// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "ext/xxhash.h" #include "i18n/i18n.h" #include "math/math_util.h" #include "profiler/profiler.h" #include "thin3d/VulkanContext.h" #include "Common/ColorConv.h" #include "Core/Config.h" #include "Core/Host.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/System.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/FramebufferVulkan.h" #include "GPU/Vulkan/FragmentShaderGeneratorVulkan.h" #include "GPU/Vulkan/DepalettizeShaderVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Common/TextureDecoder.h" #include "UI/OnScreenDisplay.h" #ifdef _M_SSE #include #endif // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 #define TEXTURE_KILL_AGE_LOWMEM 60 // Not used in lowmem mode. #define TEXTURE_SECOND_KILL_AGE 100 // Try to be prime to other decimation intervals. #define TEXCACHE_DECIMATION_INTERVAL 13 // Changes more frequent than this will be considered "frequent" and prevent texture scaling. #define TEXCACHE_FRAME_CHANGE_FREQUENT 6 // Note: only used when hash backoff is disabled. #define TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST 33 #define TEXCACHE_NAME_CACHE_SIZE 16 #define TEXCACHE_MAX_TEXELS_SCALED (256*256) // Per frame #define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in GL #define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024 #define VULKAN_4444_FORMAT VK_FORMAT_R4G4B4A4_UNORM_PACK16 #define VULKAN_1555_FORMAT VK_FORMAT_A1R5G5B5_UNORM_PACK16 #define VULKAN_565_FORMAT VK_FORMAT_R5G6B5_UNORM_PACK16 #define VULKAN_8888_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Hack! extern int g_iNumVideos; SamplerCache::~SamplerCache() { for (auto iter : cache_) { vulkan_->QueueDelete(iter.second); } } VkSampler SamplerCache::GetOrCreateSampler(const SamplerCacheKey &key) { auto iter = cache_.find(key); if (iter != cache_.end()) { return iter->second; } VkSamplerCreateInfo samp = {}; samp.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samp.pNext = nullptr; samp.addressModeU = key.sClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeV = key.tClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samp.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; samp.compareEnable = false; samp.compareOp = VK_COMPARE_OP_ALWAYS; samp.flags = 0; samp.magFilter = (key.magFilt & 1) ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; samp.minFilter = key.minFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; // TODO: Aniso samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; // key.4) ? ((key.magFilt & 2) ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST) : VK_SAMPLER_MIPMAP_MODE_BASE; samp.maxAnisotropy = 1.0f; samp.maxLod = 0.0f; // 1000.0f; samp.minLod = 0.0f; samp.unnormalizedCoordinates = false; samp.mipLodBias = 0.0f; VkSampler sampler; VkResult res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &sampler); assert(res == VK_SUCCESS); cache_[key] = sampler; return sampler; } TextureCacheVulkan::TextureCacheVulkan(VulkanContext *vulkan) : vulkan_(vulkan), samplerCache_(vulkan), cacheSizeEstimate_(0), secondCacheSizeEstimate_(0), clearCacheNextFrame_(false), lowMemoryMode_(false), clutBuf_(NULL), texelsScaledThisFrame_(0) { timesInvalidatedAllThisFrame_ = 0; lastBoundTexture = nullptr; decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; SetupTextureDecoder(); nextTexture_ = nullptr; } TextureCacheVulkan::~TextureCacheVulkan() { Clear(true); } void TextureCacheVulkan::DownloadFramebufferForClut(u32 clutAddr, u32 bytes) { } static u32 EstimateTexMemoryUsage(const TextureCacheVulkan::TexCacheEntry *entry) { const u16 dim = entry->dim; const u8 dimW = ((dim >> 0) & 0xf); const u8 dimH = ((dim >> 8) & 0xf); u32 pixelSize = 2; switch (entry->format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: // We assume cluts always point to 8888 for simplicity. pixelSize = 4; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: break; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: pixelSize = 4; break; } // This in other words multiplies by w and h. return pixelSize << (dimW + dimH); } void TextureCacheVulkan::Clear(bool delete_them) { lastBoundTexture = nullptr; if (delete_them) { for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %p", iter->second.vkTex); delete iter->second.vkTex; } for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %p", iter->second.vkTex); delete iter->second.vkTex; } } if (cache.size() + secondCache.size()) { INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache.size() + secondCache.size())); cache.clear(); secondCache.clear(); cacheSizeEstimate_ = 0; secondCacheSizeEstimate_ = 0; } fbTexInfo_.clear(); } void TextureCacheVulkan::DeleteTexture(TexCache::iterator it) { delete it->second.vkTex; auto fbInfo = fbTexInfo_.find(it->second.addr); if (fbInfo != fbTexInfo_.end()) { fbTexInfo_.erase(fbInfo); } cacheSizeEstimate_ -= EstimateTexMemoryUsage(&it->second); cache.erase(it); } // Removes old textures. void TextureCacheVulkan::Decimate() { if (--decimationCounter_ <= 0) { decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; } else { return; } if (cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) { const u32 had = cacheSizeEstimate_; lastBoundTexture = nullptr; int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE; for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) { if (iter->second.lastFrame + killAge < gpuStats.numFlips) { DeleteTexture(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_); } if (g_Config.bTextureSecondaryCache && secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE) { const u32 had = secondCacheSizeEstimate_; for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) { // In low memory mode, we kill them all. if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) { delete iter->second.vkTex; secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(&iter->second); secondCache.erase(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_); } } void TextureCacheVulkan::Invalidate(u32 addr, int size, GPUInvalidationType type) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } addr &= 0x3FFFFFFF; const u32 addr_end = addr + size; // They could invalidate inside the texture, let's just give a bit of leeway. const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4; const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32; u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32; if (endKey < startKey) { endKey = (u64)-1; } for (TexCache::iterator iter = cache.lower_bound(startKey), end = cache.upper_bound(endKey); iter != end; ++iter) { u32 texAddr = iter->second.addr; u32 texEnd = iter->second.addr + iter->second.sizeInRAM; if (texAddr < addr_end && addr < texEnd) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (type != GPU_INVALIDATE_ALL) { gpuStats.numTextureInvalidations++; // Start it over from 0 (unless it's safe.) iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0; if (type == GPU_INVALIDATE_SAFE) { u32 diff = gpuStats.numFlips - iter->second.lastFrame; // We still need to mark if the texture is frequently changing, even if it's safely changing. if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) { iter->second.status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } iter->second.framesUntilNextFullHash = 0; } else if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } } void TextureCacheVulkan::InvalidateAll(GPUInvalidationType /*unused*/) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } if (timesInvalidatedAllThisFrame_ > 5) { return; } timesInvalidatedAllThisFrame_++; for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { if (iter->second.GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second.SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (!iter->second.framebuffer) { iter->second.invalidHint++; } } } void TextureCacheVulkan::ClearNextFrame() { clearCacheNextFrame_ = true; } void TextureCacheVulkan::AttachFramebufferValid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { const bool hasInvalidFramebuffer = entry->framebuffer == nullptr || entry->invalidHint == -1; const bool hasOlderFramebuffer = entry->framebuffer != nullptr && entry->framebuffer->last_frame_render < framebuffer->last_frame_render; bool hasFartherFramebuffer = false; if (!hasInvalidFramebuffer && !hasOlderFramebuffer) { // If it's valid, but the offset is greater, then we still win. if (fbTexInfo_[entry->addr].yOffset == fbInfo.yOffset) hasFartherFramebuffer = fbTexInfo_[entry->addr].xOffset > fbInfo.xOffset; else hasFartherFramebuffer = fbTexInfo_[entry->addr].yOffset > fbInfo.yOffset; } if (hasInvalidFramebuffer || hasOlderFramebuffer || hasFartherFramebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = 0; entry->status &= ~TextureCacheVulkan::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[entry->addr] = fbInfo; framebuffer->last_frame_attached = gpuStats.numFlips; host->GPUNotifyTextureAttachment(entry->addr); } else if (entry->framebuffer == framebuffer) { framebuffer->last_frame_attached = gpuStats.numFlips; } } void TextureCacheVulkan::AttachFramebufferInvalid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) { if (entry->framebuffer == nullptr || entry->framebuffer == framebuffer) { if (entry->framebuffer == nullptr) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); } entry->framebuffer = framebuffer; entry->invalidHint = -1; entry->status &= ~TextureCacheVulkan::TexCacheEntry::STATUS_DEPALETTIZE; entry->maxLevel = 0; fbTexInfo_[entry->addr] = fbInfo; host->GPUNotifyTextureAttachment(entry->addr); } } bool TextureCacheVulkan::AttachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer, u32 texaddrOffset) { static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32; AttachedFramebufferInfo fbInfo = { 0 }; const u64 mirrorMask = 0x00600000; // Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors. const u32 addr = (address | 0x04000000) & 0x3FFFFFFF & ~mirrorMask; const u32 texaddr = ((entry->addr + texaddrOffset) & ~mirrorMask); const bool noOffset = texaddr == addr; const bool exactMatch = noOffset && entry->format < 4; const u32 h = 1 << ((entry->dim >> 8) & 0xf); // 512 on a 272 framebuffer is sane, so let's be lenient. const u32 minSubareaHeight = h / 4; // If they match exactly, it's non-CLUT and from the top left. if (exactMatch) { // Apply to non-buffered and buffered mode only. if (!(g_Config.iRenderingMode == FB_NON_BUFFERED_MODE || g_Config.iRenderingMode == FB_BUFFERED_MODE)) return false; DEBUG_LOG(G3D, "Render to texture detected at %08x!", address); if (framebuffer->fb_stride != entry->bufw) { WARN_LOG_REPORT_ONCE(diffStrides1, G3D, "Render to texture with different strides %d != %d", entry->bufw, framebuffer->fb_stride); } if (entry->format != (GETextureFormat)framebuffer->format) { WARN_LOG_REPORT_ONCE(diffFormat1, G3D, "Render to texture with different formats %d != %d", entry->format, framebuffer->format); // Let's avoid using it when we know the format is wrong. May be a video/etc. updating memory. // However, some games use a different format to clear the buffer. if (framebuffer->last_frame_attached + 1 < gpuStats.numFlips) { DetachFramebuffer(entry, address, framebuffer); } } else { AttachFramebufferValid(entry, framebuffer, fbInfo); return true; } } else { // Apply to buffered mode only. if (!(g_Config.iRenderingMode == FB_BUFFERED_MODE)) return false; const bool clutFormat = (framebuffer->format == GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT32) || (framebuffer->format != GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT16); const u32 bitOffset = (texaddr - addr) * 8; const u32 pixelOffset = bitOffset / std::max(1U, (u32)textureBitsPerPixel[entry->format]); fbInfo.yOffset = entry->bufw == 0 ? 0 : pixelOffset / entry->bufw; fbInfo.xOffset = entry->bufw == 0 ? 0 : pixelOffset % entry->bufw; if (framebuffer->fb_stride != entry->bufw) { if (noOffset) { WARN_LOG_REPORT_ONCE(diffStrides2, G3D, "Render to texture using CLUT with different strides %d != %d", entry->bufw, framebuffer->fb_stride); } else { // Assume any render-to-tex with different bufw + offset is a render from ram. DetachFramebuffer(entry, address, framebuffer); return false; } } if (fbInfo.yOffset + minSubareaHeight >= framebuffer->height) { // Can't be inside the framebuffer then, ram. Detach to be safe. DetachFramebuffer(entry, address, framebuffer); return false; } // Trying to play it safe. Below 0x04110000 is almost always framebuffers. // TODO: Maybe we can reduce this check and find a better way above 0x04110000? if (fbInfo.yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000) { WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible render to texture at %08x +%dx%d / %dx%d", address, fbInfo.xOffset, fbInfo.yOffset, framebuffer->width, framebuffer->height); DetachFramebuffer(entry, address, framebuffer); return false; } // Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture. // 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture. if (clutFormat) { if (!noOffset) { WARN_LOG_REPORT_ONCE(subareaClut, G3D, "Render to texture using CLUT with offset at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset); } AttachFramebufferValid(entry, framebuffer, fbInfo); entry->status |= TexCacheEntry::STATUS_DEPALETTIZE; // We'll validate it compiles later. return true; } else if (entry->format == GE_TFMT_CLUT8 || entry->format == GE_TFMT_CLUT4) { ERROR_LOG_REPORT_ONCE(fourEightBit, G3D, "4 and 8-bit CLUT format not supported for framebuffers"); } // This is either normal or we failed to generate a shader to depalettize if (framebuffer->format == entry->format || clutFormat) { if (framebuffer->format != entry->format) { WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with different formats %d != %d at %08x", entry->format, framebuffer->format, address); AttachFramebufferValid(entry, framebuffer, fbInfo); return true; } else { WARN_LOG_REPORT_ONCE(subarea, G3D, "Render to area containing texture at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset); // If "AttachFramebufferValid" , God of War Ghost of Sparta/Chains of Olympus will be missing special effect. AttachFramebufferInvalid(entry, framebuffer, fbInfo); return true; } } else { WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with incompatible formats %d != %d at %08x", entry->format, framebuffer->format, address); } } return false; } inline void TextureCacheVulkan::DetachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer) { if (entry->framebuffer == framebuffer) { cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); entry->framebuffer = 0; host->GPUNotifyTextureAttachment(entry->addr); } } void *TextureCacheVulkan::ReadIndexedTex(int level, const u8 *texptr, int bytesPerIndex, VkFormat dstFmt, int bufw) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); int length = bufw * h; void *buf = NULL; switch (gstate.getClutPaletteFormat()) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut(); if (!gstate.isTextureSwizzled()) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (const u8 *)texptr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (const u16_le *)texptr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (const u32_le *)texptr, length, clut); break; } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texptr, bufw, h, bytesPerIndex); switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (u16 *)tmpTexBuf32.data(), length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (u32 *)tmpTexBuf32.data(), length, clut); break; } } buf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut(); if (!gstate.isTextureSwizzled()) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf32.data(), (const u8 *)texptr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf32.data(), (const u16_le *)texptr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf32.data(), (const u32_le *)texptr, length, clut); break; } buf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texptr, bufw, h, bytesPerIndex); // Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); u32 *dest32 = (u32 *)tmpTexBuf16.data(); switch (bytesPerIndex) { case 1: DeIndexTexture(dest32, (u8 *)tmpTexBuf32.data(), length, clut); buf = dest32; break; case 2: DeIndexTexture(dest32, (u16 *)tmpTexBuf32.data(), length, clut); buf = dest32; break; case 4: // TODO: If a game actually uses this mode, check if using dest32 or tmpTexBuf32 is faster. DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut); buf = tmpTexBuf32.data(); break; } } } break; default: ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3)); break; } return buf; } VkFormat getClutDestFormatVulkan(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return VULKAN_4444_FORMAT; case GE_CMODE_16BIT_ABGR5551: return VULKAN_1555_FORMAT; case GE_CMODE_16BIT_BGR5650: return VULKAN_565_FORMAT; case GE_CMODE_32BIT_ABGR8888: return VULKAN_8888_FORMAT; } return VK_FORMAT_UNDEFINED; } static const u8 texByteAlignMap[] = { 2, 2, 2, 4 }; static const VkFilter MagFiltVK[2] = { VK_FILTER_NEAREST, VK_FILTER_LINEAR }; void TextureCacheVulkan::UpdateSamplingParams(TexCacheEntry &entry, SamplerCacheKey &key) { // TODO: Make GetSamplingParams write SamplerCacheKey directly int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, entry.maxLevel); key.minFilt = minFilt & 1; key.mipEnable = (minFilt >> 2) & 1; key.mipFilt = (minFilt >> 1) & 1; key.magFilt = magFilt & 1; key.sClamp = sClamp; key.tClamp = tClamp; /* if (entry.maxLevel != 0) { if (force || entry.lodBias != lodBias) { if (gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { GETexLevelMode mode = gstate.getTexLevelMode(); switch (mode) { case GE_TEXLEVEL_MODE_AUTO: // TODO break; case GE_TEXLEVEL_MODE_CONST: // Sigh, LOD_BIAS is not even in ES 3.0.. break; case GE_TEXLEVEL_MODE_SLOPE: // TODO break; } } entry.lodBias = lodBias; } } */ if (entry.framebuffer) { WARN_LOG_REPORT_ONCE(wrongFramebufAttach, G3D, "Framebuffer still attached in UpdateSamplingParams()?"); } } void TextureCacheVulkan::SetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight, SamplerCacheKey &key) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, 0); key.minFilt = minFilt & 1; key.mipFilt = 0; key.magFilt = magFilt & 1; key.sClamp = sClamp; key.tClamp = tClamp; // Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case. // This happens whether we have OES_texture_npot or not. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (w != bufferWidth || h != bufferHeight) { key.sClamp = true; key.tClamp = true; } } static void ConvertColors(void *dstBuf, const void *srcBuf, VkFormat dstFmt, int numPixels) { const u32 *src = (const u32 *)srcBuf; u32 *dst = (u32 *)dstBuf; switch (dstFmt) { case VULKAN_4444_FORMAT: ConvertRGBA4444ToABGR4444((u16 *)dst, (const u16 *)src, numPixels); break; // Final Fantasy 2 uses this heavily in animated textures. case VULKAN_1555_FORMAT: ConvertRGBA5551ToABGR1555((u16 *)dst, (const u16 *)src, numPixels); break; case VULKAN_565_FORMAT: ConvertRGB565ToBGR565((u16 *)dst, (const u16 *)src, numPixels); break; default: // No need to convert RGBA8888, right order already if (dst != src) memcpy(dst, src, numPixels * sizeof(u32)); break; } } void TextureCacheVulkan::StartFrame() { lastBoundTexture = nullptr; timesInvalidatedAllThisFrame_ = 0; if (texelsScaledThisFrame_) { // INFO_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_); } texelsScaledThisFrame_ = 0; if (clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { Decimate(); } } static inline u32 MiniHash(const u32 *ptr) { return ptr[0]; } static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, GETextureFormat format, TextureCacheVulkan::TexCacheEntry *entry) { if (h == 512 && entry->maxSeenV < 512 && entry->maxSeenV != 0) { h = (int)entry->maxSeenV; } const u32 sizeInRAM = (textureBitsPerPixel[format] * bufw * h) / 8; const u32 *checkp = (const u32 *)Memory::GetPointer(addr); return DoQuickTexHash(checkp, sizeInRAM); } void TextureCacheVulkan::UpdateCurrentClut(GEPaletteFormat clutFormat, u32 clutBase, bool clutIndexIsSimple) { const u32 clutBaseBytes = clutFormat == GE_CMODE_32BIT_ABGR8888 ? (clutBase * sizeof(u32)) : (clutBase * sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. // // TODO: Actually, this seems like a hack. The game can upload part of a CLUT and reference other data. // clutTotalBytes_ is the last amount uploaded. We should hash clutMaxBytes_, but this will often hash // unrelated old entries for small palettes. // Adding clutBaseBytes may just be mitigating this for some usage patterns. const u32 clutExtendedBytes = std::min(clutTotalBytes_ + clutBaseBytes, clutMaxBytes_); clutHash_ = DoReliableHash32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888); // Avoid a copy when we don't need to convert colors. if (clutFormat != GE_CMODE_32BIT_ABGR8888) { const int numColors = clutFormat == GE_CMODE_32BIT_ABGR8888 ? (clutMaxBytes_ / sizeof(u32)) : (clutMaxBytes_ / sizeof(u16)); ConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormatVulkan(clutFormat), numColors); clutBuf_ = clutBufConverted_; } else { clutBuf_ = clutBufRaw_; } // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (clutFormat == GE_CMODE_16BIT_ABGR4444 && clutIndexIsSimple) { const u16_le *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0xFFF0; for (int i = 0; i < 16; ++i) { u16 step = clutAlphaLinearColor_ | i; if (clut[i] != step) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } template inline const T *TextureCacheVulkan::GetCurrentClut() { return (const T *)clutBuf_; } inline u32 TextureCacheVulkan::GetCurrentClutHash() { return clutHash_; } // #define DEBUG_TEXTURES #ifdef DEBUG_TEXTURES bool SetDebugTexture() { static const int highlightFrames = 30; static int numTextures = 0; static int lastFrames = 0; static int mostTextures = 1; if (lastFrames != gpuStats.numFlips) { mostTextures = std::max(mostTextures, numTextures); numTextures = 0; lastFrames = gpuStats.numFlips; } static GLuint solidTexture = 0; bool changed = false; if (((gpuStats.numFlips / highlightFrames) % mostTextures) == numTextures) { if (gpuStats.numFlips % highlightFrames == 0) { NOTICE_LOG(G3D, "Highlighting texture # %d / %d", numTextures, mostTextures); } static const u32 solidTextureData[] = { 0x99AA99FF }; if (solidTexture == 0) { glGenTextures(1, &solidTexture); glBindTexture(GL_TEXTURE_2D, solidTexture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_PACK_ALIGNMENT, 1); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTextureData); } else { glBindTexture(GL_TEXTURE_2D, solidTexture); } changed = true; } ++numTextures; return changed; } #endif void TextureCacheVulkan::SetTextureFramebuffer(TexCacheEntry *entry, VirtualFramebuffer *framebuffer) { _dbg_assert_msg_(G3D, framebuffer != nullptr, "Framebuffer must not be null."); framebuffer->usageFlags |= FB_USAGE_TEXTURE; bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) { const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); DepalShaderVulkan *depal = nullptr; if ((entry->status & TexCacheEntry::STATUS_DEPALETTIZE) && !g_Config.bDisableSlowFramebufEffects) { // depal = depalShaderCache_->GetDepalettizeShader(clutFormat, framebuffer->drawnFormat); } if (depal) { const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::Status alphaStatus = CheckAlpha(clutBuf_, getClutDestFormatVulkan(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.textureFullAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_SIMPLE; } else { entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE; gstate_c.textureFullAlpha = gstate.getTextureFormat() == GE_TFMT_5650; gstate_c.textureSimpleAlpha = gstate_c.textureFullAlpha; } // Keep the framebuffer alive. framebuffer->last_frame_used = gpuStats.numFlips; // We need to force it, since we may have set it on a texture before attaching. gstate_c.curTextureWidth = framebuffer->bufferWidth; gstate_c.curTextureHeight = framebuffer->bufferHeight; gstate_c.curTextureXOffset = fbTexInfo_[entry->addr].xOffset; gstate_c.curTextureYOffset = fbTexInfo_[entry->addr].yOffset; gstate_c.needShaderTexClamp = gstate_c.curTextureWidth != (u32)gstate.getTextureWidth(0) || gstate_c.curTextureHeight != (u32)gstate.getTextureHeight(0); if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) { gstate_c.needShaderTexClamp = true; } nextTexture_ = entry; } else { if (framebuffer->fbo_vk) { delete framebuffer->fbo_vk; framebuffer->fbo_vk = 0; } gstate_c.needShaderTexClamp = false; } } void TextureCacheVulkan::ApplyTexture(VkImageView &imageView, VkSampler &sampler) { if (nextTexture_ == nullptr) { imageView = nullptr; sampler = nullptr; return; } VkCommandBuffer cmd = nullptr; if (nextTexture_->framebuffer) { ApplyTextureFramebuffer(cmd, nextTexture_, nextTexture_->framebuffer, imageView, sampler); } else { // If the texture is >= 512 pixels tall... if (nextTexture_->dim >= 0x900) { // Texture scale/offset and gen modes don't apply in through. // So we can optimize how much of the texture we look at. if (gstate.isModeThrough()) { if (nextTexture_->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) { // Let's not hash less than 272, we might use more later and have to rehash. 272 is very common. nextTexture_->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV); } else if (gstate_c.vertBounds.maxV > nextTexture_->maxSeenV) { // The max height changed, so we're better off hashing the entire thing. nextTexture_->maxSeenV = 512; nextTexture_->status |= TexCacheEntry::STATUS_FREE_CHANGE; } } else { // Otherwise, we need to reset to ensure we use the whole thing. // Can't tell how much is used. // TODO: We could tell for texcoord UV gen, and apply scale to max? nextTexture_->maxSeenV = 512; } } imageView = nextTexture_->vkTex->texture_->GetImageView(); SamplerCacheKey key; UpdateSamplingParams(*nextTexture_, key); sampler = samplerCache_.GetOrCreateSampler(key); lastBoundTexture = nextTexture_->vkTex; } nextTexture_ = nullptr; } void TextureCacheVulkan::ApplyTextureFramebuffer(VkCommandBuffer cmd, TexCacheEntry *entry, VirtualFramebuffer *framebuffer, VkImageView &imageView, VkSampler &sampler) { DepalShaderVulkan *depal = nullptr; const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); if ((entry->status & TexCacheEntry::STATUS_DEPALETTIZE) && !g_Config.bDisableSlowFramebufEffects) { // depal = depalShaderCache_->GetDepalettizeShader(clutFormat, framebuffer->drawnFormat); } if (depal) { // VulkanTexture *clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_); VulkanFramebuffer *depalFBO = framebufferManager_->GetTempFBO(framebuffer->renderWidth, framebuffer->renderHeight, VK_FBO_8888); depalFBO->BeginPass(cmd); struct Pos { Pos(float x_, float y_, float z_) : x(x_), y(y_), z(z_) { } float x; float y; float z; }; struct UV { UV(float u_, float v_) : u(u_), v(v_) { } float u; float v; }; Pos pos[4] = { { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 }, { -1, 1, -1 }, }; UV uv[4] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, }; static const int indices[4] = { 0, 1, 3, 2 }; // If min is not < max, then we don't have values (wasn't set during decode.) if (gstate_c.vertBounds.minV < gstate_c.vertBounds.maxV) { const float invWidth = 1.0f / (float)framebuffer->bufferWidth; const float invHeight = 1.0f / (float)framebuffer->bufferHeight; // Inverse of half = double. const float invHalfWidth = invWidth * 2.0f; const float invHalfHeight = invHeight * 2.0f; const int u1 = gstate_c.vertBounds.minU + gstate_c.curTextureXOffset; const int v1 = gstate_c.vertBounds.minV + gstate_c.curTextureYOffset; const int u2 = gstate_c.vertBounds.maxU + gstate_c.curTextureXOffset; const int v2 = gstate_c.vertBounds.maxV + gstate_c.curTextureYOffset; const float left = u1 * invHalfWidth - 1.0f; const float right = u2 * invHalfWidth - 1.0f; const float top = v1 * invHalfHeight - 1.0f; const float bottom = v2 * invHalfHeight - 1.0f; // Points are: BL, BR, TR, TL. pos[0] = Pos(left, bottom, -1.0f); pos[1] = Pos(right, bottom, -1.0f); pos[2] = Pos(right, top, -1.0f); pos[3] = Pos(left, top, -1.0f); // And also the UVs, same order. const float uvleft = u1 * invWidth; const float uvright = u2 * invWidth; const float uvtop = v1 * invHeight; const float uvbottom = v2 * invHeight; uv[0] = UV(uvleft, uvbottom); uv[1] = UV(uvright, uvbottom); uv[2] = UV(uvright, uvtop); uv[3] = UV(uvleft, uvtop); } shaderManager_->DirtyLastShader(); /* glUseProgram(depal->program); // Restore will rebind all of the state below. if (gstate_c.Supports(GPU_SUPPORTS_VAO)) { transformDraw_->BindBuffer(pos, sizeof(pos), uv, sizeof(uv)); transformDraw_->BindElementBuffer(indices, sizeof(indices)); } else { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glEnableVertexAttribArray(depal->a_position); glEnableVertexAttribArray(depal->a_texcoord0); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, clutTexture); glActiveTexture(GL_TEXTURE0); framebufferManager_->BindFramebufferColor(GL_TEXTURE0, gstate.getFrameBufRawAddress(), framebuffer, BINDFBCOLOR_SKIP_COPY); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glstate.blend.force(false); glstate.colorMask.force(true, true, true, true); glstate.scissorTest.force(false); glstate.cullFace.force(false); glstate.depthTest.force(false); glstate.stencilTest.force(false); #if !defined(USING_GLES2) glstate.colorLogicOp.force(false); #endif glViewport(0, 0, framebuffer->renderWidth, framebuffer->renderHeight); if (gstate_c.Supports(GPU_SUPPORTS_VAO)) { glVertexAttribPointer(depal->a_position, 3, GL_FLOAT, GL_FALSE, 12, 0); glVertexAttribPointer(depal->a_texcoord0, 2, GL_FLOAT, GL_FALSE, 8, (void *)sizeof(pos)); glDrawElements(GL_TRIANGLE_STRIP, 4, GL_UNSIGNED_BYTE, 0); } else { glVertexAttribPointer(depal->a_position, 3, GL_FLOAT, GL_FALSE, 12, pos); glVertexAttribPointer(depal->a_texcoord0, 2, GL_FLOAT, GL_FALSE, 8, uv); glDrawElements(GL_TRIANGLE_STRIP, 4, GL_UNSIGNED_BYTE, indices); } glDisableVertexAttribArray(depal->a_position); glDisableVertexAttribArray(depal->a_texcoord0); */ depalFBO->EndPass(cmd); depalFBO->TransitionToTexture(cmd); imageView = depalFBO->GetColorImageView(); } /* imageView = depalFBO->GetColorImageView(); SamplerCacheKey samplerKey; framebufferManager_->RebindFramebuffer(); SetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight, samplerKey); sampler = GetOrCreateSampler(samplerKey); */ SamplerCacheKey key; UpdateSamplingParams(*nextTexture_, key); key.mipEnable = false; sampler = samplerCache_.GetOrCreateSampler(key); lastBoundTexture = nullptr; } bool TextureCacheVulkan::SetOffsetTexture(u32 offset) { if (g_Config.iRenderingMode != FB_BUFFERED_MODE) { return false; } u32 texaddr = gstate.getTextureAddress(0); if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + offset)) { return false; } const u16 dim = gstate.getTextureDimension(0); u64 cachekey = ((u64)(texaddr & 0x3FFFFFFF) << 32) | dim; TexCache::iterator iter = cache.find(cachekey); if (iter == cache.end()) { return false; } TexCacheEntry *entry = &iter->second; bool success = false; for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; if (AttachFramebuffer(entry, framebuffer->fb_address, framebuffer, offset)) { success = true; } } if (success && entry->framebuffer) { // This will not apply the texture immediately. SetTextureFramebuffer(entry, entry->framebuffer); entry->lastFrame = gpuStats.numFlips; return true; } return false; } void TextureCacheVulkan::SetTexture() { #ifdef DEBUG_TEXTURES if (SetDebugTexture()) { // A different texture was bound, let's rebind next time. lastBoundTexture = nullptr; return; } #endif u32 texaddr = gstate.getTextureAddress(0); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. lastBoundTexture = nullptr; return; } const u16 dim = gstate.getTextureDimension(0); int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (texaddr == 0x04000000 && w == 2 && h == 2) { // Nonsense bootup texture. Discard. } GETextureFormat format = gstate.getTextureFormat(); if (format >= 11) { ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format); // TODO: Better assumption? format = GE_TFMT_5650; } bool hasClut = gstate.isTextureFormatIndexed(); // Ignore uncached/kernel when caching. u64 cachekey = ((u64)(texaddr & 0x3FFFFFFF) << 32) | dim; u32 cluthash; if (hasClut) { if (clutLastFormat_ != gstate.clutformat) { // We update here because the clut format can be specified after the load. UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple()); } cluthash = GetCurrentClutHash() ^ gstate.clutformat; cachekey ^= cluthash; } else { cluthash = 0; } int bufw = GetTextureBufw(0, texaddr, format); u8 maxLevel = gstate.getTextureMaxLevel(); u32 texhash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr)); u32 fullhash = 0; TexCache::iterator iter = cache.find(cachekey); TexCacheEntry *entry = NULL; gstate_c.needShaderTexClamp = false; gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; bool replaceImages = false; if (iter != cache.end()) { entry = &iter->second; // Validate the texture still matches the cache entry. bool match = entry->Matches(dim, format, maxLevel); const char *reason = "different params"; // Check for FBO - slow! if (entry->framebuffer) { if (match) { if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) { WARN_LOG_REPORT_ONCE(clutAndTexRender, G3D, "Using rendered texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat()); } SetTextureFramebuffer(entry, entry->framebuffer); entry->lastFrame = gpuStats.numFlips; return; } else { // Make sure we re-evaluate framebuffers. DetachFramebuffer(entry, texaddr, entry->framebuffer); reason = "detached framebuf"; match = false; } } bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE; bool doDelete = true; // First let's see if another texture with the same address had a hashfail. if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) { // Always rehash in this case, if one changed the rest all probably did. rehash = true; entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK; } else if ((gstate_c.textureChanged & TEXCHANGE_UPDATED) == 0) { // Okay, just some parameter change - the data didn't change, no need to rehash. rehash = false; } if (match) { if (entry->lastFrame != gpuStats.numFlips) { u32 diff = gpuStats.numFlips - entry->lastFrame; entry->numFrames++; if (entry->framesUntilNextFullHash < diff) { // Exponential backoff up to 512 frames. Textures are often reused. if (entry->numFrames > 32) { // Also, try to add some "randomness" to avoid rehashing several textures the same frame. entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (entry->textureName & 15); } else { entry->framesUntilNextFullHash = entry->numFrames; } rehash = true; } else { entry->framesUntilNextFullHash -= diff; } } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) { entry->invalidHint = 0; rehash = true; } bool hashFail = false; if (texhash != entry->hash) { fullhash = QuickTexHash(texaddr, bufw, w, h, format, entry); hashFail = true; rehash = false; } if (rehash && entry->GetHashStatus() != TexCacheEntry::STATUS_RELIABLE) { fullhash = QuickTexHash(texaddr, bufw, w, h, format, entry); if (fullhash != entry->fullhash) { hashFail = true; } else { if (g_Config.bTextureBackoffCache) { if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) { entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } } if (hashFail) { match = false; reason = "hash fail"; entry->status |= TexCacheEntry::STATUS_UNRELIABLE; if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) { if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) { entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE; } else { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } entry->numFrames = 0; // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. if (g_Config.bTextureSecondaryCache) { if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { u64 secondKey = fullhash | (u64)cluthash << 32; TexCache::iterator secondIter = secondCache.find(secondKey); if (secondIter != secondCache.end()) { TexCacheEntry *secondEntry = &secondIter->second; if (secondEntry->Matches(dim, format, maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } entry = secondEntry; match = true; } } else { secondKey = entry->fullhash | ((u64)entry->cluthash << 32); secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry); secondCache[secondKey] = *entry; doDelete = false; } } } } } if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && g_Config.iTexScalingLevel != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) { if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // INFO_LOG(G3D, "Reloading texture to do the scaling we skipped.."); match = false; reason = "scaling"; } } if (match) { // TODO: Mark the entry reliable if it's been safe for long enough? //got one! entry->lastFrame = gpuStats.numFlips; if (entry->vkTex != lastBoundTexture) { gstate_c.textureFullAlpha = entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = entry->GetAlphaStatus() != TexCacheEntry::STATUS_ALPHA_UNKNOWN; } nextTexture_ = entry; VERBOSE_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr); return; //Done! } else { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); entry->numInvalidated++; gpuStats.numTextureInvalidations++; DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", texaddr, reason); if (doDelete) { if (entry->maxLevel == maxLevel && entry->dim == gstate.getTextureDimension(0) && entry->format == format && g_Config.iTexScalingLevel == 1) { // Actually, if size and number of levels match, let's try to avoid deleting and recreating. // Instead, let's use glTexSubImage to replace the images. replaceImages = true; } else { if (entry->vkTex == lastBoundTexture) { lastBoundTexture = nullptr; } delete entry->vkTex; entry->vkTex = nullptr; } } // Clear the reliable bit if set. if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } // Also, mark any textures with the same address but different clut. They need rechecking. if (cluthash != 0) { const u64 cachekeyMin = (u64)(texaddr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache.lower_bound(cachekeyMin), end = cache.upper_bound(cachekeyMax); it != end; ++it) { if (it->second.cluthash != cluthash) { it->second.status |= TexCacheEntry::STATUS_CLUT_RECHECK; } } } } } else { VERBOSE_LOG(G3D, "No texture in cache, decoding..."); TexCacheEntry entryNew = { 0 }; cache[cachekey] = entryNew; if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) { WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat()); } entry = &cache[cachekey]; if (g_Config.bTextureBackoffCache) { entry->status = TexCacheEntry::STATUS_HASHING; } else { entry->status = TexCacheEntry::STATUS_UNRELIABLE; } } if ((bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && texaddr >= PSP_GetKernelMemoryEnd()) { ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); // Proceeding here can cause a crash. nextTexture_ = nullptr; return; } // We have to decode it, let's setup the cache entry first. entry->addr = texaddr; entry->hash = texhash; entry->format = format; entry->lastFrame = gpuStats.numFlips; entry->framebuffer = 0; entry->maxLevel = maxLevel; entry->lodBias = 0.0f; entry->dim = gstate.getTextureDimension(0); entry->bufw = bufw; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->fullhash = fullhash == 0 ? QuickTexHash(texaddr, bufw, w, h, format, entry) : fullhash; entry->cluthash = cluthash; entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; // For the estimate, we assume cluts always point to 8888 for simplicity. cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); // Before we go reading the texture from memory, let's check for render-to-texture. for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; AttachFramebuffer(entry, framebuffer->fb_address, framebuffer); } // If we ended up with a framebuffer, attach it - no texture decoding needed. if (entry->framebuffer) { SetTextureFramebuffer(entry, entry->framebuffer); entry->lastFrame = gpuStats.numFlips; return; } // Adjust maxLevel to actually present levels.. bool badMipSizes = false; for (u32 i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = gstate.getTextureAddress(i); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } if (i > 0 && gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { int tw = gstate.getTextureWidth(i); int th = gstate.getTextureHeight(i); if (tw != 1 && tw != (gstate.getTextureWidth(i - 1) >> 1)) badMipSizes = true; else if (th != 1 && th != (gstate.getTextureHeight(i - 1) >> 1)) badMipSizes = true; } } // In addition, simply don't load more than level 0 if g_Config.bMipMap is false. if (!g_Config.bMipMap) { maxLevel = 0; } // If GLES3 is available, we can preallocate the storage, which makes texture loading more efficient. VkFormat dstFmt = GetDestFormat(format, gstate.getClutPaletteFormat()); int scaleFactor; // Auto-texture scale upto 5x rendering resolution if (g_Config.iTexScalingLevel == 0) { scaleFactor = g_Config.iInternalResolution; if (scaleFactor == 0) { scaleFactor = (PSP_CoreParameter().renderWidth + 479) / 480; } // Mobile devices don't get the higher scale factors, too expensive. Very rough way to decide though... if (!gstate_c.Supports(GPU_IS_MOBILE)) { bool supportNpot = gstate_c.Supports(GPU_SUPPORTS_OES_TEXTURE_NPOT); scaleFactor = std::min(supportNpot ? 5 : 4, scaleFactor); if (!supportNpot && scaleFactor == 3) { scaleFactor = 2; } } else { scaleFactor = std::min(gstate_c.Supports(GPU_SUPPORTS_OES_TEXTURE_NPOT) ? 3 : 2, scaleFactor); } } else { scaleFactor = g_Config.iTexScalingLevel; } // Rachet down scale factor in low-memory mode. if (lowMemoryMode_) { // Keep it even, though, just in case of npot troubles. scaleFactor = scaleFactor > 4 ? 4 : (scaleFactor > 2 ? 2 : 1); } // Don't scale the PPGe texture. if (entry->addr > 0x05000000 && entry->addr < 0x08800000) scaleFactor = 1; if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) != 0) { // Remember for later that we /wanted/ to scale this texture. entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } if (scaleFactor != 1) { if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED) { entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } else { entry->status &= ~TexCacheEntry::STATUS_TO_SCALE; texelsScaledThisFrame_ += w * h; } } // Ready or not, here I go... if (replaceImages) { if (!entry->vkTex) { DebugBreak(); } } else { entry->vkTex = new CachedTextureVulkan(); entry->vkTex->texture_ = new VulkanTexture(); VulkanTexture *image = entry->vkTex->texture_; image->Create(vulkan_, w, h, dstFmt); } lastBoundTexture = entry->vkTex; // GLES2 doesn't have support for a "Max lod" which is critical as PSP games often // don't specify mips all the way down. As a result, we either need to manually generate // the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not // be as good quality as the game's own (might even be better in some cases though). // Always load base level texture here LoadTextureLevel(*entry, 0, replaceImages, scaleFactor, dstFmt); // Mipmapping only enable when texture scaling disable /* if (maxLevel > 0 && scaleFactor == 1) { if (gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { if (badMipSizes) { // WARN_LOG(G3D, "Bad mipmap for texture sized %dx%dx%d - autogenerating", w, h, (int)format); glGenerateMipmap(GL_TEXTURE_2D); } else { for (int i = 1; i <= maxLevel; i++) { LoadTextureLevel(*entry, i, replaceImages, scaleFactor, dstFmt); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel); } } else { glGenerateMipmap(GL_TEXTURE_2D); } } else if (gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); } */ gstate_c.textureFullAlpha = entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = entry->GetAlphaStatus() != TexCacheEntry::STATUS_ALPHA_UNKNOWN; // TODO: Refactor away nextTexture_. Not needed on Vulkan. nextTexture_ = entry; } VkFormat TextureCacheVulkan::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const { switch (format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: return getClutDestFormatVulkan(clutFormat); case GE_TFMT_4444: return VULKAN_4444_FORMAT; case GE_TFMT_5551: return VULKAN_1555_FORMAT; case GE_TFMT_5650: return VULKAN_565_FORMAT; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: return VK_FORMAT_R8G8B8A8_UNORM; } } void *TextureCacheVulkan::DecodeTextureLevel(GETextureFormat format, GEPaletteFormat clutformat, int level, u32 &texByteAlign, VkFormat dstFmt, int scaleFactor, int *bufwout) { void *finalBuf = NULL; u32 texaddr = gstate.getTextureAddress(level); bool swizzled = gstate.isTextureSwizzled(); if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) { // This means it's in a mirror, possibly a swizzled mirror. Let's report. WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0); if ((texaddr & 0x00200000) == 0x00200000) { // Technically 2 and 6 are slightly different, but this is better than nothing probably. swizzled = !swizzled; } // Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing. } int bufw = GetTextureBufw(level, texaddr, format); if (bufwout) *bufwout = bufw; int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); const u8 *texptr = Memory::GetPointer(texaddr); switch (format) { case GE_TFMT_CLUT4: { const bool mipmapShareClut = gstate.isClutSharedForMipmaps(); const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut() + clutSharingOffset; texByteAlign = 2; if (!swizzled) { if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), texptr, bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), texptr, bufw * h, clut); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texptr, bufw, h, 0); if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), (const u8 *)tmpTexBuf32.data(), bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), (const u8 *)tmpTexBuf32.data(), bufw * h, clut); } } finalBuf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut() + clutSharingOffset; if (!swizzled) { DeIndexTexture4(tmpTexBuf32.data(), texptr, bufw * h, clut); finalBuf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texptr, bufw, h, 0); // Let's reuse tmpTexBuf16, just need double the space. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); DeIndexTexture4((u32 *)tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut); finalBuf = tmpTexBuf16.data(); } } break; default: ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat()); return NULL; } } break; case GE_TFMT_CLUT8: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 1, dstFmt, bufw); break; case GE_TFMT_CLUT16: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 2, dstFmt, bufw); break; case GE_TFMT_CLUT32: texByteAlign = texByteAlignMap[gstate.getClutPaletteFormat()]; finalBuf = ReadIndexedTex(level, texptr, 4, dstFmt, bufw); break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: texByteAlign = 2; if (!swizzled) { int len = std::max(bufw, w) * h; tmpTexBuf16.resize(len); tmpTexBufRearrange.resize(len); finalBuf = tmpTexBuf16.data(); ConvertColors(finalBuf, texptr, dstFmt, bufw * h); } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texptr, bufw, h, 2); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_8888: if (!swizzled) { // Special case: if we don't need to deal with packing, we don't need to copy. if ((scaleFactor == 1 && gstate_c.Supports(GPU_SUPPORTS_UNPACK_SUBIMAGE)) || w == bufw) { finalBuf = (void *)texptr; } else { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, texptr, dstFmt, bufw * h); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texptr, bufw, h, 4); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_DXT1: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); w = (w + 3) & ~3; } break; case GE_TFMT_DXT3: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT3Block *src = (DXT3Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_DXT5: { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT5Block *src = (DXT5Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { DecodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format); return NULL; } if (!finalBuf) { ERROR_LOG_REPORT(G3D, "NO finalbuf! Will crash!"); } if (!(scaleFactor == 1 && gstate_c.Supports(GPU_SUPPORTS_UNPACK_SUBIMAGE)) && w != bufw) { int pixelSize; switch (dstFmt) { case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_R5G6B5_UNORM_PACK16: case VK_FORMAT_A1R5G5B5_UNORM_PACK16: pixelSize = 2; break; default: pixelSize = 4; break; } // Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc. finalBuf = RearrangeBuf(finalBuf, bufw * pixelSize, w * pixelSize, h); } return finalBuf; } TextureCacheVulkan::TexCacheEntry::Status TextureCacheVulkan::CheckAlpha(const u32 *pixelData, VkFormat dstFmt, int stride, int w, int h) { CheckAlphaResult res; switch (dstFmt) { case VK_FORMAT_R4G4B4A4_UNORM_PACK16: res = CheckAlphaABGR4444Basic(pixelData, stride, w, h); break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: res = CheckAlphaABGR1555Basic(pixelData, stride, w, h); break; case VK_FORMAT_R5G6B5_UNORM_PACK16: // Never has any alpha. res = CHECKALPHA_FULL; break; default: res = CheckAlphaRGBA8888Basic(pixelData, stride, w, h); break; } return (TexCacheEntry::Status)res; } void TextureCacheVulkan::LoadTextureLevel(TexCacheEntry &entry, int level, bool replaceImages, int scaleFactor, VkFormat dstFmt) { CachedTextureVulkan *tex = entry.vkTex; int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); u32 *pixelData; int decPitch; int rowBytes; { PROFILE_THIS_SCOPE("decodetex"); // TODO: only do this once u32 texByteAlign = 1; GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); int bufw; void *finalBuf = DecodeTextureLevel(GETextureFormat(entry.format), clutformat, level, texByteAlign, dstFmt, scaleFactor, &bufw); if (finalBuf == NULL) { return; } decPitch = w * (dstFmt == VULKAN_8888_FORMAT ? 4 : 2); rowBytes = decPitch; gpuStats.numTexturesDecoded++; pixelData = (u32 *)finalBuf; if (scaleFactor > 1) { u32 fmt = dstFmt; scaler.Scale(pixelData, fmt, w, h, scaleFactor); dstFmt = (VkFormat)fmt; } if ((entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { TexCacheEntry::Status alphaStatus = CheckAlpha(pixelData, dstFmt, bufw, w, h); entry.SetAlphaStatus(alphaStatus, level); } else { entry.SetAlphaStatus(TexCacheEntry::STATUS_ALPHA_UNKNOWN); } } if (replaceImages) { // TODO: No support for texture shadows // DebugBreak(); } PROFILE_THIS_SCOPE("loadtex"); // Upload the texture data. TODO: Decode directly into this buffer. int rowPitch; uint8_t *writePtr = entry.vkTex->texture_->Lock(vulkan_, level, &rowPitch); for (int y = 0; y < h; y++) { memcpy(writePtr + rowPitch * y, (const uint8_t *)pixelData + decPitch * y, rowBytes); } entry.vkTex->texture_->Unlock(vulkan_); /* if (!lowMemoryMode_) { GLenum err = glGetError(); if (err == GL_OUT_OF_MEMORY) { WARN_LOG_REPORT(G3D, "Texture cache ran out of GPU memory; switching to low memory mode"); lowMemoryMode_ = true; decimationCounter_ = 0; Decimate(); // TODO: We need to stall the GPU here and wipe things out of memory. // Try again, now that we've cleared out textures in lowMemoryMode_. glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components2, dstFmt, pixelData); I18NCategory *err = GetI18NCategory("Error"); if (scaleFactor > 1) { osm.Show(err->T("Warning: Video memory FULL, reducing upscaling and switching to slow caching mode"), 2.0f); } else { osm.Show(err->T("Warning: Video memory FULL, switching to slow caching mode"), 2.0f); } } else if (err != GL_NO_ERROR) { // We checked the err anyway, might as well log if there is one. WARN_LOG(G3D, "Got an error in texture upload: %08x", err); } }*/ }