// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "ext/xxhash.h" #include "i18n/i18n.h" #include "math/math_util.h" #include "profiler/profiler.h" #include "thin3d/thin3d.h" #include "thin3d/VulkanRenderManager.h" #include "Common/ColorConv.h" #include "Core/Config.h" #include "Core/Host.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/System.h" #include "Common/Vulkan/VulkanContext.h" #include "Common/Vulkan/VulkanImage.h" #include "Common/Vulkan/VulkanMemory.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Common/TextureCacheCommon.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/FramebufferVulkan.h" #include "GPU/Vulkan/FragmentShaderGeneratorVulkan.h" #include "GPU/Vulkan/DepalettizeShaderVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #define TEXCACHE_MIN_SLAB_SIZE (8 * 1024 * 1024) #define TEXCACHE_MAX_SLAB_SIZE (32 * 1024 * 1024) #define TEXCACHE_SLAB_PRESSURE 4 // Note: some drivers prefer B4G4R4A4_UNORM_PACK16 over R4G4B4A4_UNORM_PACK16. #define VULKAN_4444_FORMAT VK_FORMAT_B4G4R4A4_UNORM_PACK16 #define VULKAN_1555_FORMAT VK_FORMAT_A1R5G5B5_UNORM_PACK16 #define VULKAN_565_FORMAT VK_FORMAT_B5G6R5_UNORM_PACK16 #define VULKAN_8888_FORMAT VK_FORMAT_R8G8B8A8_UNORM static const VkComponentMapping VULKAN_4444_SWIZZLE = { VK_COMPONENT_SWIZZLE_A, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B }; static const VkComponentMapping VULKAN_1555_SWIZZLE = { VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_A }; static const VkComponentMapping VULKAN_565_SWIZZLE = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; static const VkComponentMapping VULKAN_8888_SWIZZLE = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; // 4xBRZ shader - Copyright (C) 2014-2016 DeSmuME team (GPL2+) // Hyllian's xBR-vertex code and texel mapping // Copyright (C) 2011/2016 Hyllian - sergiogdb@gmail.com // TODO: Handles alpha badly for PSP. const char *shader4xbrz = R"( vec4 premultiply_alpha(vec4 c) { float a = clamp(c.a, 0.0, 1.0); return vec4(c.rgb * a, a); } vec4 postdivide_alpha(vec4 c) { return c.a < 0.001? vec4(0.0,0.0,0.0,0.0) : vec4(c.rgb / c.a, c.a); } #define BLEND_ALPHA 1 #define BLEND_NONE 0 #define BLEND_NORMAL 1 #define BLEND_DOMINANT 2 #define LUMINANCE_WEIGHT 1.0 #define EQUAL_COLOR_TOLERANCE 30.0/255.0 #define STEEP_DIRECTION_THRESHOLD 2.2 #define DOMINANT_DIRECTION_THRESHOLD 3.6 float reduce(vec4 color) { return dot(color.rgb, vec3(65536.0, 256.0, 1.0)); } float DistYCbCr(vec4 pixA, vec4 pixB) { const vec3 w = vec3(0.2627, 0.6780, 0.0593); const float scaleB = 0.5 / (1.0 - w.b); const float scaleR = 0.5 / (1.0 - w.r); vec4 diff = pixA - pixB; float Y = dot(diff.rgb, w); float Cb = scaleB * (diff.b - Y); float Cr = scaleR * (diff.r - Y); return sqrt( ((LUMINANCE_WEIGHT * Y) * (LUMINANCE_WEIGHT * Y)) + (Cb * Cb) + (Cr * Cr) + (diff.a * diff.a)); } bool IsPixEqual(const vec4 pixA, const vec4 pixB) { return (DistYCbCr(pixA, pixB) < EQUAL_COLOR_TOLERANCE); } bool IsBlendingNeeded(const ivec4 blend) { ivec4 diff = blend - ivec4(BLEND_NONE); return diff.x != 0 || diff.y != 0 || diff.z != 0 || diff.w != 0; } vec4 applyScalingf(uvec2 origxy, uvec2 xy) { float dx = 1.0 / params.width; float dy = 1.0 / params.height; // A1 B1 C1 // A0 A B C C4 // D0 D E F F4 // G0 G H I I4 // G5 H5 I5 uvec4 t1 = uvec4(origxy.x - 1, origxy.x, origxy.x + 1, origxy.y - 2); // A1 B1 C1 uvec4 t2 = uvec4(origxy.x - 1, origxy.x, origxy.x + 1, origxy.y - 1); // A B C uvec4 t3 = uvec4(origxy.x - 1, origxy.x, origxy.x + 1, origxy.y + 0); // D E F uvec4 t4 = uvec4(origxy.x - 1, origxy.x, origxy.x + 1, origxy.y + 1); // G H I uvec4 t5 = uvec4(origxy.x - 1, origxy.x, origxy.x + 1, origxy.y + 2); // G5 H5 I5 uvec4 t6 = uvec4(origxy.x - 2, origxy.y - 1, origxy.y, origxy.y + 1); // A0 D0 G0 uvec4 t7 = uvec4(origxy.x + 2, origxy.y - 1, origxy.y, origxy.y + 1); // C4 F4 I4 vec2 f = fract(vec2(float(xy.x) / float(params.scale), float(xy.y) / float(params.scale))); //--------------------------------------- // Input Pixel Mapping: |21|22|23| // 19|06|07|08|09 // 18|05|00|01|10 // 17|04|03|02|11 // |15|14|13| vec4 src[25]; src[21] = premultiply_alpha(readColorf(t1.xw)); src[22] = premultiply_alpha(readColorf(t1.yw)); src[23] = premultiply_alpha(readColorf(t1.zw)); src[ 6] = premultiply_alpha(readColorf(t2.xw)); src[ 7] = premultiply_alpha(readColorf(t2.yw)); src[ 8] = premultiply_alpha(readColorf(t2.zw)); src[ 5] = premultiply_alpha(readColorf(t3.xw)); src[ 0] = premultiply_alpha(readColorf(t3.yw)); src[ 1] = premultiply_alpha(readColorf(t3.zw)); src[ 4] = premultiply_alpha(readColorf(t4.xw)); src[ 3] = premultiply_alpha(readColorf(t4.yw)); src[ 2] = premultiply_alpha(readColorf(t4.zw)); src[15] = premultiply_alpha(readColorf(t5.xw)); src[14] = premultiply_alpha(readColorf(t5.yw)); src[13] = premultiply_alpha(readColorf(t5.zw)); src[19] = premultiply_alpha(readColorf(t6.xy)); src[18] = premultiply_alpha(readColorf(t6.xz)); src[17] = premultiply_alpha(readColorf(t6.xw)); src[ 9] = premultiply_alpha(readColorf(t7.xy)); src[10] = premultiply_alpha(readColorf(t7.xz)); src[11] = premultiply_alpha(readColorf(t7.xw)); float v[9]; v[0] = reduce(src[0]); v[1] = reduce(src[1]); v[2] = reduce(src[2]); v[3] = reduce(src[3]); v[4] = reduce(src[4]); v[5] = reduce(src[5]); v[6] = reduce(src[6]); v[7] = reduce(src[7]); v[8] = reduce(src[8]); ivec4 blendResult = ivec4(BLEND_NONE); // Preprocess corners // Pixel Tap Mapping: --|--|--|--|-- // --|--|07|08|-- // --|05|00|01|10 // --|04|03|02|11 // --|--|14|13|-- // Corner (1, 1) if ( ((v[0] == v[1] && v[3] == v[2]) || (v[0] == v[3] && v[1] == v[2])) == false) { float dist_03_01 = DistYCbCr(src[ 4], src[ 0]) + DistYCbCr(src[ 0], src[ 8]) + DistYCbCr(src[14], src[ 2]) + DistYCbCr(src[ 2], src[10]) + (4.0 * DistYCbCr(src[ 3], src[ 1])); float dist_00_02 = DistYCbCr(src[ 5], src[ 3]) + DistYCbCr(src[ 3], src[13]) + DistYCbCr(src[ 7], src[ 1]) + DistYCbCr(src[ 1], src[11]) + (4.0 * DistYCbCr(src[ 0], src[ 2])); bool dominantGradient = (DOMINANT_DIRECTION_THRESHOLD * dist_03_01) < dist_00_02; blendResult[2] = ((dist_03_01 < dist_00_02) && (v[0] != v[1]) && (v[0] != v[3])) ? ((dominantGradient) ? BLEND_DOMINANT : BLEND_NORMAL) : BLEND_NONE; } // Pixel Tap Mapping: --|--|--|--|-- // --|06|07|--|-- // 18|05|00|01|-- // 17|04|03|02|-- // --|15|14|--|-- // Corner (0, 1) if ( ((v[5] == v[0] && v[4] == v[3]) || (v[5] == v[4] && v[0] == v[3])) == false) { float dist_04_00 = DistYCbCr(src[17], src[ 5]) + DistYCbCr(src[ 5], src[ 7]) + DistYCbCr(src[15], src[ 3]) + DistYCbCr(src[ 3], src[ 1]) + (4.0 * DistYCbCr(src[ 4], src[ 0])); float dist_05_03 = DistYCbCr(src[18], src[ 4]) + DistYCbCr(src[ 4], src[14]) + DistYCbCr(src[ 6], src[ 0]) + DistYCbCr(src[ 0], src[ 2]) + (4.0 * DistYCbCr(src[ 5], src[ 3])); bool dominantGradient = (DOMINANT_DIRECTION_THRESHOLD * dist_05_03) < dist_04_00; blendResult[3] = ((dist_04_00 > dist_05_03) && (v[0] != v[5]) && (v[0] != v[3])) ? ((dominantGradient) ? BLEND_DOMINANT : BLEND_NORMAL) : BLEND_NONE; } // Pixel Tap Mapping: --|--|22|23|-- // --|06|07|08|09 // --|05|00|01|10 // --|--|03|02|-- // --|--|--|--|-- // Corner (1, 0) if ( ((v[7] == v[8] && v[0] == v[1]) || (v[7] == v[0] && v[8] == v[1])) == false) { float dist_00_08 = DistYCbCr(src[ 5], src[ 7]) + DistYCbCr(src[ 7], src[23]) + DistYCbCr(src[ 3], src[ 1]) + DistYCbCr(src[ 1], src[ 9]) + (4.0 * DistYCbCr(src[ 0], src[ 8])); float dist_07_01 = DistYCbCr(src[ 6], src[ 0]) + DistYCbCr(src[ 0], src[ 2]) + DistYCbCr(src[22], src[ 8]) + DistYCbCr(src[ 8], src[10]) + (4.0 * DistYCbCr(src[ 7], src[ 1])); bool dominantGradient = (DOMINANT_DIRECTION_THRESHOLD * dist_07_01) < dist_00_08; blendResult[1] = ((dist_00_08 > dist_07_01) && (v[0] != v[7]) && (v[0] != v[1])) ? ((dominantGradient) ? BLEND_DOMINANT : BLEND_NORMAL) : BLEND_NONE; } // Pixel Tap Mapping: --|21|22|--|-- // 19|06|07|08|-- // 18|05|00|01|-- // --|04|03|--|-- // --|--|--|--|-- // Corner (0, 0) if ( ((v[6] == v[7] && v[5] == v[0]) || (v[6] == v[5] && v[7] == v[0])) == false) { float dist_05_07 = DistYCbCr(src[18], src[ 6]) + DistYCbCr(src[ 6], src[22]) + DistYCbCr(src[ 4], src[ 0]) + DistYCbCr(src[ 0], src[ 8]) + (4.0 * DistYCbCr(src[ 5], src[ 7])); float dist_06_00 = DistYCbCr(src[19], src[ 5]) + DistYCbCr(src[ 5], src[ 3]) + DistYCbCr(src[21], src[ 7]) + DistYCbCr(src[ 7], src[ 1]) + (4.0 * DistYCbCr(src[ 6], src[ 0])); bool dominantGradient = (DOMINANT_DIRECTION_THRESHOLD * dist_05_07) < dist_06_00; blendResult[0] = ((dist_05_07 < dist_06_00) && (v[0] != v[5]) && (v[0] != v[7])) ? ((dominantGradient) ? BLEND_DOMINANT : BLEND_NORMAL) : BLEND_NONE; } vec4 dst[16]; dst[ 0] = src[0]; dst[ 1] = src[0]; dst[ 2] = src[0]; dst[ 3] = src[0]; dst[ 4] = src[0]; dst[ 5] = src[0]; dst[ 6] = src[0]; dst[ 7] = src[0]; dst[ 8] = src[0]; dst[ 9] = src[0]; dst[10] = src[0]; dst[11] = src[0]; dst[12] = src[0]; dst[13] = src[0]; dst[14] = src[0]; dst[15] = src[0]; // Scale pixel if (IsBlendingNeeded(blendResult) == true) { float dist_01_04 = DistYCbCr(src[1], src[4]); float dist_03_08 = DistYCbCr(src[3], src[8]); bool haveShallowLine = (STEEP_DIRECTION_THRESHOLD * dist_01_04 <= dist_03_08) && (v[0] != v[4]) && (v[5] != v[4]); bool haveSteepLine = (STEEP_DIRECTION_THRESHOLD * dist_03_08 <= dist_01_04) && (v[0] != v[8]) && (v[7] != v[8]); bool needBlend = (blendResult[2] != BLEND_NONE); bool doLineBlend = ( blendResult[2] >= BLEND_DOMINANT || ((blendResult[1] != BLEND_NONE && !IsPixEqual(src[0], src[4])) || (blendResult[3] != BLEND_NONE && !IsPixEqual(src[0], src[8])) || (IsPixEqual(src[4], src[3]) && IsPixEqual(src[3], src[2]) && IsPixEqual(src[2], src[1]) && IsPixEqual(src[1], src[8]) && IsPixEqual(src[0], src[2]) == false) ) == false ); vec4 blendPix = ( DistYCbCr(src[0], src[1]) <= DistYCbCr(src[0], src[3]) ) ? src[1] : src[3]; dst[ 2] = mix(dst[ 2], blendPix, (needBlend && doLineBlend) ? ((haveShallowLine) ? ((haveSteepLine) ? 1.0/3.0 : 0.25) : ((haveSteepLine) ? 0.25 : 0.00)) : 0.00); dst[ 9] = mix(dst[ 9], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.25 : 0.00); dst[10] = mix(dst[10], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.75 : 0.00); dst[11] = mix(dst[11], blendPix, (needBlend) ? ((doLineBlend) ? ((haveSteepLine) ? 1.00 : ((haveShallowLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[12] = mix(dst[12], blendPix, (needBlend) ? ((doLineBlend) ? 1.00 : 0.6848532563) : 0.00); dst[13] = mix(dst[13], blendPix, (needBlend) ? ((doLineBlend) ? ((haveShallowLine) ? 1.00 : ((haveSteepLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[14] = mix(dst[14], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.75 : 0.00); dst[15] = mix(dst[15], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.25 : 0.00); dist_01_04 = DistYCbCr(src[7], src[2]); dist_03_08 = DistYCbCr(src[1], src[6]); haveShallowLine = (STEEP_DIRECTION_THRESHOLD * dist_01_04 <= dist_03_08) && (v[0] != v[2]) && (v[3] != v[2]); haveSteepLine = (STEEP_DIRECTION_THRESHOLD * dist_03_08 <= dist_01_04) && (v[0] != v[6]) && (v[5] != v[6]); needBlend = (blendResult[1] != BLEND_NONE); doLineBlend = ( blendResult[1] >= BLEND_DOMINANT || !((blendResult[0] != BLEND_NONE && !IsPixEqual(src[0], src[2])) || (blendResult[2] != BLEND_NONE && !IsPixEqual(src[0], src[6])) || (IsPixEqual(src[2], src[1]) && IsPixEqual(src[1], src[8]) && IsPixEqual(src[8], src[7]) && IsPixEqual(src[7], src[6]) && !IsPixEqual(src[0], src[8])) ) ); blendPix = ( DistYCbCr(src[0], src[7]) <= DistYCbCr(src[0], src[1]) ) ? src[7] : src[1]; dst[ 1] = mix(dst[ 1], blendPix, (needBlend && doLineBlend) ? ((haveShallowLine) ? ((haveSteepLine) ? 1.0/3.0 : 0.25) : ((haveSteepLine) ? 0.25 : 0.00)) : 0.00); dst[ 6] = mix(dst[ 6], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.25 : 0.00); dst[ 7] = mix(dst[ 7], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.75 : 0.00); dst[ 8] = mix(dst[ 8], blendPix, (needBlend) ? ((doLineBlend) ? ((haveSteepLine) ? 1.00 : ((haveShallowLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[ 9] = mix(dst[ 9], blendPix, (needBlend) ? ((doLineBlend) ? 1.00 : 0.6848532563) : 0.00); dst[10] = mix(dst[10], blendPix, (needBlend) ? ((doLineBlend) ? ((haveShallowLine) ? 1.00 : ((haveSteepLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[11] = mix(dst[11], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.75 : 0.00); dst[12] = mix(dst[12], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.25 : 0.00); dist_01_04 = DistYCbCr(src[5], src[8]); dist_03_08 = DistYCbCr(src[7], src[4]); haveShallowLine = (STEEP_DIRECTION_THRESHOLD * dist_01_04 <= dist_03_08) && (v[0] != v[8]) && (v[1] != v[8]); haveSteepLine = (STEEP_DIRECTION_THRESHOLD * dist_03_08 <= dist_01_04) && (v[0] != v[4]) && (v[3] != v[4]); needBlend = (blendResult[0] != BLEND_NONE); doLineBlend = ( blendResult[0] >= BLEND_DOMINANT || !((blendResult[3] != BLEND_NONE && !IsPixEqual(src[0], src[8])) || (blendResult[1] != BLEND_NONE && !IsPixEqual(src[0], src[4])) || (IsPixEqual(src[8], src[7]) && IsPixEqual(src[7], src[6]) && IsPixEqual(src[6], src[5]) && IsPixEqual(src[5], src[4]) && !IsPixEqual(src[0], src[6])) ) ); blendPix = ( DistYCbCr(src[0], src[5]) <= DistYCbCr(src[0], src[7]) ) ? src[5] : src[7]; dst[ 0] = mix(dst[ 0], blendPix, (needBlend && doLineBlend) ? ((haveShallowLine) ? ((haveSteepLine) ? 1.0/3.0 : 0.25) : ((haveSteepLine) ? 0.25 : 0.00)) : 0.00); dst[15] = mix(dst[15], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.25 : 0.00); dst[ 4] = mix(dst[ 4], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.75 : 0.00); dst[ 5] = mix(dst[ 5], blendPix, (needBlend) ? ((doLineBlend) ? ((haveSteepLine) ? 1.00 : ((haveShallowLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[ 6] = mix(dst[ 6], blendPix, (needBlend) ? ((doLineBlend) ? 1.00 : 0.6848532563) : 0.00); dst[ 7] = mix(dst[ 7], blendPix, (needBlend) ? ((doLineBlend) ? ((haveShallowLine) ? 1.00 : ((haveSteepLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[ 8] = mix(dst[ 8], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.75 : 0.00); dst[ 9] = mix(dst[ 9], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.25 : 0.00); dist_01_04 = DistYCbCr(src[3], src[6]); dist_03_08 = DistYCbCr(src[5], src[2]); haveShallowLine = (STEEP_DIRECTION_THRESHOLD * dist_01_04 <= dist_03_08) && (v[0] != v[6]) && (v[7] != v[6]); haveSteepLine = (STEEP_DIRECTION_THRESHOLD * dist_03_08 <= dist_01_04) && (v[0] != v[2]) && (v[1] != v[2]); needBlend = (blendResult[3] != BLEND_NONE); doLineBlend = ( blendResult[3] >= BLEND_DOMINANT || !((blendResult[2] != BLEND_NONE && !IsPixEqual(src[0], src[6])) || (blendResult[0] != BLEND_NONE && !IsPixEqual(src[0], src[2])) || (IsPixEqual(src[6], src[5]) && IsPixEqual(src[5], src[4]) && IsPixEqual(src[4], src[3]) && IsPixEqual(src[3], src[2]) && !IsPixEqual(src[0], src[4])) ) ); blendPix = ( DistYCbCr(src[0], src[3]) <= DistYCbCr(src[0], src[5]) ) ? src[3] : src[5]; dst[ 3] = mix(dst[ 3], blendPix, (needBlend && doLineBlend) ? ((haveShallowLine) ? ((haveSteepLine) ? 1.0/3.0 : 0.25) : ((haveSteepLine) ? 0.25 : 0.00)) : 0.00); dst[12] = mix(dst[12], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.25 : 0.00); dst[13] = mix(dst[13], blendPix, (needBlend && doLineBlend && haveSteepLine) ? 0.75 : 0.00); dst[14] = mix(dst[14], blendPix, (needBlend) ? ((doLineBlend) ? ((haveSteepLine) ? 1.00 : ((haveShallowLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[15] = mix(dst[15], blendPix, (needBlend) ? ((doLineBlend) ? 1.00 : 0.6848532563) : 0.00); dst[ 4] = mix(dst[ 4], blendPix, (needBlend) ? ((doLineBlend) ? ((haveShallowLine) ? 1.00 : ((haveSteepLine) ? 0.75 : 0.50)) : 0.08677704501) : 0.00); dst[ 5] = mix(dst[ 5], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.75 : 0.00); dst[ 6] = mix(dst[ 6], blendPix, (needBlend && doLineBlend && haveShallowLine) ? 0.25 : 0.00); } // select output pixel vec4 res = mix(mix(mix(mix(dst[ 6], dst[ 7], step(0.25, f.x)), mix(dst[ 8], dst[ 9], step(0.75, f.x)), step(0.50, f.x)), mix(mix(dst[ 5], dst[ 0], step(0.25, f.x)), mix(dst[ 1], dst[10], step(0.75, f.x)), step(0.50, f.x)), step(0.25, f.y)), mix(mix(mix(dst[ 4], dst[ 3], step(0.25, f.x)), mix(dst[ 2], dst[11], step(0.75, f.x)), step(0.50, f.x)), mix(mix(dst[15], dst[14], step(0.25, f.x)), mix(dst[13], dst[12], step(0.75, f.x)), step(0.50, f.x)), step(0.75, f.y)), step(0.50, f.y)); return postdivide_alpha(res); } uint applyScalingu(uvec2 origxy, uvec2 xy) { return packUnorm4x8(applyScalingf(origxy, xy)); } )"; const char *copyShader = R"( #version 450 #extension GL_ARB_separate_shader_objects : enable // No idea what's optimal here... #define WORKGROUP_SIZE 16 layout (local_size_x = WORKGROUP_SIZE, local_size_y = WORKGROUP_SIZE, local_size_z = 1) in; layout(std430, binding = 1) buffer Buf1 { uint data[]; } buf1; layout(std430, binding = 2) buffer Buf2 { uint data[]; } buf2; layout(push_constant) uniform Params { int width; int height; int scale; int fmt; } params; uint readColoru(uvec2 p) { // Note that if the pixels are packed, we can do multiple stores // and only launch this compute shader for every N pixels, // by slicing the width in half and multiplying x by 2, for example. if (params.fmt == 0) { return buf1.data[p.y * params.width + p.x]; } else { uint offset = p.y * params.width + p.x; uint data = buf1.data[offset / 2]; if ((offset & 1) != 0) { data = data >> 16; } if (params.fmt == 6) { uint r = ((data << 3) & 0xF8) | ((data >> 2) & 0x07); uint g = ((data >> 3) & 0xFC) | ((data >> 9) & 0x03); uint b = ((data >> 8) & 0xF8) | ((data >> 13) & 0x07); return 0xFF000000 | (b << 16) | (g << 8) | r; } else if (params.fmt == 5) { uint r = ((data << 3) & 0xF8) | ((data >> 2) & 0x07); uint g = ((data >> 2) & 0xF8) | ((data >> 7) & 0x07); uint b = ((data >> 7) & 0xF8) | ((data >> 12) & 0x07); uint a = ((data >> 15) & 0x01) == 0 ? 0x00 : 0xFF; return (a << 24) | (b << 16) | (g << 8) | r; } else if (params.fmt == 4) { uint r = (data & 0x0F) | ((data << 4) & 0x0F); uint g = (data & 0xF0) | ((data >> 4) & 0x0F); uint b = ((data >> 8) & 0x0F) | ((data >> 4) & 0xF0); uint a = ((data >> 12) & 0x0F) | ((data >> 8) & 0xF0); return (a << 24) | (b << 16) | (g << 8) | r; } } } vec4 readColorf(uvec2 p) { return unpackUnorm4x8(readColoru(p)); } %s void main() { uvec2 xy = gl_GlobalInvocationID.xy; // Kill off any out-of-image threads to avoid stray writes. // Should only happen on the tiniest mipmaps as PSP textures are power-of-2, // and we use a 16x16 workgroup size. if (xy.x >= params.width || xy.y >= params.height) return; uvec2 origxy = xy / params.scale; if (params.scale == 1) { buf2.data[xy.y * params.width + xy.x] = readColoru(origxy); } else { buf2.data[xy.y * params.width + xy.x] = applyScalingu(origxy, xy); } } )"; const char *uploadShader = R"( #version 450 #extension GL_ARB_separate_shader_objects : enable // No idea what's optimal here... #define WORKGROUP_SIZE 16 layout (local_size_x = WORKGROUP_SIZE, local_size_y = WORKGROUP_SIZE, local_size_z = 1) in; uniform layout(binding = 0, rgba8) writeonly image2D img; layout(std430, binding = 1) buffer Buf { uint data[]; } buf; layout(push_constant) uniform Params { int width; int height; int scale; int fmt; } params; uint readColoru(uvec2 p) { // Note that if the pixels are packed, we can do multiple stores // and only launch this compute shader for every N pixels, // by slicing the width in half and multiplying x by 2, for example. if (params.fmt == 0) { return buf.data[p.y * params.width + p.x]; } else { uint offset = p.y * params.width + p.x; uint data = buf.data[offset / 2]; if ((offset & 1) != 0) { data = data >> 16; } if (params.fmt == 6) { uint r = ((data << 3) & 0xF8) | ((data >> 2) & 0x07); uint g = ((data >> 3) & 0xFC) | ((data >> 9) & 0x03); uint b = ((data >> 8) & 0xF8) | ((data >> 13) & 0x07); return 0xFF000000 | (b << 16) | (g << 8) | r; } else if (params.fmt == 5) { uint r = ((data << 3) & 0xF8) | ((data >> 2) & 0x07); uint g = ((data >> 2) & 0xF8) | ((data >> 7) & 0x07); uint b = ((data >> 7) & 0xF8) | ((data >> 12) & 0x07); uint a = ((data >> 15) & 0x01) == 0 ? 0x00 : 0xFF; return (a << 24) | (b << 16) | (g << 8) | r; } else if (params.fmt == 4) { uint r = (data & 0x0F) | ((data << 4) & 0x0F); uint g = (data & 0xF0) | ((data >> 4) & 0x0F); uint b = ((data >> 8) & 0x0F) | ((data >> 4) & 0xF0); uint a = ((data >> 12) & 0x0F) | ((data >> 8) & 0xF0); return (a << 24) | (b << 16) | (g << 8) | r; } } } vec4 readColorf(uvec2 p) { // Unpack the color (we could look it up in a CLUT here if we wanted...) // It's a bit silly that we need to unpack to float and then have imageStore repack, // but the alternative is to store to a buffer, and then launch a vkCmdCopyBufferToImage instead. return unpackUnorm4x8(readColoru(p)); } %s void main() { uvec2 xy = gl_GlobalInvocationID.xy; // Kill off any out-of-image threads to avoid stray writes. // Should only happen on the tiniest mipmaps as PSP textures are power-of-2, // and we use a 16x16 workgroup size. if (xy.x >= params.width || xy.y >= params.height) return; uvec2 origxy = xy / params.scale; if (params.scale == 1) { imageStore(img, ivec2(xy.x, xy.y), readColorf(origxy)); } else { imageStore(img, ivec2(xy.x, xy.y), applyScalingf(origxy, xy)); } } )"; SamplerCache::~SamplerCache() { DeviceLost(); } VkSampler SamplerCache::GetOrCreateSampler(const SamplerCacheKey &key) { VkSampler sampler = cache_.Get(key); if (sampler != VK_NULL_HANDLE) return sampler; VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = key.sClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeV = key.tClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeW = samp.addressModeU; // irrelevant, but Mali recommends that all clamp modes are the same if possible. samp.compareOp = VK_COMPARE_OP_ALWAYS; samp.flags = 0; samp.magFilter = key.magFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; samp.minFilter = key.minFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; samp.mipmapMode = key.mipFilt ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; if (key.aniso) { // Docs say the min of this value and the supported max are used. samp.maxAnisotropy = 1 << g_Config.iAnisotropyLevel; samp.anisotropyEnable = true; } else { samp.maxAnisotropy = 1.0f; samp.anisotropyEnable = false; } samp.maxLod = (float)(int32_t)key.maxLevel * (1.0f / 256.0f); samp.minLod = (float)(int32_t)key.minLevel * (1.0f / 256.0f); samp.mipLodBias = (float)(int32_t)key.lodBias * (1.0f / 256.0f); VkResult res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &sampler); assert(res == VK_SUCCESS); cache_.Insert(key, sampler); return sampler; } std::string SamplerCache::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) { SamplerCacheKey key; key.FromString(id); return StringFromFormat("%s/%s mag:%s min:%s mip:%s maxLod:%f minLod:%f bias:%f", key.sClamp ? "Clamp" : "Wrap", key.tClamp ? "Clamp" : "Wrap", key.magFilt ? "Linear" : "Nearest", key.minFilt ? "Linear" : "Nearest", key.mipFilt ? "Linear" : "Nearest", key.maxLevel / 256.0f, key.minLevel / 256.0f, key.lodBias / 256.0f); } void SamplerCache::DeviceLost() { cache_.Iterate([&](const SamplerCacheKey &key, VkSampler sampler) { vulkan_->Delete().QueueDeleteSampler(sampler); }); cache_.Clear(); } void SamplerCache::DeviceRestore(VulkanContext *vulkan) { vulkan_ = vulkan; } std::vector SamplerCache::DebugGetSamplerIDs() const { std::vector ids; cache_.Iterate([&](const SamplerCacheKey &id, VkSampler sampler) { std::string idstr; id.ToString(&idstr); ids.push_back(idstr); }); return ids; } TextureCacheVulkan::TextureCacheVulkan(Draw::DrawContext *draw, VulkanContext *vulkan) : TextureCacheCommon(draw), vulkan_(vulkan), samplerCache_(vulkan), computeShaderManager_(vulkan) { timesInvalidatedAllThisFrame_ = 0; DeviceRestore(vulkan, draw); SetupTextureDecoder(); } TextureCacheVulkan::~TextureCacheVulkan() { DeviceLost(); } void TextureCacheVulkan::SetFramebufferManager(FramebufferManagerVulkan *fbManager) { framebufferManagerVulkan_ = fbManager; framebufferManager_ = fbManager; } void TextureCacheVulkan::SetVulkan2D(Vulkan2D *vk2d) { vulkan2D_ = vk2d; depalShaderCache_->SetVulkan2D(vk2d); } void TextureCacheVulkan::DeviceLost() { Clear(true); if (allocator_) { allocator_->Destroy(); // We have to delete on queue, so this can free its queued deletions. vulkan_->Delete().QueueCallback([](void *ptr) { auto allocator = static_cast(ptr); delete allocator; }, allocator_); allocator_ = nullptr; } samplerCache_.DeviceLost(); if (samplerNearest_) vulkan_->Delete().QueueDeleteSampler(samplerNearest_); if (uploadCS_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteShaderModule(uploadCS_); if (copyCS_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeleteShaderModule(copyCS_); computeShaderManager_.DeviceLost(); nextTexture_ = nullptr; } void TextureCacheVulkan::DeviceRestore(VulkanContext *vulkan, Draw::DrawContext *draw) { vulkan_ = vulkan; draw_ = draw; assert(!allocator_); allocator_ = new VulkanDeviceAllocator(vulkan_, TEXCACHE_MIN_SLAB_SIZE, TEXCACHE_MAX_SLAB_SIZE); samplerCache_.DeviceRestore(vulkan); VkSamplerCreateInfo samp{ VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.magFilter = VK_FILTER_NEAREST; samp.minFilter = VK_FILTER_NEAREST; samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &samplerNearest_); std::string error; std::string fullUploadShader = StringFromFormat(uploadShader, shader4xbrz); std::string fullCopyShader = StringFromFormat(copyShader, shader4xbrz); if (g_Config.bTexHardwareScaling) { uploadCS_ = CompileShaderModule(vulkan_, VK_SHADER_STAGE_COMPUTE_BIT, fullUploadShader.c_str(), &error); _dbg_assert_msg_(G3D, uploadCS_ != VK_NULL_HANDLE, "failed to compile upload shader"); copyCS_ = CompileShaderModule(vulkan_, VK_SHADER_STAGE_COMPUTE_BIT, fullCopyShader.c_str(), &error); _dbg_assert_msg_(G3D, copyCS_!= VK_NULL_HANDLE, "failed to compile copy shader"); } computeShaderManager_.DeviceRestore(vulkan); } void TextureCacheVulkan::ReleaseTexture(TexCacheEntry *entry, bool delete_them) { DEBUG_LOG(G3D, "Deleting texture %p", entry->vkTex); delete entry->vkTex; entry->vkTex = nullptr; } VkFormat getClutDestFormatVulkan(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return VULKAN_4444_FORMAT; case GE_CMODE_16BIT_ABGR5551: return VULKAN_1555_FORMAT; case GE_CMODE_16BIT_BGR5650: return VULKAN_565_FORMAT; case GE_CMODE_32BIT_ABGR8888: return VULKAN_8888_FORMAT; } return VK_FORMAT_UNDEFINED; } static const VkFilter MagFiltVK[2] = { VK_FILTER_NEAREST, VK_FILTER_LINEAR }; void TextureCacheVulkan::SetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight, SamplerCacheKey &key) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GETexLevelMode mode; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, 0, 0, mode); key.minFilt = minFilt & 1; key.mipFilt = 0; key.magFilt = magFilt & 1; key.sClamp = sClamp; key.tClamp = tClamp; // Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case. // This happens whether we have OES_texture_npot or not. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (w != bufferWidth || h != bufferHeight) { key.sClamp = true; key.tClamp = true; } } void TextureCacheVulkan::StartFrame() { InvalidateLastTexture(); depalShaderCache_->Decimate(); timesInvalidatedAllThisFrame_ = 0; texelsScaledThisFrame_ = 0; if (clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { int slabPressureLimit = TEXCACHE_SLAB_PRESSURE; if (g_Config.iTexScalingLevel > 1) { // Since textures are 2D maybe we should square this, but might get too non-aggressive. slabPressureLimit *= g_Config.iTexScalingLevel; } Decimate(allocator_->GetSlabCount() > slabPressureLimit); } allocator_->Begin(); computeShaderManager_.BeginFrame(); } void TextureCacheVulkan::EndFrame() { allocator_->End(); computeShaderManager_.EndFrame(); if (texelsScaledThisFrame_) { // INFO_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_); } } void TextureCacheVulkan::UpdateCurrentClut(GEPaletteFormat clutFormat, u32 clutBase, bool clutIndexIsSimple) { const u32 clutBaseBytes = clutFormat == GE_CMODE_32BIT_ABGR8888 ? (clutBase * sizeof(u32)) : (clutBase * sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. // // TODO: Actually, this seems like a hack. The game can upload part of a CLUT and reference other data. // clutTotalBytes_ is the last amount uploaded. We should hash clutMaxBytes_, but this will often hash // unrelated old entries for small palettes. // Adding clutBaseBytes may just be mitigating this for some usage patterns. const u32 clutExtendedBytes = std::min(clutTotalBytes_ + clutBaseBytes, clutMaxBytes_); clutHash_ = DoReliableHash32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888); clutBuf_ = clutBufRaw_; // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (clutFormat == GE_CMODE_16BIT_ABGR4444 && clutIndexIsSimple) { const u16_le *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0x0FFF; for (int i = 0; i < 16; ++i) { u16 step = clutAlphaLinearColor_ | (i << 12); if (clut[i] != step) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } void TextureCacheVulkan::BindTexture(TexCacheEntry *entry) { if (!entry || !entry->vkTex) { imageView_ = VK_NULL_HANDLE; curSampler_ = VK_NULL_HANDLE; return; } entry->vkTex->Touch(); imageView_ = entry->vkTex->GetImageView(); SamplerCacheKey key{}; UpdateSamplingParams(*entry, key); curSampler_ = samplerCache_.GetOrCreateSampler(key); drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); } void TextureCacheVulkan::Unbind() { imageView_ = VK_NULL_HANDLE; curSampler_ = VK_NULL_HANDLE; InvalidateLastTexture(); } void TextureCacheVulkan::ApplyTextureFramebuffer(TexCacheEntry *entry, VirtualFramebuffer *framebuffer) { SamplerCacheKey samplerKey{}; SetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight, samplerKey); DepalShaderVulkan *depalShader = nullptr; uint32_t clutMode = gstate.clutformat & 0xFFFFFF; bool useShaderDepal = framebufferManager_->GetCurrentRenderVFB() != framebuffer; bool expand32 = !gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS); if ((entry->status & TexCacheEntry::STATUS_DEPALETTIZE) && !g_Config.bDisableSlowFramebufEffects) { if (useShaderDepal) { depalShaderCache_->SetPushBuffer(drawEngine_->GetPushBufferForTextureData()); const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); VulkanTexture *clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_, expand32); drawEngine_->SetDepalTexture(clutTexture ? clutTexture->GetImageView() : VK_NULL_HANDLE); // Only point filtering enabled. samplerKey.magFilt = false; samplerKey.minFilt = false; samplerKey.mipFilt = false; // Make sure to update the uniforms, and also texture - needs a recheck. gstate_c.Dirty(DIRTY_DEPAL); gstate_c.SetUseShaderDepal(true); gstate_c.depalFramebufferFormat = framebuffer->drawnFormat; const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::TexStatus alphaStatus = CheckAlpha(clutBuf_, getClutDestFormatVulkan(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.SetTextureFullAlpha(alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL); curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey); InvalidateLastTexture(entry); imageView_ = framebufferManagerVulkan_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET); return; } else { depalShader = depalShaderCache_->GetDepalettizeShader(clutMode, framebuffer->drawnFormat); drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); } } if (depalShader) { depalShaderCache_->SetPushBuffer(drawEngine_->GetPushBufferForTextureData()); const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); VulkanTexture *clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_, expand32); Draw::Framebuffer *depalFBO = framebufferManager_->GetTempFBO(TempFBO::DEPAL, framebuffer->renderWidth, framebuffer->renderHeight, Draw::FBO_8888); draw_->BindFramebufferAsRenderTarget(depalFBO, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }); Vulkan2D::Vertex verts[4] = { { -1, -1, 0.0f, 0, 0 }, { 1, -1, 0.0f, 1, 0 }, { -1, 1, 0.0f, 0, 1 }, { 1, 1, 0.0f, 1, 1 }, }; // If min is not < max, then we don't have values (wasn't set during decode.) if (gstate_c.vertBounds.minV < gstate_c.vertBounds.maxV) { const float invWidth = 1.0f / (float)framebuffer->bufferWidth; const float invHeight = 1.0f / (float)framebuffer->bufferHeight; // Inverse of half = double. const float invHalfWidth = invWidth * 2.0f; const float invHalfHeight = invHeight * 2.0f; const int u1 = gstate_c.vertBounds.minU + gstate_c.curTextureXOffset; const int v1 = gstate_c.vertBounds.minV + gstate_c.curTextureYOffset; const int u2 = gstate_c.vertBounds.maxU + gstate_c.curTextureXOffset; const int v2 = gstate_c.vertBounds.maxV + gstate_c.curTextureYOffset; const float left = u1 * invHalfWidth - 1.0f; const float right = u2 * invHalfWidth - 1.0f; const float top = v1 * invHalfHeight - 1.0f; const float bottom = v2 * invHalfHeight - 1.0f; // Points are: BL, BR, TR, TL. verts[0].x = left; verts[0].y = bottom; verts[1].x = right; verts[1].y = bottom; verts[2].x = left; verts[2].y = top; verts[3].x = right; verts[3].y = top; // And also the UVs, same order. const float uvleft = u1 * invWidth; const float uvright = u2 * invWidth; const float uvtop = v1 * invHeight; const float uvbottom = v2 * invHeight; verts[0].u = uvleft; verts[0].v = uvbottom; verts[1].u = uvright; verts[1].v = uvbottom; verts[2].u = uvleft; verts[2].v = uvtop; verts[3].u = uvright; verts[3].v = uvtop; // We need to reapply the texture next time since we cropped UV. gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); } VkBuffer pushed; uint32_t offset = push_->PushAligned(verts, sizeof(verts), 4, &pushed); draw_->BindFramebufferAsTexture(framebuffer->fbo, 0, Draw::FB_COLOR_BIT, 0); VkImageView fbo = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); VkDescriptorSet descSet = vulkan2D_->GetDescriptorSet(fbo, samplerNearest_, clutTexture->GetImageView(), samplerNearest_); VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); renderManager->BindPipeline(depalShader->pipeline); renderManager->SetScissor(VkRect2D{ {0, 0}, { framebuffer->renderWidth, framebuffer->renderHeight} }); renderManager->SetViewport(VkViewport{ 0.f, 0.f, (float)framebuffer->renderWidth, (float)framebuffer->renderHeight, 0.f, 1.f }); renderManager->Draw(vulkan2D_->GetPipelineLayout(), descSet, 0, nullptr, pushed, offset, 4); shaderManagerVulkan_->DirtyLastShader(); const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::TexStatus alphaStatus = CheckAlpha(clutBuf_, getClutDestFormatVulkan(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.SetTextureFullAlpha(alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL); framebufferManager_->RebindFramebuffer(); draw_->BindFramebufferAsTexture(depalFBO, 0, Draw::FB_COLOR_BIT, 0); imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); // Need to rebind the pipeline since we switched it. drawEngine_->DirtyPipeline(); // Since we may have switched render targets, we need to re-set depth/stencil etc states. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE | DIRTY_RASTER_STATE); } else { entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE; framebufferManager_->RebindFramebuffer(); // TODO: This line should usually not be needed. imageView_ = framebufferManagerVulkan_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET); drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); gstate_c.SetTextureFullAlpha(gstate.getTextureFormat() == GE_TFMT_5650); } curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey); InvalidateLastTexture(entry); } ReplacedTextureFormat FromVulkanFormat(VkFormat fmt) { switch (fmt) { case VULKAN_565_FORMAT: return ReplacedTextureFormat::F_5650; case VULKAN_1555_FORMAT: return ReplacedTextureFormat::F_5551; case VULKAN_4444_FORMAT: return ReplacedTextureFormat::F_4444; case VULKAN_8888_FORMAT: default: return ReplacedTextureFormat::F_8888; } } VkFormat ToVulkanFormat(ReplacedTextureFormat fmt) { switch (fmt) { case ReplacedTextureFormat::F_5650: return VULKAN_565_FORMAT; case ReplacedTextureFormat::F_5551: return VULKAN_1555_FORMAT; case ReplacedTextureFormat::F_4444: return VULKAN_4444_FORMAT; case ReplacedTextureFormat::F_8888: default: return VULKAN_8888_FORMAT; } } void TextureCacheVulkan::BuildTexture(TexCacheEntry *const entry) { entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; VkCommandBuffer cmdInit = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER); // For the estimate, we assume cluts always point to 8888 for simplicity. cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); if (entry->framebuffer) { // Nothing else to do here. return; } if ((entry->bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && entry->addr >= PSP_GetKernelMemoryEnd()) { ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); // Proceeding here can cause a crash. return; } // Adjust maxLevel to actually present levels.. bool badMipSizes = false; int maxLevel = entry->maxLevel; for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = gstate.getTextureAddress(i); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } // If size reaches 1, stop, and override maxlevel. int tw = gstate.getTextureWidth(i); int th = gstate.getTextureHeight(i); if (tw == 1 || th == 1) { maxLevel = i; break; } if (i > 0 && gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { if (tw != 1 && tw != (gstate.getTextureWidth(i - 1) >> 1)) badMipSizes = true; else if (th != 1 && th != (gstate.getTextureHeight(i - 1) >> 1)) badMipSizes = true; } } // In addition, simply don't load more than level 0 if g_Config.bMipMap is false. if (badMipSizes) { maxLevel = 0; } // If GLES3 is available, we can preallocate the storage, which makes texture loading more efficient. VkFormat dstFmt = GetDestFormat(GETextureFormat(entry->format), gstate.getClutPaletteFormat()); int scaleFactor = standardScaleFactor_; // Rachet down scale factor in low-memory mode. if (lowMemoryMode_) { // Keep it even, though, just in case of npot troubles. scaleFactor = scaleFactor > 4 ? 4 : (scaleFactor > 2 ? 2 : 1); } u64 cachekey = replacer_.Enabled() ? entry->CacheKey() : 0; int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); ReplacedTexture &replaced = replacer_.FindReplacement(cachekey, entry->fullhash, w, h); if (replaced.GetSize(0, w, h)) { // We're replacing, so we won't scale. scaleFactor = 1; entry->status |= TexCacheEntry::STATUS_IS_SCALED; maxLevel = replaced.MaxLevel(); badMipSizes = false; } // Don't scale the PPGe texture. if (entry->addr > 0x05000000 && entry->addr < PSP_GetKernelMemoryEnd()) scaleFactor = 1; if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) != 0 && scaleFactor != 1 && !g_Config.bTexHardwareScaling) { // Remember for later that we /wanted/ to scale this texture. entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } if (scaleFactor != 1) { if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED && !g_Config.bTexHardwareScaling) { entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } else { entry->status &= ~TexCacheEntry::STATUS_TO_SCALE; entry->status |= TexCacheEntry::STATUS_IS_SCALED; texelsScaledThisFrame_ += w * h; } } // TODO if (scaleFactor > 1) { maxLevel = 0; } VkFormat actualFmt = scaleFactor > 1 ? VULKAN_8888_FORMAT : dstFmt; if (replaced.Valid()) { actualFmt = ToVulkanFormat(replaced.Format(0)); } bool computeUpload = false; bool computeCopy = false; { delete entry->vkTex; entry->vkTex = new VulkanTexture(vulkan_); VulkanTexture *image = entry->vkTex; const VkComponentMapping *mapping; switch (actualFmt) { case VULKAN_4444_FORMAT: mapping = &VULKAN_4444_SWIZZLE; break; case VULKAN_1555_FORMAT: mapping = &VULKAN_1555_SWIZZLE; break; case VULKAN_565_FORMAT: mapping = &VULKAN_565_SWIZZLE; break; default: mapping = &VULKAN_8888_SWIZZLE; break; } VkImageLayout imageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // If we want to use the GE debugger, we should add VK_IMAGE_USAGE_TRANSFER_SRC_BIT too... // Compute experiment if (actualFmt == VULKAN_8888_FORMAT && scaleFactor > 1 && g_Config.bTexHardwareScaling) { // Enable the experiment you want. if (uploadCS_ != VK_NULL_HANDLE) computeUpload = true; else if (copyCS_ != VK_NULL_HANDLE) computeCopy = true; } if (computeUpload) { usage |= VK_IMAGE_USAGE_STORAGE_BIT; imageLayout = VK_IMAGE_LAYOUT_GENERAL; } char texName[128]{}; snprintf(texName, sizeof(texName), "Texture%08x", entry->addr); image->SetTag(texName); bool allocSuccess = image->CreateDirect(cmdInit, allocator_, w * scaleFactor, h * scaleFactor, maxLevel + 1, actualFmt, imageLayout, usage, mapping); if (!allocSuccess && !lowMemoryMode_) { WARN_LOG_REPORT(G3D, "Texture cache ran out of GPU memory; switching to low memory mode"); lowMemoryMode_ = true; decimationCounter_ = 0; Decimate(); // TODO: We should stall the GPU here and wipe things out of memory. // As is, it will almost definitely fail the second time, but next frame it may recover. auto err = GetI18NCategory("Error"); if (scaleFactor > 1) { host->NotifyUserMessage(err->T("Warning: Video memory FULL, reducing upscaling and switching to slow caching mode"), 2.0f); } else { host->NotifyUserMessage(err->T("Warning: Video memory FULL, switching to slow caching mode"), 2.0f); } scaleFactor = 1; actualFmt = dstFmt; allocSuccess = image->CreateDirect(cmdInit, allocator_, w * scaleFactor, h * scaleFactor, maxLevel + 1, actualFmt, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, mapping); } if (!allocSuccess) { ERROR_LOG(G3D, "Failed to create texture (%dx%d)", w, h); delete entry->vkTex; entry->vkTex = nullptr; } } lastBoundTexture = entry->vkTex; ReplacedTextureDecodeInfo replacedInfo; if (replacer_.Enabled() && !replaced.Valid()) { replacedInfo.cachekey = cachekey; replacedInfo.hash = entry->fullhash; replacedInfo.addr = entry->addr; replacedInfo.isVideo = videos_.find(entry->addr & 0x3FFFFFFF) != videos_.end(); replacedInfo.isFinal = (entry->status & TexCacheEntry::STATUS_TO_SCALE) == 0; replacedInfo.scaleFactor = scaleFactor; replacedInfo.fmt = FromVulkanFormat(actualFmt); } if (entry->vkTex) { // NOTE: Since the level is not part of the cache key, we assume it never changes. u8 level = std::max(0, gstate.getTexLevelOffset16() / 16); bool fakeMipmap = IsFakeMipmapChange() && level > 0; // Upload the texture data. for (int i = 0; i <= maxLevel; i++) { int mipWidth = gstate.getTextureWidth(i) * scaleFactor; int mipHeight = gstate.getTextureHeight(i) * scaleFactor; if (replaced.Valid()) { replaced.GetSize(i, mipWidth, mipHeight); } int srcBpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2; int srcStride = mipWidth * srcBpp; int srcSize = srcStride * mipHeight; int bpp = actualFmt == VULKAN_8888_FORMAT ? 4 : 2; int stride = (mipWidth * bpp + 15) & ~15; int size = stride * mipHeight; uint32_t bufferOffset; VkBuffer texBuf; // nvidia returns 1 but that can't be healthy... let's align by 16 as a minimum. int pushAlignment = std::max(16, (int)vulkan_->GetPhysicalDeviceProperties().properties.limits.optimalBufferCopyOffsetAlignment); void *data; bool dataScaled = true; if (replaced.Valid()) { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); replaced.Load(i, data, stride); entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); } else { auto dispatchCompute = [&](VkDescriptorSet descSet) { struct Params { int x; int y; int s; int fmt; } params{ mipWidth, mipHeight, scaleFactor, 0 }; if (dstFmt == VULKAN_4444_FORMAT) { params.fmt = 4; } else if (dstFmt == VULKAN_1555_FORMAT) { params.fmt = 5; } else if (dstFmt == VULKAN_565_FORMAT) { params.fmt = 6; } vkCmdBindDescriptorSets(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipelineLayout(), 0, 1, &descSet, 0, nullptr); vkCmdPushConstants(cmdInit, computeShaderManager_.GetPipelineLayout(), VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(params), ¶ms); vkCmdDispatch(cmdInit, (mipWidth + 15) / 16, (mipHeight + 15) / 16, 1); }; if (fakeMipmap) { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); LoadTextureLevel(*entry, (uint8_t *)data, stride, level, scaleFactor, dstFmt); entry->vkTex->UploadMip(cmdInit, 0, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); break; } else { if (computeUpload) { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(srcSize, &bufferOffset, &texBuf, pushAlignment); dataScaled = false; LoadTextureLevel(*entry, (uint8_t *)data, srcStride, i, 1, dstFmt); // This format can be used with storage images. VkImageView view = entry->vkTex->CreateViewForMip(i); VkDescriptorSet descSet = computeShaderManager_.GetDescriptorSet(view, texBuf, bufferOffset, srcSize); vkCmdBindPipeline(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipeline(uploadCS_)); dispatchCompute(descSet); vulkan_->Delete().QueueDeleteImageView(view); } else if (computeCopy) { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(srcSize, &bufferOffset, &texBuf, pushAlignment); dataScaled = false; LoadTextureLevel(*entry, (uint8_t *)data, srcStride, i, 1, dstFmt); // Simple test of using a "copy shader" before the upload. This one could unswizzle or whatever // and will work for any texture format including 16-bit as long as the shader is written to pack it into int32 size bits // which is the smallest possible write. VkBuffer localBuf; uint32_t localOffset; uint32_t localSize = size; localOffset = (uint32_t)drawEngine_->GetPushBufferLocal()->Allocate(localSize, &localBuf); VkDescriptorSet descSet = computeShaderManager_.GetDescriptorSet(VK_NULL_HANDLE, texBuf, bufferOffset, srcSize, localBuf, localOffset, localSize); vkCmdBindPipeline(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipeline(copyCS_)); dispatchCompute(descSet); // After the compute, before the copy, we need a memory barrier. VkBufferMemoryBarrier barrier{ VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER }; barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; barrier.buffer = localBuf; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.offset = localOffset; barrier.size = localSize; vkCmdPipelineBarrier(cmdInit, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 1, &barrier, 0, nullptr); entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, localBuf, localOffset, stride / bpp); } else { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); LoadTextureLevel(*entry, (uint8_t *)data, stride, i, scaleFactor, dstFmt); entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); } } if (replacer_.Enabled()) { // When hardware texture scaling is enabled, this saves the original. int w = dataScaled ? mipWidth : mipWidth / scaleFactor; int h = dataScaled ? mipHeight : mipHeight / scaleFactor; replacer_.NotifyTextureDecoded(replacedInfo, data, stride, i, w, h); } } } if (maxLevel == 0) { entry->status |= TexCacheEntry::STATUS_BAD_MIPS; } else { entry->status &= ~TexCacheEntry::STATUS_BAD_MIPS; } if (replaced.Valid()) { entry->SetAlphaStatus(TexCacheEntry::TexStatus(replaced.AlphaStatus())); } entry->vkTex->EndCreate(cmdInit, false, computeUpload ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } gstate_c.SetTextureFullAlpha(entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL); } VkFormat TextureCacheVulkan::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const { if (!gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS)) { return VK_FORMAT_R8G8B8A8_UNORM; } switch (format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: return getClutDestFormatVulkan(clutFormat); case GE_TFMT_4444: return VULKAN_4444_FORMAT; case GE_TFMT_5551: return VULKAN_1555_FORMAT; case GE_TFMT_5650: return VULKAN_565_FORMAT; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: return VULKAN_8888_FORMAT; } } TexCacheEntry::TexStatus TextureCacheVulkan::CheckAlpha(const u32 *pixelData, VkFormat dstFmt, int stride, int w, int h) { CheckAlphaResult res; switch (dstFmt) { case VULKAN_4444_FORMAT: res = CheckAlphaRGBA4444Basic(pixelData, stride, w, h); break; case VULKAN_1555_FORMAT: res = CheckAlphaRGBA5551Basic(pixelData, stride, w, h); break; case VULKAN_565_FORMAT: // Never has any alpha. res = CHECKALPHA_FULL; break; default: res = CheckAlphaRGBA8888Basic(pixelData, stride, w, h); break; } return (TexCacheEntry::TexStatus)res; } void TextureCacheVulkan::LoadTextureLevel(TexCacheEntry &entry, uint8_t *writePtr, int rowPitch, int level, int scaleFactor, VkFormat dstFmt) { VulkanTexture *tex = entry.vkTex; int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); { PROFILE_THIS_SCOPE("decodetex"); GETextureFormat tfmt = (GETextureFormat)entry.format; GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); u32 texaddr = gstate.getTextureAddress(level); int bufw = GetTextureBufw(level, texaddr, tfmt); int bpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2; u32 *pixelData = (u32 *)writePtr; int decPitch = rowPitch; if (scaleFactor > 1) { tmpTexBufRearrange_.resize(std::max(bufw, w) * h); pixelData = tmpTexBufRearrange_.data(); // We want to end up with a neatly packed texture for scaling. decPitch = w * bpp; } bool expand32 = !gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS); DecodeTextureLevel((u8 *)pixelData, decPitch, tfmt, clutformat, texaddr, level, bufw, false, false, expand32); gpuStats.numTexturesDecoded++; // We check before scaling since scaling shouldn't invent alpha from a full alpha texture. if ((entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // TODO: When we decode directly, this can be more expensive (maybe not on mobile?) // This does allow us to skip alpha testing, though. TexCacheEntry::TexStatus alphaStatus = CheckAlpha(pixelData, dstFmt, decPitch / bpp, w, h); entry.SetAlphaStatus(alphaStatus, level); } else { entry.SetAlphaStatus(TexCacheEntry::STATUS_ALPHA_UNKNOWN); } if (scaleFactor > 1) { u32 fmt = dstFmt; // CPU scaling reads from the destination buffer so we want cached RAM. uint8_t *rearrange = (uint8_t *)AllocateAlignedMemory(w * scaleFactor * h * scaleFactor * 4, 16); scaler.ScaleAlways((u32 *)rearrange, pixelData, fmt, w, h, scaleFactor); pixelData = (u32 *)writePtr; dstFmt = (VkFormat)fmt; // We always end up at 8888. Other parts assume this. assert(dstFmt == VULKAN_8888_FORMAT); bpp = sizeof(u32); decPitch = w * bpp; if (decPitch != rowPitch) { for (int y = 0; y < h; ++y) { memcpy(writePtr + rowPitch * y, rearrange + decPitch * y, w * bpp); } decPitch = rowPitch; } else { memcpy(writePtr, rearrange, w * h * 4); } FreeAlignedMemory(rearrange); } } } bool TextureCacheVulkan::GetCurrentTextureDebug(GPUDebugBuffer &buffer, int level) { SetTexture(false); if (!nextTexture_) return false; // Apply texture may need to rebuild the texture if we're about to render, or bind a framebuffer. TexCacheEntry *entry = nextTexture_; ApplyTexture(); // TODO: Centralize? if (entry->framebuffer) { VirtualFramebuffer *vfb = entry->framebuffer; buffer.Allocate(vfb->bufferWidth, vfb->bufferHeight, GPU_DBG_FORMAT_8888, false); bool retval = draw_->CopyFramebufferToMemorySync(vfb->fbo, Draw::FB_COLOR_BIT, 0, 0, vfb->bufferWidth, vfb->bufferHeight, Draw::DataFormat::R8G8B8A8_UNORM, buffer.GetData(), vfb->bufferWidth); // Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf. // So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE); // We may have blitted to a temp FBO. framebufferManager_->RebindFramebuffer(); return retval; } if (!entry->vkTex) return false; VulkanTexture *texture = entry->vkTex; VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); GPUDebugBufferFormat bufferFormat; Draw::DataFormat drawFormat; switch (texture->GetFormat()) { case VULKAN_565_FORMAT: bufferFormat = GPU_DBG_FORMAT_565; drawFormat = Draw::DataFormat::B5G6R5_UNORM_PACK16; break; case VULKAN_1555_FORMAT: bufferFormat = GPU_DBG_FORMAT_5551; drawFormat = Draw::DataFormat::B5G5R5A1_UNORM_PACK16; break; case VULKAN_4444_FORMAT: bufferFormat = GPU_DBG_FORMAT_4444; drawFormat = Draw::DataFormat::B4G4R4A4_UNORM_PACK16; break; case VULKAN_8888_FORMAT: default: bufferFormat = GPU_DBG_FORMAT_8888; drawFormat = Draw::DataFormat::R8G8B8A8_UNORM; break; } int w = texture->GetWidth(); int h = texture->GetHeight(); buffer.Allocate(w, h, bufferFormat); renderManager->CopyImageToMemorySync(texture->GetImage(), level, 0, 0, w, h, drawFormat, (uint8_t *)buffer.GetData(), w); // Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf. // So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE); framebufferManager_->RebindFramebuffer(); return true; } void TextureCacheVulkan::GetStats(char *ptr, size_t size) { snprintf(ptr, size, "Alloc: %d slabs\nSlab min/max: %d/%d\nAlloc usage: %d%%", allocator_->GetSlabCount(), allocator_->GetMinSlabSize(), allocator_->GetMaxSlabSize(), allocator_->ComputeUsagePercent()); } std::vector TextureCacheVulkan::DebugGetSamplerIDs() const { return samplerCache_.DebugGetSamplerIDs(); } std::string TextureCacheVulkan::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) { return samplerCache_.DebugGetSamplerString(id, stringType); }