supported"); dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT3Block *src = (DXT3Block*)texptr; // Alpha is off for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); } break; case GE_TFMT_DXT5: // These work fine now dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT5Block *src = (DXT5Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); } break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", entry.format); finalBuf = tmpTexBuf32.data(); return; } if (!finalBuf) { ERROR_LOG(G3D, "NO finalbuf! Will crash!"); } convertColors((u8*)finalBuf, dstFmt, bufw * h); if (w != bufw) { int pixelSize; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_5_6_5: pixelSize = 2; break; default: pixelSize = 4; break; } // Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc. int inRowBytes = bufw * pixelSize; int outRowBytes = w * pixelSize; const u8 *read = (const u8 *)finalBuf; u8 *write = 0; if (w > bufw) { write = (u8 *)tmpTexBufRearrange.data(); finalBuf = tmpTexBufRearrange.data(); } else { write = (u8 *)finalBuf; } for (int y = 0; y < h; y++) { memmove(write, read, outRowBytes); read += inRowBytes; write += outRowBytes; } } gpuStats.numTexturesDecoded++; // Can restore these and remove the above fixup on some platforms. //glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw); glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign); //glPixelStorei(GL_PACK_ROW_LENGTH, bufw); glPixelStorei(GL_PACK_ALIGNMENT, texByteAlign); // INFO_LOG(G3D, "Creating texture level %i/%i from %08x: %i x %i (stride: %i). fmt: %i", level, entry.maxLevel, texaddr, w, h, bufw, entry.format); GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA; glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, finalBuf); } bool TextureCache::DecodeTexture(u8* output, GPUgstate state) { GPUgstate oldState = gstate; gstate = state; u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000); if (!Memory::IsValidAddress(texaddr)) { return false; } u8 level = 0; u32 format = gstate.texformat & 0xF; if (format >= 11) { ERROR_LOG(G3D, "Unknown texture format %i", format); format = 0; } u32 clutformat = gstate.clutformat & 3; const u8 *texptr = Memory::GetPointer(texaddr); int mask = texaddr < 0x08800000 ? 0x1FFF : 0x3ff; int bufw = gstate.texbufwidth[0] & mask; int w = 1 << (gstate.texsize[0] & 0xf); int h = 1 << ((gstate.texsize[0]>>8) & 0xf); GLenum dstFmt = 0; u32 texByteAlign = 1; void *finalBuf = NULL; // TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips. switch (format) { case GE_TFMT_CLUT4: dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(bufw * h); tmpTexBufRearrange.resize(bufw * h); ReadClut16(clutBuf16); const u16 *clut = clutBuf16; u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16; texByteAlign = 2; if (!(gstate.texmode & 1)) { const u8 *addr = Memory::GetPointer(texaddr); for (int i = 0; i < bufw * h; i += 2) { u8 index = *addr++; tmpTexBuf16[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff]; tmpTexBuf16[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff]; } } else { UnswizzleFromMem(texaddr, bufw, 0, level); for (int i = 0, j = 0; i < bufw * h; i += 8, j++) { u32 n = tmpTexBuf32[j]; u32 k, index; for (k = 0; k < 8; k++) { index = (n >> (k * 4)) & 0xf; tmpTexBuf16[i + k] = clut[GetClutIndex(index) + clutSharingOff]; } } } finalBuf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { ReadClut32(clutBuf32); const u32 *clut = clutBuf32; u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16; if (!(gstate.texmode & 1)) { const u8 *addr = Memory::GetPointer(texaddr); for (int i = 0; i < bufw * h; i += 2) { u8 index = *addr++; tmpTexBuf32[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff]; tmpTexBuf32[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff]; } } else { u32 pixels = bufw * h; UnswizzleFromMem(texaddr, bufw, 0, level); for (int i = pixels - 8, j = (pixels / 8) - 1; i >= 0; i -= 8, j--) { u32 n = tmpTexBuf32[j]; for (int k = 0; k < 8; k++) { u32 index = (n >> (k * 4)) & 0xf; tmpTexBuf32[i + k] = clut[GetClutIndex(index) + clutSharingOff]; } } } finalBuf = tmpTexBuf32.data(); } break; default: ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3)); return false; } break; case GE_TFMT_CLUT8: finalBuf = readIndexedTex(level, texaddr, 1); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT16: finalBuf = readIndexedTex(level, texaddr, 2); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT32: finalBuf = readIndexedTex(level, texaddr, 4); dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: if (format == GE_TFMT_4444) dstFmt = GL_UNSIGNED_SHORT_4_4_4_4; else if (format == GE_TFMT_5551) dstFmt = GL_UNSIGNED_SHORT_5_5_5_1; else if (format == GE_TFMT_5650) dstFmt = GL_UNSIGNED_SHORT_5_6_5; texByteAlign = 2; if (!(gstate.texmode & 1)) { int len = std::max(bufw, w) * h; tmpTexBuf16.resize(len); tmpTexBufRearrange.resize(len); for (int i = 0; i < len; i++) tmpTexBuf16[i] = Memory::ReadUnchecked_U16(texaddr + i * 2); finalBuf = tmpTexBuf16.data(); } else finalBuf = UnswizzleFromMem(texaddr, bufw, 2, level); break; case GE_TFMT_8888: dstFmt = GL_UNSIGNED_BYTE; if (!(gstate.texmode & 1)) { int len = bufw * h; for (int i = 0; i < len; i++) tmpTexBuf32[i] = Memory::ReadUnchecked_U32(texaddr + i * 4); finalBuf = tmpTexBuf32.data(); } else finalBuf = UnswizzleFromMem(texaddr, bufw, 4, level); break; case GE_TFMT_DXT1: dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } finalBuf = tmpTexBuf32.data(); w = (w + 3) & ~3; } break; case GE_TFMT_DXT3: dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT3Block *src = (DXT3Block*)texptr; // Alpha is off for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); } break; case GE_TFMT_DXT5: ERROR_LOG(G3D, "Unhandled compressed texture, format %i! swizzle=%i", format, gstate.texmode & 1); dstFmt = GL_UNSIGNED_BYTE; { u32 *dst = tmpTexBuf32.data(); DXT5Block *src = (DXT5Block*)texptr; // Alpha is almost right for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < std::min(bufw, w); x += 4) { decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); } break; default: ERROR_LOG(G3D, "Unknown Texture Format %d!!!", format); finalBuf = tmpTexBuf32.data(); return false; } if (!finalBuf) { ERROR_LOG(G3D, "NO finalbuf! Will crash!"); } convertColors((u8*)finalBuf, dstFmt, bufw * h); if(dstFmt == GL_UNSIGNED_SHORT_4_4_4_4) { for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 a = (val & 0xF) * 255 / 15; u32 r = ((val & 0xF) >> 24) * 255 / 15; u32 g = ((val & 0xF) >> 16) * 255 / 15; u32 b = ((val & 0xF) >> 8) * 255 / 15; ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } } else if(dstFmt == GL_UNSIGNED_SHORT_5_5_5_1) { for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 a = (val & 0x1) * 255; u32 r = ((val & 0x1F) >> 11) * 255 / 31; u32 g = ((val & 0x1F) >> 6) * 255 / 31; u32 b = ((val & 0x1F) >> 1) * 255 / 31; ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } } else if(dstFmt == GL_UNSIGNED_SHORT_5_6_5) { for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 a = 0xFF; u32 r = ((val & 0x1F) >> 11) * 255 / 31; u32 g = ((val & 0x3F) >> 6) * 255 / 63; u32 b = ((val & 0x1F)) * 255 / 31; ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } } else { for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u32*)finalBuf)[x*bufw + y]; ((u32*)output)[x*w + y] = ((val & 0xFF000000)) | ((val & 0x00FF0000)>>16) | ((val & 0x0000FF00)) | ((val & 0x000000FF)<<16); } } gstate = oldState; return true; }