// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "base/logging.h" #include "base/timeutil.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/GPU_Vulkan.h" enum { DRAW_BINDING_TEXTURE = 0, DRAW_BINDING_2ND_TEXTURE = 1, DRAW_BINDING_DYNUBO_BASE = 2, DRAW_BINDING_DYNUBO_LIGHT = 3, DRAW_BINDING_DYNUBO_BONE = 4, }; const VkPrimitiveTopology prim[8] = { VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, // Vulkan doesn't do quads. We could do strips with restart-index though. We could also do RECT primitives in the geometry shader. }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan) : vulkan_(vulkan), decodedVerts_(0), prevPrim_(GE_PRIM_INVALID), lastVType_(-1), pipelineManager_(nullptr), textureCache_(nullptr), framebufferManager_(nullptr), numDrawCalls(0), vertexCountInDrawCalls(0), decodeCounter_(0), fboTexNeedBind_(false), fboTexBound_(false), curFrame_(0) { memset(&decOptions_, 0, sizeof(decOptions_)); decOptions_.expandAllUVtoFloat = true; decOptions_.expandAllWeightsToFloat = true; decOptions_.expand8BitNormalsToFloat = true; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE); transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE); transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE); indexGen.Setup(decIndex); // All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated. VkDescriptorSetLayoutBinding bindings[5]; bindings[0].descriptorCount = 1; bindings[0].pImmutableSamplers = nullptr; bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[0].binding = DRAW_BINDING_TEXTURE; bindings[1].descriptorCount = 1; bindings[1].pImmutableSamplers = nullptr; bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[1].binding = DRAW_BINDING_2ND_TEXTURE; bindings[2].descriptorCount = 1; bindings[2].pImmutableSamplers = nullptr; bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; bindings[2].binding = DRAW_BINDING_DYNUBO_BASE; bindings[3].descriptorCount = 1; bindings[3].pImmutableSamplers = nullptr; bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT; bindings[4].descriptorCount = 1; bindings[4].pImmutableSamplers = nullptr; bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[4].binding = DRAW_BINDING_DYNUBO_BONE; VkDevice device = vulkan_->GetDevice(); VkDescriptorSetLayoutCreateInfo dsl; dsl.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; dsl.pNext = nullptr; dsl.bindingCount = 5; dsl.pBindings = bindings; VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_); VkDescriptorPoolSize dpTypes[2]; dpTypes[0].descriptorCount = 800; dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; dpTypes[1].descriptorCount = 200; dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; VkDescriptorPoolCreateInfo dp; dp.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; dp.pNext = nullptr; dp.flags = 0; // Don't want to mess around with individually freeing these, let's go fixed each frame and zap the whole array. Might try the dynamic approach later. dp.maxSets = 1000; dp.pPoolSizes = dpTypes; dp.poolSizeCount = ARRAY_SIZE(dpTypes); res = vkCreateDescriptorPool(device, &dp, nullptr, &frame_[0].descPool); assert(VK_SUCCESS == res); res = vkCreateDescriptorPool(device, &dp, nullptr, &frame_[1].descPool); assert(VK_SUCCESS == res); // We are going to use one-shot descriptors in the initial implementation. Might look into caching them // if creating and updating them turns out to be expensive. for (int i = 0; i < 2; i++) { VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool); assert(VK_SUCCESS == res); frame_[i].pushData = new VulkanPushBuffer(vulkan_, 4 * 1024 * 1024); // TODO: Do something more dynamic } VkPipelineLayoutCreateInfo pl; pl.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pl.pNext = nullptr; pl.pPushConstantRanges = nullptr; pl.pushConstantRangeCount = 0; pl.setLayoutCount = 1; pl.pSetLayouts = &descriptorSetLayout_; res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_); assert(VK_SUCCESS == res); VkSamplerCreateInfo samp = {}; samp.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samp.pNext = nullptr; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; samp.flags = 0; samp.magFilter = VK_FILTER_LINEAR; samp.minFilter = VK_FILTER_LINEAR; res = vkCreateSampler(device, &samp, nullptr, &depalSampler_); assert(VK_SUCCESS == res); } void DrawEngineVulkan::BeginFrame() { FrameData *frame = &frame_[curFrame_ & 1]; vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0); frame->pushData->Begin(vulkan_->GetDevice()); frame->pushData->Reset(); } void DrawEngineVulkan::EndFrame() { FrameData *frame = &frame_[curFrame_ & 1]; frame->pushData->End(vulkan_->GetDevice()); curFrame_++; } DrawEngineVulkan::~DrawEngineVulkan() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE); FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE); for (int i = 0; i < 2; i++) { vulkan_->QueueDelete(frame_[i].descPool); delete frame_[i].pushData; } vulkan_->QueueDelete(depalSampler_); } VertexDecoder *DrawEngineVulkan::GetVertexDecoder(u32 vtype) { auto iter = decoderMap_.find(vtype); if (iter != decoderMap_.end()) return iter->second; VertexDecoder *dec = new VertexDecoder(); dec->SetVertexType(vtype, decOptions_, decJitCache_); decoderMap_[vtype] = dec; return dec; } void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) { SetupVertexDecoderInternal(vertType); } inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) { // As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it // into the top of the verttype where there are unused bits. const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24); // If vtype has changed, setup the vertex decoder. if (vertTypeID != lastVType_) { dec_ = GetVertexDecoder(vertTypeID); lastVType_ = vertTypeID; } } void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX) Flush(cmd_); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoderInternal(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } numDrawCalls++; vertexCountInDrawCalls += vertexCount; if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) { DecodeVertsStep(); decodeCounter_++; } if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.textureChanged |= TEXCHANGE_PARAMSONLY; Flush(cmd_); } } } void DrawEngineVulkan::DecodeVerts() { for (; decodeCounter_ < numDrawCalls; decodeCounter_++) { DecodeVertsStep(); } // Sanity check if (indexGen.Prim() < 0) { ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim()); // Force to points (0) indexGen.AddPrim(GE_PRIM_POINTS, 0); } } void DrawEngineVulkan::DecodeVertsStep() { const int i = decodeCounter_; const DeferredDrawCall &dc = drawCalls[i]; indexGen.SetIndex(decodedVerts_); int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; u32 indexType = dc.indexType; void *inds = dc.inds; if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) { // Decode the verts and apply morphing. Simple. dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += indexUpperBound - indexLowerBound + 1; indexGen.AddPrim(dc.prim, dc.vertexCount); } else { // It's fairly common that games issue long sequences of PRIM calls, with differing // inds pointer but the same base vertex pointer. We'd like to reuse vertices between // these as much as possible, so we make sure here to combine as many as possible // into one nice big drawcall, sharing data. // 1. Look ahead to find the max index, only looking as "matching" drawcalls. // Expand the lower and upper bounds as we go. int lastMatch = i; const int total = numDrawCalls; for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } // 2. Loop through the drawcalls, translating indices as we go. switch (indexType) { case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound); } break; } const int vertexCount = indexUpperBound - indexLowerBound + 1; // This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes. if (decodedVerts_ + vertexCount > VERTEX_BUFFER_MAX) { return; } // 3. Decode that range of vertex data. dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += vertexCount; // 4. Advance indexgen vertex counter. indexGen.Advance(vertexCount); decodeCounter_ = lastMatch; } } inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) { // Switch to u32 units. const u32 *p = (const u32 *)ptr; sz >>= 2; if (sz > 100) { size_t step = sz / 4; u32 hash = 0; for (size_t i = 0; i < sz; i += step) { hash += DoReliableHash32(p + i, 100, 0x3A44B9C4); } return hash; } else { return p[0] + p[sz - 1]; } } VkDescriptorSet DrawEngineVulkan::GetDescriptorSet(CachedTextureVulkan *texture, VkSampler sampler, VkBuffer dynamicUbo) { DescriptorSetKey key; key.texture_ = texture; key.sampler_ = sampler; key.secondaryTexture_ = nullptr; key.buffer_ = dynamicUbo; FrameData *frame = &frame_[curFrame_ & 1]; auto iter = frame->descSets.find(key); if (iter != frame->descSets.end()) { return iter->second; } // Didn't find one in the frame cache, let's make a new one. VkDescriptorSet desc; VkDescriptorSetAllocateInfo descAlloc; descAlloc.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; descAlloc.pNext = nullptr; descAlloc.pSetLayouts = &descriptorSetLayout_; descAlloc.descriptorPool = frame->descPool; descAlloc.descriptorSetCount = 1; vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc); // We just don't write to the slots we don't care about. VkWriteDescriptorSet writes[4]; memset(writes, 0, sizeof(writes)); // Main texture int n = 0; if (texture) { VkDescriptorImageInfo tex; tex.imageLayout = texture->imageLayout; tex.imageView = texture->imageView; tex.sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TEXTURE; writes[n].pImageInfo = &tex; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } // Skipping 2nd texture for now. // Uniform buffer objects VkDescriptorBufferInfo buf[3]; buf[0].buffer = dynamicUbo; buf[0].offset = 0; buf[0].range = sizeof(UB_VS_FS_Base); buf[1].buffer = dynamicUbo; buf[1].offset = 0; buf[1].range = sizeof(UB_VS_Lights); buf[2].buffer = dynamicUbo; buf[2].offset = 0; buf[2].range = sizeof(UB_VS_Bones); writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE; writes[n].pBufferInfo = &buf[0]; writes[n].dstSet = desc; writes[n].descriptorCount = 3; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; n++; vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr); frame->descSets[key] = desc; return desc; } // The inline wrapper in the header checks for numDrawCalls == 0d void DrawEngineVulkan::DoFlush(VkCommandBuffer cmd) { gpuStats.numFlushes++; FrameData *frame = &frame_[curFrame_ & 1]; // Note than when we implement overflow in pushbuffer, we need to make sure to overflow here, not between // the three ubo pushes. The reason is that the three UBOs must be in the same buffer as that's how we // designed the descriptor set. // CachedTextureVulkan *tex = textureCache_->ApplyTexture(); VkDescriptorSet ds = GetDescriptorSet(nullptr, nullptr, frame->pushData->GetVkBuffer()); GEPrimitiveType prim = prevPrim_; bool useHWTransform = CanUseHardwareTransform(prim); VulkanVertexShader *vshader; VulkanFragmentShader *fshader; uint32_t baseUBOOffset = 0; uint32_t lightUBOOffset = 0; uint32_t boneUBOOffset = 0; uint32_t ibOffset = 0; uint32_t vbOffset = 0; if (useHWTransform) { int vertexCount = 0; int maxIndex = 0; bool useElements = true; DecodeVerts(); gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); maxIndex = indexGen.MaxIndex(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } VulkanPipelineRasterStateKey pipelineKey; VulkanDynamicState dynState; ConvertStateToVulkanKey(*framebufferManager_, prim, pipelineKey, dynState); // TODO: Dirty-flag these. vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor); vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport); vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef); vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask); vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask); // vkCmdSetBlendConstants(cmd_, dynState.blendColor); shaderManager_->UpdateUniforms(); shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader->GetModule(), fshader->GetModule(), true); vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw. if (pipeline->uniformBlocks & UB_VS_FS_BASE) { baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushData); } if (pipeline->uniformBlocks & UB_VS_LIGHTS) { lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushData); } if (pipeline->uniformBlocks & UB_VS_BONES) { boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushData); } VkBuffer buf[1] = {frame->pushData->GetVkBuffer()}; const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets); vbOffset = (uint32_t)frame->pushData->Push(decoded, vertexCount * dec_->GetDecVtxFmt().stride); VkDeviceSize offsets[1] = { vbOffset }; if (useElements) { ibOffset = (uint32_t)frame->pushData->Push(decIndex, 2 * indexGen.VertexCount()); // TODO: Avoid rebinding vertex/index buffers if the vertex size stays the same by using the offset arguments // Might want to separate vertices out into a different push buffer in that case. vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets); vkCmdBindIndexBuffer(cmd_, buf[0], ibOffset, VK_INDEX_TYPE_UINT16); vkCmdDrawIndexed(cmd_, indexGen.VertexCount(), 1, 0, 0, 0); } else { vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets); vkCmdDraw(cmd_, vertexCount, 1, 0, 0); } } else { DecodeVerts(); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount()); int numTrans = 0; bool drawIndexed = false; u16 *inds = decIndex; TransformedVertex *drawBuffer = NULL; SoftwareTransformResult result; memset(&result, 0, sizeof(result)); int maxIndex = indexGen.MaxIndex(); SoftwareTransform( prim, decoded, indexGen.VertexCount(), dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, framebufferManager_, textureCache_, transformed, transformedExpanded, drawBuffer, numTrans, drawIndexed, &result, 1.0f); if (result.action == SW_DRAW_PRIMITIVES) { VulkanPipelineRasterStateKey pipelineKey; VulkanDynamicState dynState; ConvertStateToVulkanKey(*framebufferManager_, prim, pipelineKey, dynState); // TODO: Dirty-flag these. vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor); vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport); if (dynState.useStencil) { vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask); vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask); } if (result.setStencil) { // hey, dynamic state! vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, result.stencilValue); } else if (dynState.useStencil) { vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef); } // vkCmdSetBlendConstants(cmd_, dynState.blendColor); shaderManager_->UpdateUniforms(); shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader->GetModule(), fshader->GetModule(), false); vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw. if (pipeline->uniformBlocks & UB_VS_FS_BASE) { baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushData); } const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets); vbOffset = (uint32_t)frame->pushData->Push(drawBuffer, numTrans * sizeof(TransformedVertex)); VkBuffer buf[1] = { frame->pushData->GetVkBuffer() }; VkDeviceSize offsets[1] = { vbOffset }; if (drawIndexed) { ibOffset = (uint32_t)frame->pushData->Push(decIndex, 2 * indexGen.VertexCount()); // TODO: Have a buffer per frame, use a walking buffer pointer // TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets); vkCmdBindIndexBuffer(cmd_, buf[0], ibOffset, VK_INDEX_TYPE_UINT16); vkCmdDrawIndexed(cmd_, numTrans, 1, 0, 0, 0); } else { // TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets); vkCmdDraw(cmd_, numTrans, 1, 0, 0); } } else if (result.action == SW_CLEAR) { // TODO: Support clearing only color and not alpha, or vice versa. This is not supported (probably for good reason) by vkCmdClearColorAttachment // so we will have to simply draw a rectangle instead. int mask = gstate.isClearModeColorMask() ? 1 : 0; if (gstate.isClearModeAlphaMask()) mask |= 2; if (gstate.isClearModeDepthMask()) mask |= 4; VkClearValue colorValue, depthValue; colorValue.color.float32[0] = (result.color & 0xFF) * (1.0f / 255.0f); colorValue.color.float32[1] = ((result.color >> 8) & 0xFF) * (1.0f / 255.0f); colorValue.color.float32[2] = ((result.color >> 16) & 0xFF) * (1.0f / 255.0f); colorValue.color.float32[3] = ((result.color >> 24) & 0xFF) * (1.0f / 255.0f); depthValue.depthStencil.depth = result.depth; depthValue.depthStencil.stencil = (result.color >> 24) & 0xFF; VkClearRect rect; rect.baseArrayLayer = 0; rect.layerCount = 1; rect.rect.offset.x = 0; rect.rect.offset.y = 0; rect.rect.extent.width = gstate_c.curRTRenderWidth; rect.rect.extent.height = gstate_c.curRTRenderHeight; int count = 0; VkClearAttachment attach[2]; if (mask & 3) { attach[count].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attach[count].clearValue = colorValue; attach[count].colorAttachment = 0; count++; } if (mask & 4) { attach[count].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; attach[count].clearValue = depthValue; attach[count].colorAttachment = 0; } vkCmdClearAttachments(cmd_, count, attach, 1, &rect); if (mask & 1) { framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); } if (mask & 4) { framebufferManager_->SetDepthUpdated(); } } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls = 0; decodeCounter_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; host->GPUNotifyDraw(); } void DrawEngineVulkan::Resized() { decJitCache_->Clear(); lastVType_ = -1; dec_ = NULL; for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) { delete iter->second; } decoderMap_.clear(); } bool DrawEngineVulkan::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); }