// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "ext/xxhash.h" #include "Common/File/VFS/VFS.h" #include "Common/Data/Text/I18n.h" #include "Common/Math/math_util.h" #include "Common/Profiler/Profiler.h" #include "Common/GPU/thin3d.h" #include "Common/GPU/Vulkan/VulkanRenderManager.h" #include "Common/Data/Convert/ColorConv.h" #include "Common/StringUtils.h" #include "Common/TimeUtil.h" #include "Core/Config.h" #include "Core/Host.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/System.h" #include "Common/GPU/Vulkan/VulkanContext.h" #include "Common/GPU/Vulkan/VulkanImage.h" #include "Common/GPU/Vulkan/VulkanMemory.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Common/PostShader.h" #include "GPU/Common/TextureCacheCommon.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Vulkan/VulkanContext.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/FramebufferManagerVulkan.h" #include "GPU/Vulkan/DepalettizeShaderVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/DrawEngineVulkan.h" using namespace PPSSPP_VK; #define TEXCACHE_MIN_SLAB_SIZE (8 * 1024 * 1024) #define TEXCACHE_MAX_SLAB_SIZE (32 * 1024 * 1024) #define TEXCACHE_SLAB_PRESSURE 4 const char *uploadShader = R"( #version 450 #extension GL_ARB_separate_shader_objects : enable // 8x8 is the most common compute shader workgroup size, and works great on all major // hardware vendors. layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in; uniform layout(binding = 0, rgba8) writeonly image2D img; layout(std430, binding = 1) buffer Buf { uint data[]; } buf; layout(push_constant) uniform Params { int width; int height; } params; uint readColoru(uvec2 p) { return buf.data[p.y * params.width + p.x]; } vec4 readColorf(uvec2 p) { // Unpack the color (we could look it up in a CLUT here if we wanted...) // The imageStore repack is free. return unpackUnorm4x8(readColoru(p)); } void writeColorf(ivec2 p, vec4 c) { imageStore(img, p, c); } %s // Note that main runs once per INPUT pixel, unlike the old model. void main() { uvec2 xy = gl_GlobalInvocationID.xy; // Kill off any out-of-image threads to avoid stray writes. // Should only happen on the tiniest mipmaps as PSP textures are power-of-2, // and we use a 8x8 workgroup size. Probably not really necessary. if (xy.x >= params.width || xy.y >= params.height) return; // applyScaling will write the upscaled pixels, using writeColorf above. // It's expected to write a square of scale*scale pixels, at the location xy*scale. applyScaling(xy); } )"; SamplerCache::~SamplerCache() { DeviceLost(); } VkSampler SamplerCache::GetOrCreateSampler(const SamplerCacheKey &key) { VkSampler sampler = cache_.Get(key); if (sampler != VK_NULL_HANDLE) return sampler; VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = key.sClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeV = key.tClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeW = samp.addressModeU; // irrelevant, but Mali recommends that all clamp modes are the same if possible. samp.compareOp = VK_COMPARE_OP_ALWAYS; samp.flags = 0; samp.magFilter = key.magFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; samp.minFilter = key.minFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; samp.mipmapMode = key.mipFilt ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; if (key.aniso) { // Docs say the min of this value and the supported max are used. samp.maxAnisotropy = 1 << g_Config.iAnisotropyLevel; samp.anisotropyEnable = true; } else { samp.maxAnisotropy = 1.0f; samp.anisotropyEnable = false; } samp.maxLod = (float)(int32_t)key.maxLevel * (1.0f / 256.0f); samp.minLod = (float)(int32_t)key.minLevel * (1.0f / 256.0f); samp.mipLodBias = (float)(int32_t)key.lodBias * (1.0f / 256.0f); VkResult res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &sampler); _assert_(res == VK_SUCCESS); cache_.Insert(key, sampler); return sampler; } std::string SamplerCache::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) { SamplerCacheKey key; key.FromString(id); return StringFromFormat("%s/%s mag:%s min:%s mip:%s maxLod:%f minLod:%f bias:%f", key.sClamp ? "Clamp" : "Wrap", key.tClamp ? "Clamp" : "Wrap", key.magFilt ? "Linear" : "Nearest", key.minFilt ? "Linear" : "Nearest", key.mipFilt ? "Linear" : "Nearest", key.maxLevel / 256.0f, key.minLevel / 256.0f, key.lodBias / 256.0f); } void SamplerCache::DeviceLost() { cache_.Iterate([&](const SamplerCacheKey &key, VkSampler sampler) { vulkan_->Delete().QueueDeleteSampler(sampler); }); cache_.Clear(); } void SamplerCache::DeviceRestore(VulkanContext *vulkan) { vulkan_ = vulkan; } std::vector SamplerCache::DebugGetSamplerIDs() const { std::vector ids; cache_.Iterate([&](const SamplerCacheKey &id, VkSampler sampler) { std::string idstr; id.ToString(&idstr); ids.push_back(idstr); }); return ids; } TextureCacheVulkan::TextureCacheVulkan(Draw::DrawContext *draw, VulkanContext *vulkan) : TextureCacheCommon(draw), computeShaderManager_(vulkan), samplerCache_(vulkan) { DeviceRestore(draw); SetupTextureDecoder(); } TextureCacheVulkan::~TextureCacheVulkan() { DeviceLost(); } void TextureCacheVulkan::SetFramebufferManager(FramebufferManagerVulkan *fbManager) { framebufferManager_ = fbManager; } void TextureCacheVulkan::SetVulkan2D(Vulkan2D *vk2d) { vulkan2D_ = vk2d; depalShaderCache_->SetVulkan2D(vk2d); } void TextureCacheVulkan::DeviceLost() { VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); Clear(true); if (allocator_) { allocator_->Destroy(); // We have to delete on queue, so this can free its queued deletions. vulkan->Delete().QueueCallback([](void *ptr) { auto allocator = static_cast(ptr); delete allocator; }, allocator_); allocator_ = nullptr; } samplerCache_.DeviceLost(); if (samplerNearest_) vulkan->Delete().QueueDeleteSampler(samplerNearest_); if (uploadCS_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteShaderModule(uploadCS_); computeShaderManager_.DeviceLost(); nextTexture_ = nullptr; } void TextureCacheVulkan::DeviceRestore(Draw::DrawContext *draw) { VulkanContext *vulkan = (VulkanContext *)draw->GetNativeObject(Draw::NativeObject::CONTEXT); draw_ = draw; _assert_(!allocator_); allocator_ = new VulkanDeviceAllocator(vulkan, TEXCACHE_MIN_SLAB_SIZE, TEXCACHE_MAX_SLAB_SIZE); samplerCache_.DeviceRestore(vulkan); VkSamplerCreateInfo samp{ VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.magFilter = VK_FILTER_NEAREST; samp.minFilter = VK_FILTER_NEAREST; samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; VkResult res = vkCreateSampler(vulkan->GetDevice(), &samp, nullptr, &samplerNearest_); _assert_(res == VK_SUCCESS); CompileScalingShader(); computeShaderManager_.DeviceRestore(vulkan); } void TextureCacheVulkan::NotifyConfigChanged() { TextureCacheCommon::NotifyConfigChanged(); CompileScalingShader(); } static std::string ReadShaderSrc(const Path &filename) { size_t sz = 0; char *data = (char *)VFSReadFile(filename.c_str(), &sz); if (!data) return ""; std::string src(data, sz); delete[] data; return src; } void TextureCacheVulkan::CompileScalingShader() { VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); if (!g_Config.bTexHardwareScaling || g_Config.sTextureShaderName != textureShader_) { if (uploadCS_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteShaderModule(uploadCS_); textureShader_.clear(); shaderScaleFactor_ = 0; // no texture scaling shader } else if (uploadCS_) { // No need to recreate. return; } if (!g_Config.bTexHardwareScaling) return; ReloadAllPostShaderInfo(draw_); const TextureShaderInfo *shaderInfo = GetTextureShaderInfo(g_Config.sTextureShaderName); if (!shaderInfo || shaderInfo->computeShaderFile.empty()) return; std::string shaderSource = ReadShaderSrc(shaderInfo->computeShaderFile); std::string fullUploadShader = StringFromFormat(uploadShader, shaderSource.c_str()); std::string error; uploadCS_ = CompileShaderModule(vulkan, VK_SHADER_STAGE_COMPUTE_BIT, fullUploadShader.c_str(), &error); _dbg_assert_msg_(uploadCS_ != VK_NULL_HANDLE, "failed to compile upload shader"); textureShader_ = g_Config.sTextureShaderName; shaderScaleFactor_ = shaderInfo->scaleFactor; } void TextureCacheVulkan::ReleaseTexture(TexCacheEntry *entry, bool delete_them) { delete entry->vkTex; entry->vkTex = nullptr; } VkFormat getClutDestFormatVulkan(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return VULKAN_4444_FORMAT; case GE_CMODE_16BIT_ABGR5551: return VULKAN_1555_FORMAT; case GE_CMODE_16BIT_BGR5650: return VULKAN_565_FORMAT; case GE_CMODE_32BIT_ABGR8888: return VULKAN_8888_FORMAT; } return VK_FORMAT_UNDEFINED; } static const VkFilter MagFiltVK[2] = { VK_FILTER_NEAREST, VK_FILTER_LINEAR }; void TextureCacheVulkan::StartFrame() { InvalidateLastTexture(); depalShaderCache_->Decimate(); timesInvalidatedAllThisFrame_ = 0; texelsScaledThisFrame_ = 0; replacementTimeThisFrame_ = 0.0; if (clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { int slabPressureLimit = TEXCACHE_SLAB_PRESSURE; if (g_Config.iTexScalingLevel > 1) { // Since textures are 2D maybe we should square this, but might get too non-aggressive. slabPressureLimit *= g_Config.iTexScalingLevel; } Decimate(allocator_->GetSlabCount() > slabPressureLimit); } allocator_->Begin(); computeShaderManager_.BeginFrame(); } void TextureCacheVulkan::EndFrame() { allocator_->End(); computeShaderManager_.EndFrame(); if (texelsScaledThisFrame_) { VERBOSE_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_); } } void TextureCacheVulkan::UpdateCurrentClut(GEPaletteFormat clutFormat, u32 clutBase, bool clutIndexIsSimple) { const u32 clutBaseBytes = clutFormat == GE_CMODE_32BIT_ABGR8888 ? (clutBase * sizeof(u32)) : (clutBase * sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. // // TODO: Actually, this seems like a hack. The game can upload part of a CLUT and reference other data. // clutTotalBytes_ is the last amount uploaded. We should hash clutMaxBytes_, but this will often hash // unrelated old entries for small palettes. // Adding clutBaseBytes may just be mitigating this for some usage patterns. const u32 clutExtendedBytes = std::min(clutTotalBytes_ + clutBaseBytes, clutMaxBytes_); if (replacer_.Enabled()) clutHash_ = XXH32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888); else clutHash_ = XXH3_64bits((const char *)clutBufRaw_, clutExtendedBytes) & 0xFFFFFFFF; clutBuf_ = clutBufRaw_; // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (clutFormat == GE_CMODE_16BIT_ABGR4444 && clutIndexIsSimple) { const u16_le *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0x0FFF; for (int i = 0; i < 16; ++i) { u16 step = clutAlphaLinearColor_ | (i << 12); if (clut[i] != step) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } void TextureCacheVulkan::BindTexture(TexCacheEntry *entry) { _assert_(entry); _assert_(entry->vkTex); entry->vkTex->Touch(); imageView_ = entry->vkTex->GetImageView(); int maxLevel = (entry->status & TexCacheEntry::STATUS_BAD_MIPS) ? 0 : entry->maxLevel; SamplerCacheKey samplerKey = GetSamplingParams(maxLevel, entry); curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey); drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); } void TextureCacheVulkan::Unbind() { imageView_ = VK_NULL_HANDLE; curSampler_ = VK_NULL_HANDLE; InvalidateLastTexture(); } void TextureCacheVulkan::ApplyTextureFramebuffer(VirtualFramebuffer *framebuffer, GETextureFormat texFormat, FramebufferNotificationChannel channel) { SamplerCacheKey samplerKey = GetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight); DepalShaderVulkan *depalShader = nullptr; uint32_t clutMode = gstate.clutformat & 0xFFFFFF; bool expand32 = !gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS); bool depth = channel == NOTIFY_FB_DEPTH; bool useShaderDepal = framebufferManager_->GetCurrentRenderVFB() != framebuffer && !depth; bool need_depalettize = IsClutFormat(texFormat); if (need_depalettize && !g_Config.bDisableSlowFramebufEffects) { if (useShaderDepal) { depalShaderCache_->SetPushBuffer(drawEngine_->GetPushBufferForTextureData()); const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); VulkanTexture *clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_, expand32); drawEngine_->SetDepalTexture(clutTexture ? clutTexture->GetImageView() : VK_NULL_HANDLE); // Only point filtering enabled. samplerKey.magFilt = false; samplerKey.minFilt = false; samplerKey.mipFilt = false; // Make sure to update the uniforms, and also texture - needs a recheck. gstate_c.Dirty(DIRTY_DEPAL); gstate_c.SetUseShaderDepal(true); gstate_c.depalFramebufferFormat = framebuffer->drawnFormat; const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::TexStatus alphaStatus = CheckAlpha(clutBuf_, getClutDestFormatVulkan(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.SetTextureFullAlpha(alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL); curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey); if (framebufferManager_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET)) { imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); } else { imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::NULL_IMAGEVIEW); } return; } else { depalShader = depalShaderCache_->GetDepalettizeShader(clutMode, depth ? GE_FORMAT_DEPTH16 : framebuffer->drawnFormat); drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); } } if (depalShader) { depalShaderCache_->SetPushBuffer(drawEngine_->GetPushBufferForTextureData()); const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); VulkanTexture *clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_, expand32); Draw::Framebuffer *depalFBO = framebufferManager_->GetTempFBO(TempFBO::DEPAL, framebuffer->renderWidth, framebuffer->renderHeight); draw_->BindFramebufferAsRenderTarget(depalFBO, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "Depal"); Vulkan2D::Vertex verts[4] = { { -1, -1, 0.0f, 0, 0 }, { 1, -1, 0.0f, 1, 0 }, { -1, 1, 0.0f, 0, 1 }, { 1, 1, 0.0f, 1, 1 }, }; // If min is not < max, then we don't have values (wasn't set during decode.) if (gstate_c.vertBounds.minV < gstate_c.vertBounds.maxV) { const float invWidth = 1.0f / (float)framebuffer->bufferWidth; const float invHeight = 1.0f / (float)framebuffer->bufferHeight; // Inverse of half = double. const float invHalfWidth = invWidth * 2.0f; const float invHalfHeight = invHeight * 2.0f; const int u1 = gstate_c.vertBounds.minU + gstate_c.curTextureXOffset; const int v1 = gstate_c.vertBounds.minV + gstate_c.curTextureYOffset; const int u2 = gstate_c.vertBounds.maxU + gstate_c.curTextureXOffset; const int v2 = gstate_c.vertBounds.maxV + gstate_c.curTextureYOffset; const float left = u1 * invHalfWidth - 1.0f; const float right = u2 * invHalfWidth - 1.0f; const float top = v1 * invHalfHeight - 1.0f; const float bottom = v2 * invHalfHeight - 1.0f; // Points are: BL, BR, TR, TL. verts[0].x = left; verts[0].y = bottom; verts[1].x = right; verts[1].y = bottom; verts[2].x = left; verts[2].y = top; verts[3].x = right; verts[3].y = top; // And also the UVs, same order. const float uvleft = u1 * invWidth; const float uvright = u2 * invWidth; const float uvtop = v1 * invHeight; const float uvbottom = v2 * invHeight; verts[0].u = uvleft; verts[0].v = uvbottom; verts[1].u = uvright; verts[1].v = uvbottom; verts[2].u = uvleft; verts[2].v = uvtop; verts[3].u = uvright; verts[3].v = uvtop; // We need to reapply the texture next time since we cropped UV. gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); } VkBuffer pushed; uint32_t offset = push_->PushAligned(verts, sizeof(verts), 4, &pushed); draw_->BindFramebufferAsTexture(framebuffer->fbo, 0, depth ? Draw::FB_DEPTH_BIT : Draw::FB_COLOR_BIT, 0); VkImageView fbo = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); VkDescriptorSet descSet = vulkan2D_->GetDescriptorSet(fbo, samplerNearest_, clutTexture->GetImageView(), samplerNearest_); VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); renderManager->BindPipeline(depalShader->pipeline, (PipelineFlags)0); if (depth) { DepthScaleFactors scaleFactors = GetDepthScaleFactors(); struct DepthPushConstants { float z_scale; float z_offset; }; DepthPushConstants push; push.z_scale = scaleFactors.scale; push.z_offset = scaleFactors.offset; renderManager->PushConstants(vulkan2D_->GetPipelineLayout(), VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(DepthPushConstants), &push); } renderManager->SetScissor(VkRect2D{ {0, 0}, { framebuffer->renderWidth, framebuffer->renderHeight} }); renderManager->SetViewport(VkViewport{ 0.f, 0.f, (float)framebuffer->renderWidth, (float)framebuffer->renderHeight, 0.f, 1.f }); renderManager->Draw(vulkan2D_->GetPipelineLayout(), descSet, 0, nullptr, pushed, offset, 4); shaderManagerVulkan_->DirtyLastShader(); const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::TexStatus alphaStatus = CheckAlpha(clutBuf_, getClutDestFormatVulkan(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.SetTextureFullAlpha(alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL); framebufferManager_->RebindFramebuffer("RebindFramebuffer - ApplyTextureFramebuffer"); draw_->BindFramebufferAsTexture(depalFBO, 0, Draw::FB_COLOR_BIT, 0); imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); // Need to rebind the pipeline since we switched it. drawEngine_->DirtyPipeline(); // Since we may have switched render targets, we need to re-set depth/stencil etc states. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE | DIRTY_RASTER_STATE); } else { if (framebufferManager_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET)) { imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW); } else { imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::NULL_IMAGEVIEW); } drawEngine_->SetDepalTexture(VK_NULL_HANDLE); gstate_c.SetUseShaderDepal(false); gstate_c.SetTextureFullAlpha(gstate.getTextureFormat() == GE_TFMT_5650); } curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey); } ReplacedTextureFormat FromVulkanFormat(VkFormat fmt) { switch (fmt) { case VULKAN_565_FORMAT: return ReplacedTextureFormat::F_5650; case VULKAN_1555_FORMAT: return ReplacedTextureFormat::F_5551; case VULKAN_4444_FORMAT: return ReplacedTextureFormat::F_4444; case VULKAN_8888_FORMAT: default: return ReplacedTextureFormat::F_8888; } } VkFormat ToVulkanFormat(ReplacedTextureFormat fmt) { switch (fmt) { case ReplacedTextureFormat::F_5650: return VULKAN_565_FORMAT; case ReplacedTextureFormat::F_5551: return VULKAN_1555_FORMAT; case ReplacedTextureFormat::F_4444: return VULKAN_4444_FORMAT; case ReplacedTextureFormat::F_8888: default: return VULKAN_8888_FORMAT; } } void TextureCacheVulkan::BuildTexture(TexCacheEntry *const entry) { entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; // For the estimate, we assume cluts always point to 8888 for simplicity. cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); if ((entry->bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && entry->addr >= PSP_GetKernelMemoryEnd()) { ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); // Proceeding here can cause a crash. return; } // Adjust maxLevel to actually present levels.. bool badMipSizes = false; // maxLevel here is the max level to upload. Not the count. int maxLevel = entry->maxLevel; for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = gstate.getTextureAddress(i); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } // If size reaches 1, stop, and override maxlevel. int tw = gstate.getTextureWidth(i); int th = gstate.getTextureHeight(i); if (tw == 1 || th == 1) { maxLevel = i; break; } if (i > 0 && gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { if (tw != 1 && tw != (gstate.getTextureWidth(i - 1) >> 1)) badMipSizes = true; else if (th != 1 && th != (gstate.getTextureHeight(i - 1) >> 1)) badMipSizes = true; } } // In addition, simply don't load more than level 0 if g_Config.bMipMap is false. if (badMipSizes) { maxLevel = 0; } // We generate missing mipmaps from maxLevel+1 up to this level. maxLevel can get overwritten below // such as when using replacement textures - but let's keep the same amount of levels. int maxLevelToGenerate = maxLevel; VkFormat dstFmt = GetDestFormat(GETextureFormat(entry->format), gstate.getClutPaletteFormat()); // TODO: Really should inspect the format capabilities. if (g_Config.iTexFiltering == TEX_FILTER_AUTO_MAX_QUALITY) { // Boost the number of mipmaps. int maxPossibleMipmaps = log2i(std::min(gstate.getTextureWidth(0), gstate.getTextureHeight(0))); if (maxPossibleMipmaps > maxLevelToGenerate) { maxLevelToGenerate = maxPossibleMipmaps; dstFmt = VK_FORMAT_R8G8B8A8_UNORM; } } int scaleFactor = standardScaleFactor_; bool hardwareScaling = g_Config.bTexHardwareScaling && uploadCS_ != VK_NULL_HANDLE; if (hardwareScaling) { scaleFactor = shaderScaleFactor_; dstFmt = VK_FORMAT_R8G8B8A8_UNORM; } // Rachet down scale factor in low-memory mode. // TODO: I think really we should just turn it off? if (lowMemoryMode_ && !hardwareScaling) { // Keep it even, though, just in case of npot troubles. scaleFactor = scaleFactor > 4 ? 4 : (scaleFactor > 2 ? 2 : 1); } int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); ReplacedTexture &replaced = FindReplacement(entry, w, h); if (replaced.Valid()) { // We're replacing, so we won't scale. scaleFactor = 1; maxLevel = replaced.MaxLevel(); badMipSizes = false; } // Don't scale the PPGe texture. if (entry->addr > 0x05000000 && entry->addr < PSP_GetKernelMemoryEnd()) { scaleFactor = 1; } if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) != 0 && scaleFactor != 1 && !hardwareScaling) { // Remember for later that we /wanted/ to scale this texture. entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } if (scaleFactor != 1) { if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED && !hardwareScaling) { entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } else { entry->status &= ~TexCacheEntry::STATUS_TO_SCALE; entry->status |= TexCacheEntry::STATUS_IS_SCALED; texelsScaledThisFrame_ += w * h; } } // TODO: Support mip levels for upscaled images. // Probably can just remove this check? if (scaleFactor > 1) { maxLevel = 0; } // Any texture scaling is gonna move away from the original 16-bit format, if any. VkFormat actualFmt = scaleFactor > 1 ? VULKAN_8888_FORMAT : dstFmt; if (replaced.Valid()) { actualFmt = ToVulkanFormat(replaced.Format(0)); } bool computeUpload = false; VkCommandBuffer cmdInit = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER); VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); { delete entry->vkTex; entry->vkTex = new VulkanTexture(vulkan); VulkanTexture *image = entry->vkTex; const VkComponentMapping *mapping; switch (actualFmt) { case VULKAN_4444_FORMAT: mapping = &VULKAN_4444_SWIZZLE; break; case VULKAN_1555_FORMAT: mapping = &VULKAN_1555_SWIZZLE; break; case VULKAN_565_FORMAT: mapping = &VULKAN_565_SWIZZLE; break; default: mapping = &VULKAN_8888_SWIZZLE; break; } VkImageLayout imageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // Compute experiment if (actualFmt == VULKAN_8888_FORMAT && scaleFactor > 1 && hardwareScaling) { if (uploadCS_ != VK_NULL_HANDLE) computeUpload = true; } if (computeUpload) { usage |= VK_IMAGE_USAGE_STORAGE_BIT; imageLayout = VK_IMAGE_LAYOUT_GENERAL; } char texName[128]{}; snprintf(texName, sizeof(texName), "tex_%08x_%s", entry->addr, GeTextureFormatToString((GETextureFormat)entry->format, gstate.getClutPaletteFormat())); image->SetTag(texName); bool allocSuccess = image->CreateDirect(cmdInit, allocator_, w * scaleFactor, h * scaleFactor, maxLevelToGenerate + 1, actualFmt, imageLayout, usage, mapping); if (!allocSuccess && !lowMemoryMode_) { WARN_LOG_REPORT(G3D, "Texture cache ran out of GPU memory; switching to low memory mode"); lowMemoryMode_ = true; decimationCounter_ = 0; Decimate(); // TODO: We should stall the GPU here and wipe things out of memory. // As is, it will almost definitely fail the second time, but next frame it may recover. auto err = GetI18NCategory("Error"); if (scaleFactor > 1) { host->NotifyUserMessage(err->T("Warning: Video memory FULL, reducing upscaling and switching to slow caching mode"), 2.0f); } else { host->NotifyUserMessage(err->T("Warning: Video memory FULL, switching to slow caching mode"), 2.0f); } scaleFactor = 1; actualFmt = dstFmt; allocSuccess = image->CreateDirect(cmdInit, allocator_, w * scaleFactor, h * scaleFactor, maxLevelToGenerate + 1, actualFmt, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, mapping); } if (!allocSuccess) { ERROR_LOG(G3D, "Failed to create texture (%dx%d)", w, h); delete entry->vkTex; entry->vkTex = nullptr; } } ReplacedTextureDecodeInfo replacedInfo; if (replacer_.Enabled() && !replaced.Valid()) { replacedInfo.cachekey = entry->CacheKey(); replacedInfo.hash = entry->fullhash; replacedInfo.addr = entry->addr; replacedInfo.isVideo = IsVideo(entry->addr); replacedInfo.isFinal = (entry->status & TexCacheEntry::STATUS_TO_SCALE) == 0; replacedInfo.scaleFactor = scaleFactor; replacedInfo.fmt = FromVulkanFormat(actualFmt); } if (entry->vkTex) { // NOTE: Since the level is not part of the cache key, we assume it never changes. u8 level = std::max(0, gstate.getTexLevelOffset16() / 16); bool fakeMipmap = IsFakeMipmapChange() && level > 0; // Upload the texture data. for (int i = 0; i <= maxLevel; i++) { int mipUnscaledWidth = gstate.getTextureWidth(i); int mipUnscaledHeight = gstate.getTextureHeight(i); int mipWidth = mipUnscaledWidth * scaleFactor; int mipHeight = mipUnscaledHeight * scaleFactor; if (replaced.Valid()) { replaced.GetSize(i, mipWidth, mipHeight); } int bpp = actualFmt == VULKAN_8888_FORMAT ? 4 : 2; int stride = (mipWidth * bpp + 15) & ~15; int size = stride * mipHeight; uint32_t bufferOffset; VkBuffer texBuf; // NVIDIA reports a min alignment of 1 but that can't be healthy... let's align by 16 as a minimum. int pushAlignment = std::max(16, (int)vulkan->GetPhysicalDeviceProperties().properties.limits.optimalBufferCopyOffsetAlignment); void *data; bool dataScaled = true; if (replaced.Valid()) { // Directly load the replaced image. data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); double replaceStart = time_now_d(); replaced.Load(i, data, stride); // if it fails, it'll just be garbage data... OK for now. replacementTimeThisFrame_ += time_now_d() - replaceStart; entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); } else { if (fakeMipmap) { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); LoadTextureLevel(*entry, (uint8_t *)data, stride, level, scaleFactor, dstFmt); entry->vkTex->UploadMip(cmdInit, 0, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); break; } else { if (computeUpload) { int srcBpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2; int srcStride = mipUnscaledWidth * srcBpp; int srcSize = srcStride * mipUnscaledHeight; data = drawEngine_->GetPushBufferForTextureData()->PushAligned(srcSize, &bufferOffset, &texBuf, pushAlignment); dataScaled = false; LoadTextureLevel(*entry, (uint8_t *)data, srcStride, i, 1, dstFmt); // This format can be used with storage images. VkImageView view = entry->vkTex->CreateViewForMip(i); VkDescriptorSet descSet = computeShaderManager_.GetDescriptorSet(view, texBuf, bufferOffset, srcSize); struct Params { int x; int y; } params{ mipUnscaledWidth, mipUnscaledHeight }; vkCmdBindPipeline(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipeline(uploadCS_)); vkCmdBindDescriptorSets(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipelineLayout(), 0, 1, &descSet, 0, nullptr); vkCmdPushConstants(cmdInit, computeShaderManager_.GetPipelineLayout(), VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(params), ¶ms); vkCmdDispatch(cmdInit, (mipUnscaledWidth + 7) / 8, (mipUnscaledHeight + 7) / 8, 1); vulkan->Delete().QueueDeleteImageView(view); } else { data = drawEngine_->GetPushBufferForTextureData()->PushAligned(size, &bufferOffset, &texBuf, pushAlignment); LoadTextureLevel(*entry, (uint8_t *)data, stride, i, scaleFactor, dstFmt); entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, texBuf, bufferOffset, stride / bpp); } } if (replacer_.Enabled()) { // When hardware texture scaling is enabled, this saves the original. int w = dataScaled ? mipWidth : mipUnscaledWidth; int h = dataScaled ? mipHeight : mipUnscaledHeight; replacer_.NotifyTextureDecoded(replacedInfo, data, stride, i, w, h); } } } VkImageLayout layout = computeUpload ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; VkPipelineStageFlags prevStage = computeUpload ? VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT : VK_PIPELINE_STAGE_TRANSFER_BIT; // Generate any additional mipmap levels. // This will transition the whole stack to GENERAL if it wasn't already. if (maxLevel != maxLevelToGenerate) { entry->vkTex->GenerateMips(cmdInit, maxLevel + 1, computeUpload); layout = VK_IMAGE_LAYOUT_GENERAL; prevStage = VK_PIPELINE_STAGE_TRANSFER_BIT; } if (maxLevel == 0) { entry->status |= TexCacheEntry::STATUS_BAD_MIPS; } else { entry->status &= ~TexCacheEntry::STATUS_BAD_MIPS; } if (replaced.Valid()) { entry->SetAlphaStatus(TexCacheEntry::TexStatus(replaced.AlphaStatus())); } entry->vkTex->EndCreate(cmdInit, false, prevStage, layout); } } VkFormat TextureCacheVulkan::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const { if (!gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS)) { return VK_FORMAT_R8G8B8A8_UNORM; } switch (format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: return getClutDestFormatVulkan(clutFormat); case GE_TFMT_4444: return VULKAN_4444_FORMAT; case GE_TFMT_5551: return VULKAN_1555_FORMAT; case GE_TFMT_5650: return VULKAN_565_FORMAT; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: return VULKAN_8888_FORMAT; } } TexCacheEntry::TexStatus TextureCacheVulkan::CheckAlpha(const u32 *pixelData, VkFormat dstFmt, int stride, int w, int h) { CheckAlphaResult res; switch (dstFmt) { case VULKAN_4444_FORMAT: res = CheckAlphaRGBA4444Basic(pixelData, stride, w, h); break; case VULKAN_1555_FORMAT: res = CheckAlphaRGBA5551Basic(pixelData, stride, w, h); break; case VULKAN_565_FORMAT: // Never has any alpha. res = CHECKALPHA_FULL; break; default: res = CheckAlphaRGBA8888Basic(pixelData, stride, w, h); break; } return (TexCacheEntry::TexStatus)res; } void TextureCacheVulkan::LoadTextureLevel(TexCacheEntry &entry, uint8_t *writePtr, int rowPitch, int level, int scaleFactor, VkFormat dstFmt) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); { PROFILE_THIS_SCOPE("decodetex"); GETextureFormat tfmt = (GETextureFormat)entry.format; GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); u32 texaddr = gstate.getTextureAddress(level); int bufw = GetTextureBufw(level, texaddr, tfmt); int bpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2; u32 *pixelData = (u32 *)writePtr; int decPitch = rowPitch; if (scaleFactor > 1) { tmpTexBufRearrange_.resize(std::max(bufw, w) * h); pixelData = tmpTexBufRearrange_.data(); // We want to end up with a neatly packed texture for scaling. decPitch = w * bpp; } bool expand32 = !gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS) || dstFmt == VK_FORMAT_R8G8B8A8_UNORM; DecodeTextureLevel((u8 *)pixelData, decPitch, tfmt, clutformat, texaddr, level, bufw, false, false, expand32); gpuStats.numTexturesDecoded++; // We check before scaling since scaling shouldn't invent alpha from a full alpha texture. if ((entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // TODO: When we decode directly, this can be more expensive (maybe not on mobile?) // This does allow us to skip alpha testing, though. TexCacheEntry::TexStatus alphaStatus = CheckAlpha(pixelData, dstFmt, decPitch / bpp, w, h); entry.SetAlphaStatus(alphaStatus, level); } else { entry.SetAlphaStatus(TexCacheEntry::STATUS_ALPHA_UNKNOWN); } if (scaleFactor > 1) { u32 fmt = dstFmt; // CPU scaling reads from the destination buffer so we want cached RAM. uint8_t *rearrange = (uint8_t *)AllocateAlignedMemory(w * scaleFactor * h * scaleFactor * 4, 16); scaler.ScaleAlways((u32 *)rearrange, pixelData, fmt, w, h, scaleFactor); pixelData = (u32 *)writePtr; dstFmt = (VkFormat)fmt; // We always end up at 8888. Other parts assume this. _assert_(dstFmt == VULKAN_8888_FORMAT); bpp = sizeof(u32); decPitch = w * bpp; if (decPitch != rowPitch) { for (int y = 0; y < h; ++y) { memcpy(writePtr + rowPitch * y, rearrange + decPitch * y, w * bpp); } decPitch = rowPitch; } else { memcpy(writePtr, rearrange, w * h * 4); } FreeAlignedMemory(rearrange); } } } bool TextureCacheVulkan::GetCurrentTextureDebug(GPUDebugBuffer &buffer, int level) { SetTexture(); if (!nextTexture_) { if (nextFramebufferTexture_) { VirtualFramebuffer *vfb = nextFramebufferTexture_; buffer.Allocate(vfb->bufferWidth, vfb->bufferHeight, GPU_DBG_FORMAT_8888, false); bool retval = draw_->CopyFramebufferToMemorySync(vfb->fbo, Draw::FB_COLOR_BIT, 0, 0, vfb->bufferWidth, vfb->bufferHeight, Draw::DataFormat::R8G8B8A8_UNORM, buffer.GetData(), vfb->bufferWidth, "GetCurrentTextureDebug"); // Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf. // So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE); // We may have blitted to a temp FBO. framebufferManager_->RebindFramebuffer("RebindFramebuffer - GetCurrentTextureDebug"); return retval; } else { return false; } } // Apply texture may need to rebuild the texture if we're about to render, or bind a framebuffer. TexCacheEntry *entry = nextTexture_; ApplyTexture(); if (!entry->vkTex) return false; VulkanTexture *texture = entry->vkTex; VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); GPUDebugBufferFormat bufferFormat; Draw::DataFormat drawFormat; switch (texture->GetFormat()) { case VULKAN_565_FORMAT: bufferFormat = GPU_DBG_FORMAT_565; drawFormat = Draw::DataFormat::B5G6R5_UNORM_PACK16; break; case VULKAN_1555_FORMAT: bufferFormat = GPU_DBG_FORMAT_5551; drawFormat = Draw::DataFormat::B5G5R5A1_UNORM_PACK16; break; case VULKAN_4444_FORMAT: bufferFormat = GPU_DBG_FORMAT_4444; drawFormat = Draw::DataFormat::B4G4R4A4_UNORM_PACK16; break; case VULKAN_8888_FORMAT: default: bufferFormat = GPU_DBG_FORMAT_8888; drawFormat = Draw::DataFormat::R8G8B8A8_UNORM; break; } int w = texture->GetWidth(); int h = texture->GetHeight(); buffer.Allocate(w, h, bufferFormat); renderManager->CopyImageToMemorySync(texture->GetImage(), level, 0, 0, w, h, drawFormat, (uint8_t *)buffer.GetData(), w, "GetCurrentTextureDebug"); // Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf. // So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE); framebufferManager_->RebindFramebuffer("RebindFramebuffer - GetCurrentTextureDebug"); return true; } void TextureCacheVulkan::GetStats(char *ptr, size_t size) { snprintf(ptr, size, "Alloc: %d slabs\nSlab min/max: %d/%d\nAlloc usage: %d%%", allocator_->GetSlabCount(), allocator_->GetMinSlabSize(), allocator_->GetMaxSlabSize(), allocator_->ComputeUsagePercent()); } std::vector TextureCacheVulkan::DebugGetSamplerIDs() const { return samplerCache_.DebugGetSamplerIDs(); } std::string TextureCacheVulkan::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) { return samplerCache_.DebugGetSamplerString(id, stringType); }