// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "profiler/profiler.h" #include "Common/CPUDetect.h" #include "Common/MemoryUtil.h" #include "Core/Config.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" // only needed for UVScale stuff static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) { if (type == GE_PATCHPRIM_LINES) { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx3; *(indices++) = idx1; *(indices++) = idx2; } else { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx1; *(indices++) = idx2; *(indices++) = idx3; } } static void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total = 0) { for (int v = 0; v < num_v; ++v) { for (int u = 0; u < num_u; ++u) { int idx0 = v * (num_u + 1) + u + total; // Top left int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1); count += 6; } } } struct Weight { float weights[4], derivs[4]; }; class Bezier3DWeight { private: void CalcWeights(float t, Weight &w) { // Bernstein 3D basis polynomial w.weights[0] = (1 - t) * (1 - t) * (1 - t); w.weights[1] = 3 * t * (1 - t) * (1 - t); w.weights[2] = 3 * t * t * (1 - t); w.weights[3] = t * t * t; // Derivative w.derivs[0] = -3 * (1 - t) * (1 - t); w.derivs[1] = 9 * t * t - 12 * t + 3; w.derivs[2] = 3 * (2 - 3 * t) * t; w.derivs[3] = 3 * t * t; } public: Weight *CalcWeightsAll(u32 key) { int tess = (int)key; Weight *weights = new Weight[tess + 1]; const float inv_u = 1.0f / (float)tess; for (int i = 0; i < tess + 1; ++i) { const float t = (float)i * inv_u; CalcWeights(t, weights[i]); } return weights; } }; class Spline3DWeight { private: struct KnotDiv { float _3_0 = 1.0f / 3.0f; float _4_1 = 1.0f / 3.0f; float _5_2 = 1.0f / 3.0f; float _3_1 = 1.0f / 2.0f; float _4_2 = 1.0f / 2.0f; float _3_2 = 1.0f; // Always 1 }; // knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic)) void CalcKnots(int n, int type, float *knots, KnotDiv *divs) { // Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0) // for (int i = 0; i < n + 5; ++i) { for (int i = 0; i < n + 2; ++i) { knots[i] = (float)i - 2; } // The first edge is open if ((type & 1) != 0) { knots[0] = 0; knots[1] = 0; divs[0]._3_0 = 1.0f; divs[0]._4_1 = 1.0f / 2.0f; divs[0]._3_1 = 1.0f; if (n > 1) divs[1]._3_0 = 1.0f / 2.0f; } // The last edge is open if ((type & 2) != 0) { // knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv divs[n - 1]._4_1 = 1.0f / 2.0f; divs[n - 1]._5_2 = 1.0f; divs[n - 1]._4_2 = 1.0f; if (n > 1) divs[n - 2]._5_2 = 1.0f / 2.0f; } } void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) { #ifdef _M_SSE const __m128 knot012 = _mm_loadu_ps(knots); const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012); const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0)); const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2)); const float &f32 = t012.m128_f32[2]; // Following comments are for explains order of the multiply. // float a = (1-f30)*(1-f31); // float c = (1-f41)*(1-f42); // float b = ( f31 * f41); // float d = ( f42 * f52); const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0)); const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1)); const __m128 c1_1_0_0 = { 1, 1, 0, 0 }; const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52)); const float &a = acbd.m128_f32[0]; const float &b = acbd.m128_f32[2]; const float &c = acbd.m128_f32[1]; const float &d = acbd.m128_f32[3]; // For derivative const float &f31 = f30_41_31_42.m128_f32[2]; const float &f42 = f30_41_31_42.m128_f32[3]; #else // TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly... float t0 = (t - knots[0]); float t1 = (t - knots[1]); float t2 = (t - knots[2]); float f30 = t0 * div._3_0; float f41 = t1 * div._4_1; float f52 = t2 * div._5_2; float f31 = t1 * div._3_1; float f42 = t2 * div._4_2; float f32 = t2 * div._3_2; float a = (1 - f30) * (1 - f31); float b = (f31 * f41); float c = (1 - f41) * (1 - f42); float d = (f42 * f52); #endif w.weights[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32) w.weights[1] = 1 - a - b + ((a + b + c - 1) * f32); w.weights[2] = b + ((1 - b - c - d) * f32); w.weights[3] = d * f32; // f32*f42*f52 // Derivative float i1 = (1 - f31) * (1 - f32); float i2 = f31 * (1 - f32) + (1 - f42) * f32; float i3 = f42 * f32; float f130 = i1 * div._3_0; float f241 = i2 * div._4_1; float f352 = i3 * div._5_2; w.derivs[0] = 3 * (0 - f130); w.derivs[1] = 3 * (f130 - f241); w.derivs[2] = 3 * (f241 - f352); w.derivs[3] = 3 * (f352 - 0); } public: Weight *CalcWeightsAll(u32 key) { int tess, count, type; FromKey(key, tess, count, type); const int num_patches = count - 3; Weight *weights = new Weight[tess * num_patches + 1]; // float *knots = new float[num_patches + 5]; float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory KnotDiv *divs = new KnotDiv[num_patches]; CalcKnots(num_patches, type, knots, divs); const float inv_tess = 1.0f / (float)tess; for (int i = 0; i < num_patches; ++i) { const int _tess = (i == num_patches - 1) ? (tess + 1) : tess; for (int j = 0; j < _tess; ++j) { const int index = i * tess + j; const float t = (float)index * inv_tess; CalcWeights(t, knots + i, divs[i], weights[index]); } } delete[] knots; delete[] divs; return weights; } u32 ToKey(int tess, int count, int type) { return tess | (count << 8) | (type << 16); } void FromKey(u32 key, int &tess, int &count, int &type) { tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF; } }; template class WeightCache : public T { private: std::unordered_map weightsCache; public: Weight* operator [] (u32 key) { Weight *&weights = weightsCache[key]; if (!weights) weights = CalcWeightsAll(key); return weights; } void Clear() { for (auto it : weightsCache) delete[] it.second; weightsCache.clear(); } }; static WeightCache bezierWeightsCache; static WeightCache splineWeightsCache; struct Weight2D { const Weight *u, *v; template Weight2D(WeightCache &cache, u32 key_u, u32 key_v) { u = cache[key_u]; v = (key_u != key_v) ? cache[key_v] : u; // Use same weights if u == v } }; void DrawEngineCommon::ClearSplineBezierWeights() { bezierWeightsCache.Clear(); splineWeightsCache.Clear(); } bool CanUseHardwareTessellation(GEPatchPrimType prim) { if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) { return CanUseHardwareTransform(PatchPrimToPrim(prim)); } return false; } // Prepare mesh of one patch for "Instanced Tessellation". static void TessellateSplinePatchHardware(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)spatch.tess_u; float inv_v = 1.0f / (float)spatch.tess_v; // Generating simple input vertices for the spline-computing vertex shader. for (int tile_v = 0; tile_v < spatch.tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < spatch.tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (spatch.tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; // TODO: Move to shader uniform and unify this method spline and bezier if necessary. // For compute normal vert.nrm.x = inv_u; vert.nrm.y = inv_v; } } BuildIndex(indices, count, spatch.tess_u, spatch.tess_v, spatch.primType); } template static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { // Full (mostly) correct tessellation of spline patches. // Not very fast. u32 key_u = splineWeightsCache.ToKey(spatch.tess_u, spatch.count_u, spatch.type_u); u32 key_v = splineWeightsCache.ToKey(spatch.tess_v, spatch.count_v, spatch.type_v); Weight2D weights(splineWeightsCache, key_u, key_v); // Increase tessellation based on the size. Should be approximately right? int patch_div_s = (spatch.count_u - 3) * spatch.tess_u; int patch_div_t = (spatch.count_v - 3) * spatch.tess_v; if (quality == 0) { // Low quality patch_div_s = (spatch.count_u - 3) * 2; patch_div_t = (spatch.count_v - 3) * 2; } if (quality > 1) { // Don't cut below 2, though. if (patch_div_s > 2) { patch_div_s /= quality; } if (patch_div_t > 2) { patch_div_t /= quality; } } // Downsample until it fits, in case crazy tessellation factors are sent. while ((patch_div_s + 1) * (patch_div_t + 1) > maxVertices) { patch_div_s /= 2; patch_div_t /= 2; } if (patch_div_s < 1) patch_div_s = 1; if (patch_div_t < 1) patch_div_t = 1; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; const float inv_u = 1.0f / (float)spatch.tess_u; const float inv_v = 1.0f / (float)spatch.tess_v; int num_patches_u = spatch.count_u - 3; int num_patches_v = spatch.count_v - 3; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { int tess_u = (patch_u - 1 == num_patches_u) ? spatch.tess_u + 1 : spatch.tess_u; for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { int tess_v = (patch_v - 1 == num_patches_v) ? spatch.tess_v + 1 : spatch.tess_v; // Prepare 4x4 control points to tessellate const int idx = patch_v * spatch.count_u + patch_u; const int idx_v[4] = { idx, idx + spatch.count_u, idx + spatch.count_u * 2, idx + spatch.count_u * 3 }; Tessellator tess_pos(spatch.pos, idx_v); Tessellator tess_col(spatch.col, idx_v); Tessellator tess_tex(spatch.tex, idx_v); Tessellator tess_nrm(spatch.pos, idx_v); for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { int index_u = patch_u * spatch.tess_u + tile_u; const Weight &wu = weights.u[index_u]; // Pre-tessellate U lines tess_pos.SampleU(wu.weights); if (sampleCol) tess_col.SampleU(wu.weights); if (sampleTex) tess_tex.SampleU(wu.weights); if (sampleNrm) tess_nrm.SampleU(wu.derivs); for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { int index_v = patch_v * spatch.tess_v + tile_v; const Weight &wv = weights.v[index_v]; SimpleVertex &vert = vertices[index_v * (patch_div_s + 1) + index_u]; // Tessellate vert.pos = tess_pos.SampleV(wv.weights); if (sampleCol) { vert.color_32 = tess_col.SampleV(wv.weights).ToRGBA(); } else { vert.color_32 = spatch.defcolor; } if (sampleTex) { tess_tex.SampleV(wv.weights).Write(vert.uv); } else { // Generate texcoord vert.uv[0] = patch_u + tile_u * inv_u; vert.uv[1] = patch_v + tile_v * inv_v; } if (sampleNrm) { const Vec3f derivU = tess_nrm.SampleV(wv.weights); const Vec3f derivV = tess_pos.SampleV(wv.derivs); vert.nrm = Cross(derivU, derivV).Normalized(useSSE4); if (spatch.patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } } } } } BuildIndex(indices, count, patch_div_s, patch_div_t, spatch.primType); } template static inline void SplinePatchFullQualityDispatch4(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { if (cpu_info.bSSE4_1) SplinePatchFullQuality(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQuality(dest, indices, count, spatch, origVertType, quality, maxVertices); } template static inline void SplinePatchFullQualityDispatch3(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origTc = (origVertType & GE_VTYPE_TC_MASK) != 0; if (origTc) SplinePatchFullQualityDispatch4(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch4(dest, indices, count, spatch, origVertType, quality, maxVertices); } template static inline void SplinePatchFullQualityDispatch2(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origCol = (origVertType & GE_VTYPE_COL_MASK) != 0; if (origCol) SplinePatchFullQualityDispatch3(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch3(dest, indices, count, spatch, origVertType, quality, maxVertices); } static void SplinePatchFullQualityDispatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { bool origNrm = (origVertType & GE_VTYPE_NRM_MASK) != 0; if (origNrm) SplinePatchFullQualityDispatch2(dest, indices, count, spatch, origVertType, quality, maxVertices); else SplinePatchFullQualityDispatch2(dest, indices, count, spatch, origVertType, quality, maxVertices); } void TessellateSplinePatch(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int maxVertexCount) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 0, maxVertexCount); break; case MEDIUM_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 2, maxVertexCount); break; case HIGH_QUALITY: SplinePatchFullQualityDispatch(dest, indices, count, spatch, origVertType, 1, maxVertexCount); break; } } // Tessellate single patch (4x4 control points) template class Tessellator { private: const T *const p[4]; // T p[v][u]; 4x4 control points T u[4]; // Pre-tessellated U lines public: Tessellator(const T *p, const int idx[4]) : p{ p + idx[0], p + idx[1], p + idx[2], p + idx[3] } {} // Linear combination T Sample(const T p[4], const float w[4]) { return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3]; } void SampleEdgeU(int idx) { u[0] = p[0][idx]; u[1] = p[1][idx]; u[2] = p[2][idx]; u[3] = p[3][idx]; } void SampleU(const float weights[4]) { if (weights[0] == 1.0f) { SampleEdgeU(0); return; } // weights = {1,0,0,0}, first edge is open. if (weights[3] == 1.0f) { SampleEdgeU(3); return; } // weights = {0,0,0,1}, last edge is open. u[0] = Sample(p[0], weights); u[1] = Sample(p[1], weights); u[2] = Sample(p[2], weights); u[3] = Sample(p[3], weights); } T SampleV(const float weights[4]) { if (weights[0] == 1.0f) return u[0]; // weights = {1,0,0,0}, first edge is open. if (weights[3] == 1.0f) return u[3]; // weights = {0,0,0,1}, last edge is open. return Sample(u, weights); } }; static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float inv_u = 1.0f / (float)tess_u; const float inv_v = 1.0f / (float)tess_v; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; const bool sampleNrm = (origVertType & GE_VTYPE_NRM_MASK) != 0; const bool sampleCol = (origVertType & GE_VTYPE_COL_MASK) != 0; const bool sampleTex = (origVertType & GE_VTYPE_TC_MASK) != 0; Weight2D weights(bezierWeightsCache, tess_u, tess_v); int num_patches_u = (patch.count_u - 1) / 3; int num_patches_v = (patch.count_v - 1) / 3; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { // Prepare 4x4 control points to tessellate const int idx = patch_v * 3 * patch.count_u + patch_u * 3; const int idx_v[4] = { idx, idx + patch.count_u, idx + patch.count_u * 2, idx + patch.count_u * 3 }; Tessellator tess_pos(patch.pos, idx_v); Tessellator tess_col(patch.col, idx_v); Tessellator tess_tex(patch.tex, idx_v); Tessellator tess_nrm(patch.pos, idx_v); for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { const Weight &wu = weights.u[tile_u]; // Pre-tessellate U lines tess_pos.SampleU(wu.weights); if (sampleCol) tess_col.SampleU(wu.weights); if (sampleTex) tess_tex.SampleU(wu.weights); if (sampleNrm) tess_nrm.SampleU(wu.derivs); for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { const Weight &wv = weights.v[tile_v]; SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; // Tessellate vert.pos = tess_pos.SampleV(wv.weights); if (sampleCol) { vert.color_32 = tess_col.SampleV(wv.weights).ToRGBA(); } else { vert.color_32 = patch.defcolor; } if (sampleTex) { tess_tex.SampleV(wv.weights).Write(vert.uv); } else { // Generate texcoord vert.uv[0] = patch_u + tile_u * inv_u; vert.uv[1] = patch_v + tile_v * inv_v; } if (sampleNrm) { const Vec3f derivU = tess_nrm.SampleV(wv.weights); const Vec3f derivV = tess_pos.SampleV(wv.derivs); vert.nrm = Cross(derivU, derivV).Normalized(); if (patch.patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } } } int patch_index = patch_v * num_patches_u + patch_u; int total = patch_index * (tess_u + 1) * (tess_v + 1); BuildIndex(indices + count, count, tess_u, tess_v, patch.primType, total); dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex); } } } // Prepare mesh of one patch for "Instanced Tessellation". static void TessellateBezierPatchHardware(u8 *&dest, u16 *indices, int &count, int tess_u, int tess_v, GEPatchPrimType primType) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)tess_u; float inv_v = 1.0f / (float)tess_v; // Generating simple input vertices for the bezier-computing vertex shader. for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; } } BuildIndex(indices, count, tess_u, tess_v, primType); } void TessellateBezierPatch(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { switch (g_Config.iSplineBezierQuality) { case LOW_QUALITY: _BezierPatchHighQuality(dest, indices, count, 2, 2, patch, origVertType); break; case MEDIUM_QUALITY: _BezierPatchHighQuality(dest, indices, count, std::max(tess_u / 2, 1), std::max(tess_v / 2, 1), patch, origVertType); break; case HIGH_QUALITY: _BezierPatchHighQuality(dest, indices, count, tess_u, tess_v, patch, origVertType); break; } } static void CopyControlPoints(const SimpleVertex *const *points, float *pos, float *tex, float *col, int posStride, int texStride, int colStride, int size, bool hasColor, bool hasTexCoords) { for (int idx = 0; idx < size; idx++) { memcpy(pos, points[idx]->pos.AsArray(), 3 * sizeof(float)); pos += posStride; if (hasTexCoords) { memcpy(tex, points[idx]->uv, 2 * sizeof(float)); tex += texStride; } if (hasColor) { memcpy(col, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float)); col += colStride; } } if (!hasColor) memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float)); } class SimpleBufferManager { private: u8 *buf_; size_t totalSize, maxSize_; public: SimpleBufferManager(u8 *buf, size_t maxSize) : buf_(buf), totalSize(0), maxSize_(maxSize) {} u8 *Allocate(size_t size) { size = (size + 15) & ~15; // Align for 16 bytes if ((totalSize + size) > maxSize_) return nullptr; // No more memory size_t tmp = totalSize; totalSize += size; return buf_ + tmp; } }; // This maps GEPatchPrimType to GEPrimitiveType. const GEPrimitiveType primType[] = { GE_PRIM_TRIANGLES, GE_PRIM_LINES, GE_PRIM_POINTS, GE_PRIM_POINTS }; void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("spline"); DispatchFlush(); // Real hardware seems to draw nothing when given < 4 either U or V. if (count_u < 4 || count_v < 4) return; SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter ConvertIndex(vertType, indices); if (indices) GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Simplify away bones and morph before proceeding SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1)); u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v); u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // Make an array of pointers to the control points, to get rid of indices. const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx); int count = 0; u8 *dest = splineBuffer; SplinePatchLocal patch; patch.tess_u = tess_u; patch.tess_v = tess_v; patch.type_u = type_u; patch.type_v = type_v; patch.count_u = count_u; patch.count_v = count_v; patch.primType = prim_type; patch.patchFacing = patchFacing; patch.defcolor = points[0]->color_32; if (CanUseHardwareTessellation(prim_type)) { tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType); TessellateSplinePatchHardware(dest, quadIndices_, count, patch); numPatches = (count_u - 3) * (count_v - 3); } else { patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v); patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v); patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) { patch.pos[idx] = Vec3f(points[idx]->pos); patch.tex[idx] = Vec2f(points[idx]->uv); patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32); } int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize; TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount); } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if ((origVertType & GE_VTYPE_TC_MASK) != 0) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0.0f; gstate_c.uv.vOff = 0.0f; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead); DispatchFlush(); if ((origVertType & GE_VTYPE_TC_MASK) != 0) { gstate_c.uv = prevUVScale; } } void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) { PROFILE_THIS_SCOPE("bezier"); DispatchFlush(); // Real hardware seems to draw nothing when given < 4 either U or V. // This would result in num_patches_u / num_patches_v being 0. if (count_u < 4 || count_v < 4) return; SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE); u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; IndexConverter ConvertIndex(vertType, indices); if (indices) GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = count_u * count_v * origVDecoder->VertexSize(); // Simplify away bones and morph before proceeding // There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great. SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1)); u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v); u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex)); } // If specified as 0, uses 1. if (tess_u < 1) tess_u = 1; if (tess_v < 1) tess_v = 1; // Make an array of pointers to the control points, to get rid of indices. const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx); int count = 0; u8 *dest = splineBuffer; u16 *inds = quadIndices_; // Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing) int num_patches_u = (count_u - 1) / 3; int num_patches_v = (count_v - 1) / 3; if (CanUseHardwareTessellation(prim_type)) { tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType); TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type); numPatches = num_patches_u * num_patches_v; } else { BezierPatch patch; patch.count_u = count_u; patch.count_v = count_v; patch.primType = prim_type; patch.patchFacing = patchFacing; patch.defcolor = points[0]->color_32; patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v); patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v); patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v); for (int idx = 0; idx < count_u * count_v; idx++) { patch.pos[idx] = Vec3f(points[idx]->pos); patch.tex[idx] = Vec2f(points[idx]->uv); patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32); } int maxVertices = SPLINE_BUFFER_SIZE / vertexSize; // Downsample until it fits, in case crazy tessellation factors are sent. while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) { tess_u /= 2; tess_v /= 2; } TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType); } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (origVertType & GE_VTYPE_TC_MASK) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead); DispatchFlush(); if (origVertType & GE_VTYPE_TC_MASK) { gstate_c.uv = prevUVScale; } }