#pragma once // VulkanRenderManager takes the role that a GL driver does of sequencing and optimizing render passes. // Only draws and binds are handled here, resource creation and allocations are handled as normal - // that's the nice thing with Vulkan. #include #include #include #include #include #include #include #include "Common/Math/Statistics.h" #include "Common/Thread/Promise.h" #include "Common/System/Display.h" #include "Common/GPU/Vulkan/VulkanContext.h" #include "Common/Data/Convert/SmallDataConvert.h" #include "Common/Math/math_util.h" #include "Common/GPU/DataFormat.h" #include "Common/GPU/Vulkan/VulkanQueueRunner.h" // Forward declaration VK_DEFINE_HANDLE(VmaAllocation); // Simple independent framebuffer image. struct VKRImage { // These four are "immutable". VkImage image; VkImageView rtView; // Used for rendering to, and readbacks of stencil. 2D if single layer, 2D_ARRAY if multiple. Includes both depth and stencil if depth/stencil. // This is for texturing all layers at once. If aspect is depth/stencil, does not include stencil. VkImageView texAllLayersView; // If it's a layered image (for stereo), this is two 2D views of it, to make it compatible with shaders that don't yet support stereo. // If there's only one layer, layerViews[0] only is initialized. VkImageView texLayerViews[2]{}; VmaAllocation alloc; VkFormat format; // This one is used by QueueRunner's Perform functions to keep track. CANNOT be used anywhere else due to sync issues. VkImageLayout layout; int numLayers; // For debugging. std::string tag; }; // NOTE: If numLayers > 1, it will create an array texture, rather than a normal 2D texture. // This requires a different sampling path! void CreateImage(VulkanContext *vulkan, VkCommandBuffer cmd, VKRImage &img, int width, int height, int numLayers, VkFormat format, VkImageLayout initialLayout, bool color, const char *tag); class VKRFramebuffer { public: VKRFramebuffer(VulkanContext *vk, VkCommandBuffer initCmd, VKRRenderPass *compatibleRenderPass, int _width, int _height, int _numLayers, bool createDepthStencilBuffer, const char *tag); ~VKRFramebuffer(); VkFramebuffer Get(VKRRenderPass *compatibleRenderPass, RenderPassType rpType); int width = 0; int height = 0; int numLayers = 0; VKRImage color{}; // color.image is always there. VKRImage depth{}; // depth.image is allowed to be VK_NULL_HANDLE. const char *Tag() const { return tag_.c_str(); } void UpdateTag(const char *newTag); // TODO: Hide. VulkanContext *vulkan_; private: VkFramebuffer framebuf[RP_TYPE_COUNT]{}; std::string tag_; }; struct BoundingRect { int x1; int y1; int x2; int y2; BoundingRect() { Reset(); } void Reset() { x1 = 65535; y1 = 65535; x2 = -65535; y2 = -65535; } bool Empty() const { return x2 < 0; } void SetRect(int x, int y, int width, int height) { x1 = x; y1 = y; x2 = width; y2 = height; } void Apply(const VkRect2D &rect) { if (rect.offset.x < x1) x1 = rect.offset.x; if (rect.offset.y < y1) y1 = rect.offset.y; int rect_x2 = rect.offset.x + rect.extent.width; int rect_y2 = rect.offset.y + rect.extent.height; if (rect_x2 > x2) x2 = rect_x2; if (rect_y2 > y2) y2 = rect_y2; } VkRect2D ToVkRect2D() const { VkRect2D rect; rect.offset.x = x1; rect.offset.y = y1; rect.extent.width = x2 - x1; rect.extent.height = y2 - y1; return rect; } }; // All the data needed to create a graphics pipeline. struct VKRGraphicsPipelineDesc { VkPipelineCache pipelineCache = VK_NULL_HANDLE; VkPipelineColorBlendStateCreateInfo cbs{ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO }; VkPipelineColorBlendAttachmentState blend0{}; VkPipelineDepthStencilStateCreateInfo dss{ VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; VkDynamicState dynamicStates[6]{}; VkPipelineDynamicStateCreateInfo ds{ VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO }; VkPipelineRasterizationStateCreateInfo rs{ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO }; VkPipelineMultisampleStateCreateInfo ms{ VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO }; // Replaced the ShaderStageInfo with promises here so we can wait for compiles to finish. Promise *vertexShader = nullptr; Promise *fragmentShader = nullptr; Promise *geometryShader = nullptr; VkPipelineInputAssemblyStateCreateInfo inputAssembly{ VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO }; VkVertexInputAttributeDescription attrs[8]{}; VkVertexInputBindingDescription ibd{}; VkPipelineVertexInputStateCreateInfo vis{ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; VkPipelineViewportStateCreateInfo views{ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO }; VkPipelineLayout pipelineLayout = VK_NULL_HANDLE; // Does not include the render pass type, it's passed in separately since the // desc is persistent. RPKey rpKey{}; }; // All the data needed to create a compute pipeline. struct VKRComputePipelineDesc { VkPipelineCache pipelineCache; VkComputePipelineCreateInfo pipe{ VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO }; }; // Wrapped pipeline. Doesn't own desc. struct VKRGraphicsPipeline { ~VKRGraphicsPipeline() { for (int i = 0; i < RP_TYPE_COUNT; i++) { delete pipeline[i]; } } bool Create(VulkanContext *vulkan, VkRenderPass compatibleRenderPass, RenderPassType rpType); // This deletes the whole VKRGraphicsPipeline, you must remove your last pointer to it when doing this. void QueueForDeletion(VulkanContext *vulkan); u32 GetVariantsBitmask() const; VKRGraphicsPipelineDesc *desc = nullptr; // not owned! Promise *pipeline[RP_TYPE_COUNT]{}; std::string tag; }; struct VKRComputePipeline { ~VKRComputePipeline() { delete pipeline; } VKRComputePipelineDesc *desc = nullptr; Promise *pipeline = nullptr; bool Create(VulkanContext *vulkan); bool Pending() const { return pipeline == VK_NULL_HANDLE && desc != nullptr; } }; struct CompileQueueEntry { CompileQueueEntry(VKRGraphicsPipeline *p, VkRenderPass _compatibleRenderPass, RenderPassType _renderPassType) : type(Type::GRAPHICS), graphics(p), compatibleRenderPass(_compatibleRenderPass), renderPassType(_renderPassType) {} CompileQueueEntry(VKRComputePipeline *p) : type(Type::COMPUTE), compute(p), renderPassType(RP_TYPE_COLOR_DEPTH) {} enum class Type { GRAPHICS, COMPUTE, }; Type type; VkRenderPass compatibleRenderPass; RenderPassType renderPassType; VKRGraphicsPipeline *graphics = nullptr; VKRComputePipeline *compute = nullptr; }; class VulkanRenderManager { public: VulkanRenderManager(VulkanContext *vulkan); ~VulkanRenderManager(); // Makes sure that the GPU has caught up enough that we can start writing buffers of this frame again. void BeginFrame(bool enableProfiling, bool enableLogProfiler); // Can run on a different thread! void Finish(); // Zaps queued up commands. Use if you know there's a risk you've queued up stuff that has already been deleted. Can happen during in-game shutdown. void Wipe(); // This starts a new step containing a render pass (unless it can be trivially merged into the previous one, which is pretty common). // // After a "CopyFramebuffer" or the other functions that start "steps", you need to call this beforce // making any new render state changes or draw calls. // // The following dynamic state needs to be reset by the caller after calling this (and will thus not safely carry over from // the previous one): // * Viewport/Scissor // * Stencil parameters // * Blend color // // (Most other state is directly decided by your choice of pipeline and descriptor set, so not handled here). // // It can be useful to use GetCurrentStepId() to figure out when you need to send all this state again, if you're // not keeping track of your calls to this function on your own. void BindFramebufferAsRenderTarget(VKRFramebuffer *fb, VKRRenderPassLoadAction color, VKRRenderPassLoadAction depth, VKRRenderPassLoadAction stencil, uint32_t clearColor, float clearDepth, uint8_t clearStencil, const char *tag); // Returns an ImageView corresponding to a framebuffer. Is called BindFramebufferAsTexture to maintain a similar interface // as the other backends, even though there's no actual binding happening here. // For layer, we use the same convention as thin3d, where layer = -1 means all layers together. For texturing, that means that you // get an array texture view. VkImageView BindFramebufferAsTexture(VKRFramebuffer *fb, int binding, VkImageAspectFlags aspectBits, int layer); void BindCurrentFramebufferAsInputAttachment0(VkImageAspectFlags aspectBits); bool CopyFramebufferToMemorySync(VKRFramebuffer *src, VkImageAspectFlags aspectBits, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride, const char *tag); void CopyImageToMemorySync(VkImage image, int mipLevel, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride, const char *tag); void CopyFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkOffset2D dstPos, VkImageAspectFlags aspectMask, const char *tag); void BlitFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkRect2D dstRect, VkImageAspectFlags aspectMask, VkFilter filter, const char *tag); // Deferred creation, like in GL. Unlike GL though, the purpose is to allow background creation and avoiding // stalling the emulation thread as much as possible. // We delay creating pipelines until the end of the current render pass, so we can create the right type immediately. // Unless a variantBitmask is passed in, in which case we can just go ahead. // WARNING: desc must stick around during the lifetime of the pipeline! It's not enough to build it on the stack and drop it. VKRGraphicsPipeline *CreateGraphicsPipeline(VKRGraphicsPipelineDesc *desc, PipelineFlags pipelineFlags, uint32_t variantBitmask, const char *tag); VKRComputePipeline *CreateComputePipeline(VKRComputePipelineDesc *desc); void NudgeCompilerThread() { compileMutex_.lock(); compileCond_.notify_one(); compileMutex_.unlock(); } // Mainly used to bind the frame-global desc set. // Can be done before binding a pipeline, so not asserting on that. void BindDescriptorSet(int setNumber, VkDescriptorSet set, VkPipelineLayout pipelineLayout) { VkRenderData data{ VKRRenderCommand::BIND_DESCRIPTOR_SET }; data.bindDescSet.setNumber = setNumber; data.bindDescSet.set = set; data.bindDescSet.pipelineLayout = pipelineLayout; curRenderStep_->commands.push_back(data); } void BindPipeline(VKRGraphicsPipeline *pipeline, PipelineFlags flags, VkPipelineLayout pipelineLayout) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); _dbg_assert_(pipeline != nullptr); VkRenderData data{ VKRRenderCommand::BIND_GRAPHICS_PIPELINE }; pipelinesToCheck_.push_back(pipeline); data.graphics_pipeline.pipeline = pipeline; data.graphics_pipeline.pipelineLayout = pipelineLayout; curPipelineFlags_ |= flags; curRenderStep_->commands.push_back(data); } void BindPipeline(VKRComputePipeline *pipeline, PipelineFlags flags, VkPipelineLayout pipelineLayout) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); _dbg_assert_(pipeline != nullptr); VkRenderData data{ VKRRenderCommand::BIND_COMPUTE_PIPELINE }; data.compute_pipeline.pipeline = pipeline; data.compute_pipeline.pipelineLayout = pipelineLayout; curPipelineFlags_ |= flags; curRenderStep_->commands.push_back(data); } void SetViewport(const VkViewport &vp) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); _dbg_assert_((int)vp.width >= 0); _dbg_assert_((int)vp.height >= 0); VkRenderData data{ VKRRenderCommand::VIEWPORT }; data.viewport.vp.x = vp.x; data.viewport.vp.y = vp.y; data.viewport.vp.width = vp.width; data.viewport.vp.height = vp.height; // We can't allow values outside this range unless we use VK_EXT_depth_range_unrestricted. // Sometimes state mapping produces 65536/65535 which is slightly outside. // TODO: This should be fixed at the source. data.viewport.vp.minDepth = clamp_value(vp.minDepth, 0.0f, 1.0f); data.viewport.vp.maxDepth = clamp_value(vp.maxDepth, 0.0f, 1.0f); curRenderStep_->commands.push_back(data); curStepHasViewport_ = true; } // It's OK to set scissor outside the valid range - the function will automatically clip. void SetScissor(int x, int y, int width, int height) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); if (x < 0) { width += x; // since x is negative, this shrinks width. x = 0; } if (y < 0) { height += y; y = 0; } if (x + width > curWidth_) { width = curWidth_ - x; } if (y + height > curHeight_) { height = curHeight_ - y; } // Check validity. if (width < 0 || height < 0 || x >= curWidth_ || y >= curHeight_) { // TODO: If any of the dimensions are now zero or negative, we should flip a flag and not do draws, probably. // Instead, if we detect an invalid scissor rectangle, we just put a 1x1 rectangle in the upper left corner. x = 0; y = 0; width = 1; height = 1; } VkRect2D rc; rc.offset.x = x; rc.offset.y = y; rc.extent.width = width; rc.extent.height = height; curRenderArea_.Apply(rc); VkRenderData data{ VKRRenderCommand::SCISSOR }; data.scissor.scissor = rc; curRenderStep_->commands.push_back(data); curStepHasScissor_ = true; } void SetStencilParams(uint8_t writeMask, uint8_t compareMask, uint8_t refValue) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::STENCIL }; data.stencil.stencilWriteMask = writeMask; data.stencil.stencilCompareMask = compareMask; data.stencil.stencilRef = refValue; curRenderStep_->commands.push_back(data); } void SetBlendFactor(uint32_t color) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::BLEND }; data.blendColor.color = color; curRenderStep_->commands.push_back(data); } void PushConstants(VkPipelineLayout pipelineLayout, VkShaderStageFlags stages, int offset, int size, void *constants) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); _dbg_assert_(size + offset < 40); VkRenderData data{ VKRRenderCommand::PUSH_CONSTANTS }; data.push.stages = stages; data.push.offset = offset; data.push.size = size; memcpy(data.push.data, constants, size); curRenderStep_->commands.push_back(data); } void Clear(uint32_t clearColor, float clearZ, int clearStencil, int clearMask); // Cheaply set that we don't care about the contents of a surface at the start of the current render pass. // This set the corresponding load-op of the current render pass to DONT_CARE. // Useful when we don't know at bind-time whether we will overwrite the surface or not. void SetLoadDontCare(VkImageAspectFlags aspects) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) curRenderStep_->render.colorLoad = VKRRenderPassLoadAction::DONT_CARE; if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) curRenderStep_->render.depthLoad = VKRRenderPassLoadAction::DONT_CARE; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) curRenderStep_->render.stencilLoad = VKRRenderPassLoadAction::DONT_CARE; } // Cheaply set that we don't care about the contents of a surface at the end of the current render pass. // This set the corresponding store-op of the current render pass to DONT_CARE. void SetStoreDontCare(VkImageAspectFlags aspects) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) curRenderStep_->render.colorStore = VKRRenderPassStoreAction::DONT_CARE; if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) curRenderStep_->render.depthStore = VKRRenderPassStoreAction::DONT_CARE; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) curRenderStep_->render.stencilStore = VKRRenderPassStoreAction::DONT_CARE; } void Draw(VkDescriptorSet descSet, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, int count, int offset = 0) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER && curStepHasViewport_ && curStepHasScissor_); VkRenderData data{ VKRRenderCommand::DRAW }; data.draw.count = count; data.draw.offset = offset; data.draw.ds = descSet; data.draw.vbuffer = vbuffer; data.draw.voffset = voffset; data.draw.numUboOffsets = numUboOffsets; _dbg_assert_(numUboOffsets <= ARRAY_SIZE(data.draw.uboOffsets)); for (int i = 0; i < numUboOffsets; i++) data.draw.uboOffsets[i] = uboOffsets[i]; curRenderStep_->commands.push_back(data); curRenderStep_->render.numDraws++; } void DrawIndexed(VkDescriptorSet descSet, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, VkBuffer ibuffer, int ioffset, int count, int numInstances, VkIndexType indexType) { _dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER && curStepHasViewport_ && curStepHasScissor_); VkRenderData data{ VKRRenderCommand::DRAW_INDEXED }; data.drawIndexed.count = count; data.drawIndexed.instances = numInstances; data.drawIndexed.ds = descSet; data.drawIndexed.vbuffer = vbuffer; data.drawIndexed.voffset = voffset; data.drawIndexed.ibuffer = ibuffer; data.drawIndexed.ioffset = ioffset; data.drawIndexed.numUboOffsets = numUboOffsets; _dbg_assert_(numUboOffsets <= ARRAY_SIZE(data.drawIndexed.uboOffsets)); for (int i = 0; i < numUboOffsets; i++) data.drawIndexed.uboOffsets[i] = uboOffsets[i]; data.drawIndexed.indexType = indexType; curRenderStep_->commands.push_back(data); curRenderStep_->render.numDraws++; } // These can be useful both when inspecting in RenderDoc, and when manually inspecting recorded commands // in the debugger. void DebugAnnotate(const char *annotation) { VkRenderData data{ VKRRenderCommand::DEBUG_ANNOTATION }; data.debugAnnotation.annotation = annotation; } VkCommandBuffer GetInitCmd(); // Gets a frame-unique ID of the current step being recorded. Can be used to figure out // when the current step has changed, which means the caller will need to re-record its state. int GetCurrentStepId() const { return renderStepOffset_ + (int)steps_.size(); } bool CreateBackbuffers(); void DestroyBackbuffers(); bool HasBackbuffers() { return queueRunner_.HasBackbuffers(); } void SetInflightFrames(int f) { newInflightFrames_ = f < 1 || f > VulkanContext::MAX_INFLIGHT_FRAMES ? VulkanContext::MAX_INFLIGHT_FRAMES : f; } VulkanContext *GetVulkanContext() { return vulkan_; } // Be careful with this. Only meant to be used for fetching render passes for shader cache initialization. VulkanQueueRunner *GetQueueRunner() { return &queueRunner_; } std::string GetGpuProfileString() const { return frameData_[vulkan_->GetCurFrame()].profile.profileSummary; } bool NeedsSwapchainRecreate() const { // Accepting a few of these makes shutdown simpler. return outOfDateFrames_ > VulkanContext::MAX_INFLIGHT_FRAMES; } void ResetStats(); private: void EndCurRenderStep(); void ThreadFunc(); void CompileThreadFunc(); void DrainCompileQueue(); void Run(VKRRenderThreadTask &task); void BeginSubmitFrame(int frame); // Bad for performance but sometimes necessary for synchronous CPU readbacks (screenshots and whatnot). void FlushSync(); void StopThread(); FrameDataShared frameDataShared_; FrameData frameData_[VulkanContext::MAX_INFLIGHT_FRAMES]; int newInflightFrames_ = -1; int inflightFramesAtStart_ = 0; int outOfDateFrames_ = 0; // Submission time state // Note: These are raw backbuffer-sized. Rotated. int curWidthRaw_ = -1; int curHeightRaw_ = -1; // Pre-rotation (as you'd expect). int curWidth_ = -1; int curHeight_ = -1; bool insideFrame_ = false; bool run_ = false; // This is the offset within this frame, in case of a mid-frame sync. int renderStepOffset_ = 0; VKRStep *curRenderStep_ = nullptr; bool curStepHasViewport_ = false; bool curStepHasScissor_ = false; PipelineFlags curPipelineFlags_{}; BoundingRect curRenderArea_; std::vector steps_; // Execution time state VulkanContext *vulkan_; std::thread thread_; VulkanQueueRunner queueRunner_; // For pushing data on the queue. std::mutex pushMutex_; std::condition_variable pushCondVar_; std::queue renderThreadQueue_; // For readbacks and other reasons we need to sync with the render thread. std::mutex syncMutex_; std::condition_variable syncCondVar_; // Shader compilation thread to compile while emulating the rest of the frame. // Only one right now but we could use more. std::thread compileThread_; // Sync std::condition_variable compileCond_; std::mutex compileMutex_; std::vector compileQueue_; // pipelines to check and possibly create at the end of the current render pass. std::vector pipelinesToCheck_; // For nicer output in the little internal GPU profiler. SimpleStat initTimeMs_; SimpleStat totalGPUTimeMs_; SimpleStat renderCPUTimeMs_; };