// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include #include "Core/MemMap.h" #include "Core/Reporting.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Directx9/PixelShaderGeneratorDX9.h" #include "GPU/Directx9/TextureCacheDX9.h" #include "GPU/Directx9/FramebufferDX9.h" #include "GPU/Directx9/ShaderManagerDX9.h" #include "GPU/Directx9/DepalettizeShaderDX9.h" #include "gfx/d3d9_state.h" #include "GPU/Common/FramebufferCommon.h" #include "GPU/Common/TextureDecoder.h" #include "Core/Config.h" #include "Core/Host.h" #include "ext/xxhash.h" #include "math/math_util.h" namespace DX9 { #define INVALID_TEX (LPDIRECT3DTEXTURE9)(-1) // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 #define TEXTURE_KILL_AGE_LOWMEM 60 // Not used in lowmem mode. #define TEXTURE_SECOND_KILL_AGE 100 // Try to be prime to other decimation intervals. #define TEXCACHE_DECIMATION_INTERVAL 13 #define TEXCACHE_MAX_TEXELS_SCALED (256*256) // Per frame #define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in VRAM #define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024 static const D3DVERTEXELEMENT9 g_FramebufferVertexElements[] = { { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 }, { 0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 }, D3DDECL_END() }; TextureCacheDX9::TextureCacheDX9(Draw::DrawContext *draw) : TextureCacheCommon(draw) { lastBoundTexture = INVALID_TEX; decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; D3DCAPS9 pCaps; ZeroMemory(&pCaps, sizeof(pCaps)); HRESULT result = 0; if (pD3DdeviceEx) { result = pD3DdeviceEx->GetDeviceCaps(&pCaps); } else { result = pD3Ddevice->GetDeviceCaps(&pCaps); } if (FAILED(result)) { WARN_LOG(G3D, "Failed to get the device caps!"); maxAnisotropyLevel = 16; } else { maxAnisotropyLevel = pCaps.MaxAnisotropy; } SetupTextureDecoder(); nextTexture_ = nullptr; pD3Ddevice->CreateVertexDeclaration(g_FramebufferVertexElements, &pFramebufferVertexDecl); } TextureCacheDX9::~TextureCacheDX9() { pFramebufferVertexDecl->Release(); Clear(true); } void TextureCacheDX9::SetFramebufferManager(FramebufferManagerDX9 *fbManager) { framebufferManagerDX9_ = fbManager; framebufferManager_ = fbManager; } void TextureCacheDX9::ReleaseTexture(TexCacheEntry *entry) { DEBUG_LOG(G3D, "Deleting texture %p", entry->texturePtr); LPDIRECT3DTEXTURE9 &texture = DxTex(entry); if (texture) { texture->Release(); texture = nullptr; } } void TextureCacheDX9::DeleteTexture(TexCache::iterator it) { ReleaseTexture(&it->second); auto fbInfo = fbTexInfo_.find(it->first); if (fbInfo != fbTexInfo_.end()) { fbTexInfo_.erase(fbInfo); } cacheSizeEstimate_ -= EstimateTexMemoryUsage(&it->second); cache.erase(it); } void TextureCacheDX9::ForgetLastTexture() { lastBoundTexture = INVALID_TEX; gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); } // Removes old textures. void TextureCacheDX9::Decimate() { if (--decimationCounter_ <= 0) { decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; } else { return; } if (cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) { const u32 had = cacheSizeEstimate_; pD3Ddevice->SetTexture(0, NULL); lastBoundTexture = INVALID_TEX; int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE; for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) { if (iter->second.lastFrame + killAge < gpuStats.numFlips) { DeleteTexture(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_); } if (g_Config.bTextureSecondaryCache && secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE) { const u32 had = secondCacheSizeEstimate_; for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) { // In low memory mode, we kill them all. if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFlips) { ReleaseTexture(&iter->second); secondCache.erase(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_); } DecimateVideos(); } D3DFORMAT getClutDestFormat(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return D3DFMT_A4R4G4B4; case GE_CMODE_16BIT_ABGR5551: return D3DFMT_A1R5G5B5; case GE_CMODE_16BIT_BGR5650: return D3DFMT_R5G6B5; case GE_CMODE_32BIT_ABGR8888: return D3DFMT_A8R8G8B8; } // Should never be here ! return D3DFMT_A8R8G8B8; } static const u8 MinFilt[8] = { D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_POINT, // GL_NEAREST_MIPMAP_NEAREST, D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_NEAREST, D3DTEXF_POINT, // GL_NEAREST_MIPMAP_LINEAR, D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_LINEAR, }; static const u8 MipFilt[8] = { D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_POINT, // GL_NEAREST_MIPMAP_NEAREST, D3DTEXF_POINT, // GL_LINEAR_MIPMAP_NEAREST, D3DTEXF_LINEAR, // GL_NEAREST_MIPMAP_LINEAR, D3DTEXF_LINEAR, // GL_LINEAR_MIPMAP_LINEAR, }; static const u8 MagFilt[2] = { D3DTEXF_POINT, D3DTEXF_LINEAR }; void TextureCacheDX9::UpdateSamplingParams(TexCacheEntry &entry, bool force) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, entry.maxLevel, entry.addr); if (entry.maxLevel != 0) { GETexLevelMode mode = gstate.getTexLevelMode(); switch (mode) { case GE_TEXLEVEL_MODE_AUTO: // TODO break; case GE_TEXLEVEL_MODE_CONST: dxstate.texMipLodBias.set(lodBias); // TODO break; case GE_TEXLEVEL_MODE_SLOPE: // TODO break; } entry.lodBias = lodBias; } D3DTEXTUREFILTERTYPE minf = (D3DTEXTUREFILTERTYPE)MinFilt[minFilt]; D3DTEXTUREFILTERTYPE mipf = (D3DTEXTUREFILTERTYPE)MipFilt[minFilt]; D3DTEXTUREFILTERTYPE magf = (D3DTEXTUREFILTERTYPE)MagFilt[magFilt]; if (gstate_c.Supports(GPU_SUPPORTS_ANISOTROPY) && g_Config.iAnisotropyLevel > 0 && minf == D3DTEXF_LINEAR) { minf = D3DTEXF_ANISOTROPIC; } dxstate.texMinFilter.set(minf); dxstate.texMipFilter.set(mipf); dxstate.texMagFilter.set(magf); dxstate.texAddressU.set(sClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP); dxstate.texAddressV.set(tClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP); } void TextureCacheDX9::SetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight) { int minFilt; int magFilt; bool sClamp; bool tClamp; float lodBias; GetSamplingParams(minFilt, magFilt, sClamp, tClamp, lodBias, 0, 0); dxstate.texMinFilter.set(MinFilt[minFilt]); dxstate.texMipFilter.set(MipFilt[minFilt]); dxstate.texMagFilter.set(MagFilt[magFilt]); // Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case. // This happens whether we have OES_texture_npot or not. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (w != bufferWidth || h != bufferHeight) { return; } dxstate.texAddressU.set(sClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP); dxstate.texAddressV.set(tClamp ? D3DTADDRESS_CLAMP : D3DTADDRESS_WRAP); } void TextureCacheDX9::StartFrame() { lastBoundTexture = INVALID_TEX; timesInvalidatedAllThisFrame_ = 0; if (texelsScaledThisFrame_) { // INFO_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_); } texelsScaledThisFrame_ = 0; if (clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { Decimate(); } if (gstate_c.Supports(GPU_SUPPORTS_ANISOTROPY)) { DWORD aniso = 1 << g_Config.iAnisotropyLevel; DWORD anisotropyLevel = aniso > maxAnisotropyLevel ? maxAnisotropyLevel : aniso; pD3Ddevice->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, anisotropyLevel); } } static inline u32 MiniHash(const u32 *ptr) { return ptr[0]; } void TextureCacheDX9::UpdateCurrentClut(GEPaletteFormat clutFormat, u32 clutBase, bool clutIndexIsSimple) { const u32 clutBaseBytes = clutBase * (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. // // TODO: Actually, this seems like a hack. The game can upload part of a CLUT and reference other data. // clutTotalBytes_ is the last amount uploaded. We should hash clutMaxBytes_, but this will often hash // unrelated old entries for small palettes. // Adding clutBaseBytes may just be mitigating this for some usage patterns. const u32 clutExtendedBytes = std::min(clutTotalBytes_ + clutBaseBytes, clutMaxBytes_); clutHash_ = DoReliableHash32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888); clutBuf_ = clutBufRaw_; // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (clutFormat == GE_CMODE_16BIT_ABGR4444 && clutIndexIsSimple) { const u16_le *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0x0FFF; for (int i = 0; i < 16; ++i) { u16 step = clutAlphaLinearColor_ | (i << 12); if (clut[i] != step) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } void TextureCacheDX9::BindTexture(TexCacheEntry *entry) { LPDIRECT3DTEXTURE9 texture = DxTex(entry); if (texture != lastBoundTexture) { pD3Ddevice->SetTexture(0, texture); lastBoundTexture = texture; } UpdateSamplingParams(*entry, false); } void TextureCacheDX9::Unbind() { pD3Ddevice->SetTexture(0, NULL); } class TextureShaderApplierDX9 { public: struct Pos { Pos(float x_, float y_, float z_) : x(x_), y(y_), z(z_) { } Pos() { } float x; float y; float z; }; struct UV { UV(float u_, float v_) : u(u_), v(v_) { } UV() { } float u; float v; }; struct PosUV { Pos pos; UV uv; }; TextureShaderApplierDX9(LPDIRECT3DPIXELSHADER9 pshader, LPDIRECT3DVERTEXDECLARATION9 decl, float bufferW, float bufferH, int renderW, int renderH, float xoff, float yoff) : pshader_(pshader), decl_(decl), bufferW_(bufferW), bufferH_(bufferH), renderW_(renderW), renderH_(renderH) { static const Pos pos[4] = { {-1, 1, 0}, { 1, 1, 0}, { 1, -1, 0}, {-1, -1, 0}, }; static const UV uv[4] = { {0, 0}, {1, 0}, {1, 1}, {0, 1}, }; for (int i = 0; i < 4; ++i) { verts_[i].pos = pos[i]; verts_[i].pos.x += xoff; verts_[i].pos.y += yoff; verts_[i].uv = uv[i]; } } void ApplyBounds(const KnownVertexBounds &bounds, u32 uoff, u32 voff, float xoff, float yoff) { // If min is not < max, then we don't have values (wasn't set during decode.) if (bounds.minV < bounds.maxV) { const float invWidth = 1.0f / bufferW_; const float invHeight = 1.0f / bufferH_; // Inverse of half = double. const float invHalfWidth = invWidth * 2.0f; const float invHalfHeight = invHeight * 2.0f; const int u1 = bounds.minU + uoff; const int v1 = bounds.minV + voff; const int u2 = bounds.maxU + uoff; const int v2 = bounds.maxV + voff; const float left = u1 * invHalfWidth - 1.0f + xoff; const float right = u2 * invHalfWidth - 1.0f + xoff; const float top = v1 * invHalfHeight - 1.0f + yoff; const float bottom = v2 * invHalfHeight - 1.0f + yoff; // Points are: BL, BR, TR, TL. verts_[0].pos = Pos(left, bottom, -1.0f); verts_[1].pos = Pos(right, bottom, -1.0f); verts_[2].pos = Pos(right, top, -1.0f); verts_[3].pos = Pos(left, top, -1.0f); // And also the UVs, same order. const float uvleft = u1 * invWidth; const float uvright = u2 * invWidth; const float uvtop = v1 * invHeight; const float uvbottom = v2 * invHeight; verts_[0].uv = UV(uvleft, uvbottom); verts_[1].uv = UV(uvright, uvbottom); verts_[2].uv = UV(uvright, uvtop); verts_[3].uv = UV(uvleft, uvtop); } } void Use(LPDIRECT3DVERTEXSHADER9 vshader) { pD3Ddevice->SetPixelShader(pshader_); pD3Ddevice->SetVertexShader(vshader); pD3Ddevice->SetVertexDeclaration(decl_); } void Shade() { pD3Ddevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); pD3Ddevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE); pD3Ddevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA); pD3Ddevice->SetRenderState(D3DRS_ZENABLE, FALSE); pD3Ddevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); pD3Ddevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE); pD3Ddevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); D3DVIEWPORT9 vp{ 0, 0, (DWORD)renderW_, (DWORD)renderH_, 0.0f, 1.0f }; pD3Ddevice->SetViewport(&vp); HRESULT hr = pD3Ddevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, verts_, (3 + 2) * sizeof(float)); if (FAILED(hr)) { ERROR_LOG_REPORT(G3D, "Depal render failed: %08x", hr); } dxstate.Restore(); } protected: LPDIRECT3DPIXELSHADER9 pshader_; LPDIRECT3DVERTEXDECLARATION9 decl_; PosUV verts_[4]; float bufferW_; float bufferH_; int renderW_; int renderH_; }; void TextureCacheDX9::ApplyTextureFramebuffer(TexCacheEntry *entry, VirtualFramebuffer *framebuffer) { LPDIRECT3DPIXELSHADER9 pshader = nullptr; const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat(); if ((entry->status & TexCacheEntry::STATUS_DEPALETTIZE) && !g_Config.bDisableSlowFramebufEffects) { pshader = depalShaderCache_->GetDepalettizePixelShader(clutFormat, framebuffer->drawnFormat); } if (pshader) { LPDIRECT3DTEXTURE9 clutTexture = depalShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBuf_); Draw::Framebuffer *depalFBO = framebufferManagerDX9_->GetTempFBO(framebuffer->renderWidth, framebuffer->renderHeight, Draw::FBO_8888); draw_->BindFramebufferAsRenderTarget(depalFBO); shaderManager_->DirtyLastShader(); float xoff = -0.5f / framebuffer->renderWidth; float yoff = 0.5f / framebuffer->renderHeight; TextureShaderApplierDX9 shaderApply(pshader, pFramebufferVertexDecl, framebuffer->bufferWidth, framebuffer->bufferHeight, framebuffer->renderWidth, framebuffer->renderHeight, xoff, yoff); shaderApply.ApplyBounds(gstate_c.vertBounds, gstate_c.curTextureXOffset, gstate_c.curTextureYOffset, xoff, yoff); shaderApply.Use(depalShaderCache_->GetDepalettizeVertexShader()); pD3Ddevice->SetTexture(1, clutTexture); pD3Ddevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_POINT); pD3Ddevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_POINT); pD3Ddevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_NONE); framebufferManagerDX9_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_SKIP_COPY); pD3Ddevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT); pD3Ddevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT); pD3Ddevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_NONE); shaderApply.Shade(); draw_->BindFramebufferAsTexture(depalFBO, 0, Draw::FB_COLOR_BIT, 0); const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16); const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor; TexCacheEntry::Status alphaStatus = CheckAlpha(clutBuf_, getClutDestFormat(clutFormat), clutTotalColors, clutTotalColors, 1); gstate_c.textureFullAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_FULL; gstate_c.textureSimpleAlpha = alphaStatus == TexCacheEntry::STATUS_ALPHA_SIMPLE; } else { entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE; framebufferManagerDX9_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET); gstate_c.textureFullAlpha = gstate.getTextureFormat() == GE_TFMT_5650; gstate_c.textureSimpleAlpha = gstate_c.textureFullAlpha; } framebufferManagerDX9_->RebindFramebuffer(); SetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight); lastBoundTexture = INVALID_TEX; } void TextureCacheDX9::SetTexture(bool force) { #ifdef DEBUG_TEXTURES if (SetDebugTexture()) { // A different texture was bound, let's rebind next time. lastBoundTexture = INVALID_TEX; return; } #endif if (force) { lastBoundTexture = INVALID_TEX; } u8 level = 0; if (IsFakeMipmapChange()) level = (gstate.texlevel >> 20) & 0xF; u32 texaddr = gstate.getTextureAddress(level); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. pD3Ddevice->SetTexture(0, NULL); lastBoundTexture = INVALID_TEX; return; } const u16 dim = gstate.getTextureDimension(level); int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); GETextureFormat format = gstate.getTextureFormat(); if (format >= 11) { ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format); // TODO: Better assumption? format = GE_TFMT_5650; } bool hasClut = gstate.isTextureFormatIndexed(); // Ignore uncached/kernel when caching. u32 cluthash; if (hasClut) { if (clutLastFormat_ != gstate.clutformat) { // We update here because the clut format can be specified after the load. UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple()); } cluthash = clutHash_ ^ gstate.clutformat; } else { cluthash = 0; } u64 cachekey = TexCacheEntry::CacheKey(texaddr, format, dim, cluthash); int bufw = GetTextureBufw(0, texaddr, format); u8 maxLevel = gstate.getTextureMaxLevel(); u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr)); TexCache::iterator iter = cache.find(cachekey); TexCacheEntry *entry = NULL; gstate_c.needShaderTexClamp = false; gstate_c.bgraTexture = true; gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (iter != cache.end()) { entry = &iter->second; // Validate the texture still matches the cache entry. bool match = entry->Matches(dim, format, maxLevel); const char *reason = "different params"; // Check for FBO - slow! if (entry->framebuffer) { if (match) { if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) { WARN_LOG_REPORT_ONCE(clutAndTexRender, G3D, "Using rendered texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat()); } SetTextureFramebuffer(entry, entry->framebuffer); return; } else { // Make sure we re-evaluate framebuffers. DetachFramebuffer(entry, texaddr, entry->framebuffer); reason = "detached framebuf"; match = false; } } bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE; // First let's see if another texture with the same address had a hashfail. if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) { // Always rehash in this case, if one changed the rest all probably did. rehash = true; entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK; } else if (!gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE)) { // Okay, just some parameter change - the data didn't change, no need to rehash. rehash = false; } if (match) { if (entry->lastFrame != gpuStats.numFlips) { u32 diff = gpuStats.numFlips - entry->lastFrame; entry->numFrames++; if (entry->framesUntilNextFullHash < diff) { // Exponential backoff up to 512 frames. Textures are often reused. if (entry->numFrames > 32) { // Also, try to add some "randomness" to avoid rehashing several textures the same frame. entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + ((intptr_t)entry->texturePtr & 15); } else { entry->framesUntilNextFullHash = entry->numFrames; } rehash = true; } else { entry->framesUntilNextFullHash -= diff; } } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) { entry->invalidHint = 0; rehash = true; } if (texhash != entry->hash) { match = false; } else if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { rehash = false; } } if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && standardScaleFactor_ != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) { if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // INFO_LOG(G3D, "Reloading texture to do the scaling we skipped.."); match = false; reason = "scaling"; } } if (match) { // TODO: Mark the entry reliable if it's been safe for long enough? //got one! if (entry->texturePtr != lastBoundTexture) { gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; } if (rehash) { // Update in case any of these changed. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->bufw = bufw; entry->cluthash = cluthash; } nextTexture_ = entry; nextNeedsRehash_ = rehash; nextNeedsChange_ = false; // Might need a rebuild if the hash fails. nextNeedsRebuild_= false; VERBOSE_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr); return; //Done! } else { nextChangeReason_ = reason; nextNeedsChange_ = true; } } else { VERBOSE_LOG(G3D, "No texture in cache, decoding..."); TexCacheEntry entryNew = {0}; cache[cachekey] = entryNew; if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) { WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat()); } entry = &cache[cachekey]; if (g_Config.bTextureBackoffCache) { entry->status = TexCacheEntry::STATUS_HASHING; } else { entry->status = TexCacheEntry::STATUS_UNRELIABLE; } nextNeedsChange_ = false; } // We have to decode it, let's setup the cache entry first. entry->addr = texaddr; entry->hash = texhash; entry->dim = dim; entry->format = format; entry->maxLevel = maxLevel; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->bufw = bufw; entry->cluthash = cluthash; gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; // Before we go reading the texture from memory, let's check for render-to-texture. // We must do this early so we have the right w/h. entry->framebuffer = 0; for (size_t i = 0, n = fbCache_.size(); i < n; ++i) { auto framebuffer = fbCache_[i]; AttachFramebuffer(entry, framebuffer->fb_address, framebuffer); } // If we ended up with a framebuffer, attach it - no texture decoding needed. if (entry->framebuffer) { SetTextureFramebuffer(entry, entry->framebuffer); } nextTexture_ = entry; nextNeedsRehash_ = entry->framebuffer == nullptr; // We still need to rebuild, to allocate a texture. But we'll bail early. nextNeedsRebuild_= true; } bool TextureCacheDX9::CheckFullHash(TexCacheEntry *const entry, bool &doDelete) { bool hashFail = false; int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); u32 fullhash = QuickTexHash(replacer, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry); if (fullhash != entry->fullhash) { hashFail = true; } else { if (g_Config.bTextureBackoffCache) { if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) { entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } if (hashFail) { entry->status |= TexCacheEntry::STATUS_UNRELIABLE; if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) { if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) { entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE; } else { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } entry->numFrames = 0; // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. if (g_Config.bTextureSecondaryCache) { if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { u64 secondKey = fullhash | (u64)entry->cluthash << 32; TexCache::iterator secondIter = secondCache.find(secondKey); if (secondIter != secondCache.end()) { TexCacheEntry *secondEntry = &secondIter->second; if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } nextTexture_ = secondEntry; return true; } } else { secondKey = entry->fullhash | ((u64)entry->cluthash << 32); secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry); secondCache[secondKey] = *entry; doDelete = false; } } } // We know it failed, so update the full hash right away. entry->fullhash = fullhash; return false; } return true; } bool TextureCacheDX9::HandleTextureChange(TexCacheEntry *const entry, const char *reason, bool initialMatch, bool doDelete) { bool replaceImages = false; cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); entry->numInvalidated++; gpuStats.numTextureInvalidations++; DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", entry->addr, reason); if (doDelete) { if (initialMatch && standardScaleFactor_ == 1 && (entry->status & TexCacheEntry::STATUS_IS_SCALED) == 0) { // Actually, if size and number of levels match, let's try to avoid deleting and recreating. // Instead, let's use glTexSubImage to replace the images. replaceImages = true; } else { if (entry->texturePtr == lastBoundTexture) { lastBoundTexture = INVALID_TEX; } ReleaseTexture(entry); entry->status &= ~TexCacheEntry::STATUS_IS_SCALED; } } // Clear the reliable bit if set. if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } // Also, mark any textures with the same address but different clut. They need rechecking. if (entry->cluthash != 0) { const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache.lower_bound(cachekeyMin), end = cache.upper_bound(cachekeyMax); it != end; ++it) { if (it->second.cluthash != entry->cluthash) { it->second.status |= TexCacheEntry::STATUS_CLUT_RECHECK; } } } return replaceImages; } void TextureCacheDX9::BuildTexture(TexCacheEntry *const entry, bool replaceImages) { entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; // For the estimate, we assume cluts always point to 8888 for simplicity. cacheSizeEstimate_ += EstimateTexMemoryUsage(entry); // TODO: If a framebuffer is attached here, might end up with a bad entry.texture. // Should just always create one here or something (like GLES.) if (entry->framebuffer) { // Nothing else to do here. return; } if ((entry->bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && entry->addr >= PSP_GetKernelMemoryEnd()) { ERROR_LOG_REPORT(G3D, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); // Proceeding here can cause a crash. return; } // Adjust maxLevel to actually present levels.. bool badMipSizes = false; int maxLevel = entry->maxLevel; for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = gstate.getTextureAddress(i); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } if (i > 0 && gstate_c.Supports(GPU_SUPPORTS_TEXTURE_LOD_CONTROL)) { int tw = gstate.getTextureWidth(i); int th = gstate.getTextureHeight(i); if (tw != 1 && tw != (gstate.getTextureWidth(i - 1) >> 1)) badMipSizes = true; else if (th != 1 && th != (gstate.getTextureHeight(i - 1) >> 1)) badMipSizes = true; } } // In addition, simply don't load more than level 0 if g_Config.bMipMap is false. if (!g_Config.bMipMap) { maxLevel = 0; } // If GLES3 is available, we can preallocate the storage, which makes texture loading more efficient. D3DFORMAT dstFmt = GetDestFormat(GETextureFormat(entry->format), gstate.getClutPaletteFormat()); int scaleFactor = standardScaleFactor_; // Rachet down scale factor in low-memory mode. if (lowMemoryMode_) { // Keep it even, though, just in case of npot troubles. scaleFactor = scaleFactor > 4 ? 4 : (scaleFactor > 2 ? 2 : 1); } u64 cachekey = replacer.Enabled() ? entry->CacheKey() : 0; int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); ReplacedTexture &replaced = replacer.FindReplacement(cachekey, entry->fullhash, w, h); if (replaced.GetSize(0, w, h)) { if (replaceImages) { // Since we're replacing the texture, we can't replace the image inside. ReleaseTexture(entry); replaceImages = false; } // We're replacing, so we won't scale. scaleFactor = 1; entry->status |= TexCacheEntry::STATUS_IS_SCALED; if (g_Config.bMipMap) { maxLevel = replaced.MaxLevel(); badMipSizes = false; } } // Don't scale the PPGe texture. if (entry->addr > 0x05000000 && entry->addr < PSP_GetKernelMemoryEnd()) scaleFactor = 1; if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) != 0 && scaleFactor != 1) { // Remember for later that we /wanted/ to scale this texture. entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } if (scaleFactor != 1) { if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED) { entry->status |= TexCacheEntry::STATUS_TO_SCALE; scaleFactor = 1; } else { entry->status &= ~TexCacheEntry::STATUS_TO_SCALE; entry->status |= TexCacheEntry::STATUS_IS_SCALED; texelsScaledThisFrame_ += w * h; } } if (replaceImages) { // Make sure it's not currently set. pD3Ddevice->SetTexture(0, NULL); } // Seems to cause problems in Tactics Ogre. if (badMipSizes) { maxLevel = 0; } if (IsFakeMipmapChange()) { u8 level = (gstate.texlevel >> 20) & 0xF; LoadTextureLevel(*entry, replaced, level, maxLevel, replaceImages, scaleFactor, dstFmt); } else LoadTextureLevel(*entry, replaced, 0, maxLevel, replaceImages, scaleFactor, dstFmt); LPDIRECT3DTEXTURE9 &texture = DxTex(entry); if (!texture) { return; } // Mipmapping is only enabled when texture scaling is disabled. if (maxLevel > 0 && scaleFactor == 1) { for (int i = 1; i <= maxLevel; i++) { LoadTextureLevel(*entry, replaced, i, maxLevel, replaceImages, scaleFactor, dstFmt); } } if (replaced.Valid()) { entry->SetAlphaStatus(TexCacheEntry::Status(replaced.AlphaStatus())); } } D3DFORMAT TextureCacheDX9::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const { switch (format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: return getClutDestFormat(clutFormat); case GE_TFMT_4444: return D3DFMT_A4R4G4B4; case GE_TFMT_5551: return D3DFMT_A1R5G5B5; case GE_TFMT_5650: return D3DFMT_R5G6B5; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: return D3DFMT_A8R8G8B8; } } TexCacheEntry::Status TextureCacheDX9::CheckAlpha(const u32 *pixelData, u32 dstFmt, int stride, int w, int h) { CheckAlphaResult res; switch (dstFmt) { case D3DFMT_A4R4G4B4: res = CheckAlphaRGBA4444Basic(pixelData, stride, w, h); break; case D3DFMT_A1R5G5B5: res = CheckAlphaRGBA5551Basic(pixelData, stride, w, h); break; case D3DFMT_R5G6B5: // Never has any alpha. res = CHECKALPHA_FULL; break; default: res = CheckAlphaRGBA8888Basic(pixelData, stride, w, h); break; } return (TexCacheEntry::Status)res; } ReplacedTextureFormat FromD3D9Format(u32 fmt) { switch (fmt) { case D3DFMT_R5G6B5: return ReplacedTextureFormat::F_5650; case D3DFMT_A1R5G5B5: return ReplacedTextureFormat::F_5551; case D3DFMT_A4R4G4B4: return ReplacedTextureFormat::F_4444; case D3DFMT_A8R8G8B8: default: return ReplacedTextureFormat::F_8888; } } D3DFORMAT ToD3D9Format(ReplacedTextureFormat fmt) { switch (fmt) { case ReplacedTextureFormat::F_5650: return D3DFMT_R5G6B5; case ReplacedTextureFormat::F_5551: return D3DFMT_A1R5G5B5; case ReplacedTextureFormat::F_4444: return D3DFMT_A4R4G4B4; case ReplacedTextureFormat::F_8888: default: return D3DFMT_A8R8G8B8; } } void TextureCacheDX9::LoadTextureLevel(TexCacheEntry &entry, ReplacedTexture &replaced, int level, int maxLevel, bool replaceImages, int scaleFactor, u32 dstFmt) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); LPDIRECT3DTEXTURE9 &texture = DxTex(&entry); if ((level == 0 || IsFakeMipmapChange()) && (!replaceImages || texture == nullptr)) { // Create texture D3DPOOL pool = D3DPOOL_MANAGED; int usage = 0; if (pD3DdeviceEx) { pool = D3DPOOL_DEFAULT; usage = D3DUSAGE_DYNAMIC; // TODO: Switch to using a staging texture? } int levels = scaleFactor == 1 ? maxLevel + 1 : 1; int tw = w, th = h; D3DFORMAT tfmt = (D3DFORMAT)(dstFmt); if (replaced.GetSize(level, tw, th)) { tfmt = ToD3D9Format(replaced.Format(level)); } else { tw *= scaleFactor; th *= scaleFactor; if (scaleFactor > 1) { tfmt = D3DFMT_A8R8G8B8; } } HRESULT hr; if (IsFakeMipmapChange()) hr = pD3Ddevice->CreateTexture(tw, th, 1, usage, tfmt, pool, &texture, NULL); else hr = pD3Ddevice->CreateTexture(tw, th, levels, usage, tfmt, pool, &texture, NULL); if (FAILED(hr)) { INFO_LOG(G3D, "Failed to create D3D texture"); ReleaseTexture(&entry); return; } } D3DLOCKED_RECT rect; if (IsFakeMipmapChange()) texture->LockRect(0, &rect, NULL, 0); else texture->LockRect(level, &rect, NULL, 0); gpuStats.numTexturesDecoded++; if (replaced.GetSize(level, w, h)) { replaced.Load(level, rect.pBits, rect.Pitch); dstFmt = ToD3D9Format(replaced.Format(level)); } else { GETextureFormat tfmt = (GETextureFormat)entry.format; GEPaletteFormat clutformat = gstate.getClutPaletteFormat(); u32 texaddr = gstate.getTextureAddress(level); int bufw = GetTextureBufw(level, texaddr, tfmt); int bpp = dstFmt == D3DFMT_A8R8G8B8 ? 4 : 2; u32 *pixelData = (u32 *)rect.pBits; int decPitch = rect.Pitch; if (scaleFactor > 1) { tmpTexBufRearrange.resize(std::max(bufw, w) * h); pixelData = tmpTexBufRearrange.data(); // We want to end up with a neatly packed texture for scaling. decPitch = w * bpp; } bool decSuccess = DecodeTextureLevel((u8 *)pixelData, decPitch, tfmt, clutformat, texaddr, level, bufw, false); if (!decSuccess) { memset(pixelData, 0, decPitch * h); } if (scaleFactor > 1) { scaler.ScaleAlways((u32 *)rect.pBits, pixelData, dstFmt, w, h, scaleFactor); pixelData = (u32 *)rect.pBits; // We always end up at 8888. Other parts assume this. assert(dstFmt == D3DFMT_A8R8G8B8); bpp = sizeof(u32); decPitch = w * bpp; if (decPitch != rect.Pitch) { // Rearrange in place to match the requested pitch. // (it can only be larger than w * bpp, and a match is likely.) for (int y = h - 1; y >= 0; --y) { memcpy((u8 *)rect.pBits + rect.Pitch * y, (u8 *)rect.pBits + decPitch * y, w * bpp); } decPitch = rect.Pitch; } } if ((entry.status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { TexCacheEntry::Status alphaStatus = CheckAlpha(pixelData, dstFmt, decPitch / bpp, w, h); entry.SetAlphaStatus(alphaStatus, level); } else { entry.SetAlphaStatus(TexCacheEntry::STATUS_ALPHA_UNKNOWN); } if (replacer.Enabled()) { ReplacedTextureDecodeInfo replacedInfo; replacedInfo.cachekey = entry.CacheKey(); replacedInfo.hash = entry.fullhash; replacedInfo.addr = entry.addr; replacedInfo.isVideo = videos_.find(entry.addr & 0x3FFFFFFF) != videos_.end(); replacedInfo.isFinal = (entry.status & TexCacheEntry::STATUS_TO_SCALE) == 0; replacedInfo.scaleFactor = scaleFactor; replacedInfo.fmt = FromD3D9Format(dstFmt); replacer.NotifyTextureDecoded(replacedInfo, pixelData, decPitch, level, w, h); } } if (IsFakeMipmapChange()) texture->UnlockRect(0); else texture->UnlockRect(level); } bool TextureCacheDX9::DecodeTexture(u8 *output, const GPUgstate &state) { OutputDebugStringA("TextureCache::DecodeTexture : FixMe\r\n"); return true; } };