// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // Ideas for speeding things up on mobile OpenGL ES implementations // // Use superbuffers! Yes I just invented that name. // // The idea is to avoid respecifying the vertex format between every draw call (multiple glVertexAttribPointer ...) // by combining the contents of multiple draw calls into one buffer, as long as // they have exactly the same output vertex format. (different input formats is fine! This way // we can combine the data for multiple draws with different numbers of bones, as we consider numbones < 4 to be = 4) // into one VBO. // // This will likely be a win because I believe that between every change of VBO + glVertexAttribPointer*N, the driver will // perform a lot of validation, probably at draw call time, while all the validation can be skipped if the only thing // that changes between two draw calls is simple state or texture or a matrix etc, not anything vertex related. // Also the driver will have to manage hundreds instead of thousands of VBOs in games like GTA. // // * Every 10 frames or something, do the following: // - Frame 1: // + Mark all drawn buffers with in-frame sequence numbers (alternatively, // just log them in an array) // - Frame 2 (beginning?): // + Take adjacent buffers that have the same output vertex format, and add them // to a list of buffers to combine. Create said buffers with appropriate sizes // and precompute the offsets that the draws should be written into. // - Frame 2 (end): // + Actually do the work of combining the buffers. This probably means re-decoding // the vertices into a new one. Will also have to apply index offsets. // // Also need to change the drawing code so that we don't glBindBuffer and respecify glVAP if // two subsequent drawcalls come from the same superbuffer. // // Or we ignore all of this including vertex caching and simply find a way to do highly optimized vertex streaming, // like Dolphin is trying to. That will likely never be able to reach the same speed as perfectly optimized // superbuffers though. For this we will have to JIT the vertex decoder but that's not too hard. // // Now, when do we delete superbuffers? Maybe when half the buffers within have been killed? // // Another idea for GTA which switches textures a lot while not changing much other state is to use ES 3 Array // textures, if they are the same size (even if they aren't, might be okay to simply resize the textures to match // if they're just a multiple of 2 away) or something. Then we'd have to add a W texture coordinate to choose the // texture within the bound texture array to the vertex data when merging into superbuffers. // // There are even more things to try. For games that do matrix palette skinning by quickly switching bones and // just drawing a few triangles per call (NBA, FF:CC, Tekken 6 etc) we could even collect matrices, upload them // all at once, writing matrix indices into the vertices in addition to the weights, and then doing a single // draw call with specially generated shader to draw the whole mesh. This code will be seriously complex though. #include "base/logging.h" #include "base/timeutil.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "profiler/profiler.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/GLES/GLStateCache.h" #include "GPU/GLES/FragmentTestCache.h" #include "GPU/GLES/StateMapping.h" #include "GPU/GLES/TextureCache.h" #include "GPU/GLES/TransformPipeline.h" #include "GPU/GLES/ShaderManager.h" #include "GPU/GLES/GLES_GPU.h" extern const GLuint glprim[8] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, // With OpenGL ES we have to expand sprites (rects) into triangles, tripling the data instead of doubling. // Sigh. OpenGL ES, Y U NO SUPPORT GL_QUADS? // We can use it on the desktop though, but we don't yet. There we could also use geometry shaders anyway. }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 #define VERTEXCACHE_NAME_DECIMATION_INTERVAL 41 #define VERTEXCACHE_NAME_DECIMATION_MAX 100 #define VERTEXCACHE_NAME_CACHE_SIZE 64 #define VERTEXCACHE_NAME_CACHE_FULL_BYTES (1024 * 1024) #define VERTEXCACHE_NAME_CACHE_MAX_AGE 120 enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; TransformDrawEngine::TransformDrawEngine() : decodedVerts_(0), prevPrim_(GE_PRIM_INVALID), lastVType_(-1), shaderManager_(0), textureCache_(0), framebufferManager_(0), numDrawCalls(0), vertexCountInDrawCalls(0), decodeCounter_(0), dcid_(0), uvScale(0), fboTexNeedBind_(false), fboTexBound_(false) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; bufferDecimationCounter_ = VERTEXCACHE_NAME_DECIMATION_INTERVAL; memset(&decOptions_, 0, sizeof(decOptions_)); decOptions_.expandAllUVtoFloat = false; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE); transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE); transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE); if (g_Config.bPrescaleUV) { uvScale = new UVScale[MAX_DEFERRED_DRAW_CALLS]; } indexGen.Setup(decIndex); InitDeviceObjects(); register_gl_resource_holder(this); } TransformDrawEngine::~TransformDrawEngine() { DestroyDeviceObjects(); FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE); FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE); unregister_gl_resource_holder(this); delete [] uvScale; } void TransformDrawEngine::RestoreVAO() { if (sharedVao_ != 0) { glBindVertexArray(sharedVao_); } else if (gstate_c.Supports(GPU_SUPPORTS_VAO)) { // Note: this is here because, InitDeviceObjects() is called before GPU_SUPPORTS_VAO is setup. // So, this establishes it if Supports() returns true and there isn't one yet. glGenVertexArrays(1, &sharedVao_); glBindVertexArray(sharedVao_); } } void TransformDrawEngine::InitDeviceObjects() { if (bufferNameCache_.empty()) { bufferNameCache_.resize(VERTEXCACHE_NAME_CACHE_SIZE); glGenBuffers(VERTEXCACHE_NAME_CACHE_SIZE, &bufferNameCache_[0]); bufferNameCacheSize_ = 0; if (gstate_c.Supports(GPU_SUPPORTS_VAO)) { glGenVertexArrays(1, &sharedVao_); } else { sharedVao_ = 0; } } else { ERROR_LOG(G3D, "Device objects already initialized!"); } } void TransformDrawEngine::DestroyDeviceObjects() { ClearTrackedVertexArrays(); if (!bufferNameCache_.empty()) { glstate.arrayBuffer.unbind(); glstate.elementArrayBuffer.unbind(); glDeleteBuffers((GLsizei)bufferNameCache_.size(), &bufferNameCache_[0]); bufferNameCache_.clear(); bufferNameInfo_.clear(); bufferNameCacheSize_ = 0; if (sharedVao_ != 0) { glDeleteVertexArrays(1, &sharedVao_); } } } void TransformDrawEngine::GLLost() { ILOG("TransformDrawEngine::GLLost()"); // The objects have already been deleted. bufferNameCache_.clear(); bufferNameInfo_.clear(); bufferNameCacheSize_ = 0; ClearTrackedVertexArrays(); InitDeviceObjects(); } struct GlTypeInfo { u16 type; u8 count; u8 normalized; }; static const GlTypeInfo GLComp[] = { {0}, // DEC_NONE, {GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1, {GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2, {GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3, {GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4, {GL_BYTE, 4, GL_TRUE}, // DEC_S8_3, {GL_SHORT, 4, GL_TRUE},// DEC_S16_3, {GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1, {GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2, {GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3, {GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4, {GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1, {GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2, {GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3, {GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4, {GL_UNSIGNED_BYTE, 2, GL_FALSE},// DEC_U8A_2, {GL_UNSIGNED_SHORT, 2, GL_FALSE},// DEC_U16A_2, }; static inline void VertexAttribSetup(int attrib, int fmt, int stride, u8 *ptr) { if (attrib != -1 && fmt) { const GlTypeInfo &type = GLComp[fmt]; glVertexAttribPointer(attrib, type.count, type.type, type.normalized, stride, ptr); } } // TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets static void SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt, u8 *vertexData) { VertexAttribSetup(ATTR_W1, decFmt.w0fmt, decFmt.stride, vertexData + decFmt.w0off); VertexAttribSetup(ATTR_W2, decFmt.w1fmt, decFmt.stride, vertexData + decFmt.w1off); VertexAttribSetup(ATTR_TEXCOORD, decFmt.uvfmt, decFmt.stride, vertexData + decFmt.uvoff); VertexAttribSetup(ATTR_COLOR0, decFmt.c0fmt, decFmt.stride, vertexData + decFmt.c0off); VertexAttribSetup(ATTR_COLOR1, decFmt.c1fmt, decFmt.stride, vertexData + decFmt.c1off); VertexAttribSetup(ATTR_NORMAL, decFmt.nrmfmt, decFmt.stride, vertexData + decFmt.nrmoff); VertexAttribSetup(ATTR_POSITION, decFmt.posfmt, decFmt.stride, vertexData + decFmt.posoff); } void TransformDrawEngine::SetupVertexDecoder(u32 vertType) { SetupVertexDecoderInternal(vertType); } inline void TransformDrawEngine::SetupVertexDecoderInternal(u32 vertType) { // As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it // into the top of the verttype where there are unused bits. const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24); // If vtype has changed, setup the vertex decoder. if (vertTypeID != lastVType_) { dec_ = GetVertexDecoder(vertTypeID); lastVType_ = vertTypeID; } } void TransformDrawEngine::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX) Flush(); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoderInternal(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; u32 dhash = dcid_; dhash ^= (u32)(uintptr_t)verts; dhash = __rotl(dhash, 13); dhash ^= (u32)(uintptr_t)inds; dhash = __rotl(dhash, 13); dhash ^= (u32)vertType; dhash = __rotl(dhash, 13); dhash ^= (u32)vertexCount; dhash = __rotl(dhash, 13); dhash ^= (u32)prim; dcid_ = dhash; if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } if (uvScale) { uvScale[numDrawCalls] = gstate_c.uv; } numDrawCalls++; vertexCountInDrawCalls += vertexCount; if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) { DecodeVertsStep(); decodeCounter_++; } if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.textureChanged |= TEXCHANGE_PARAMSONLY; Flush(); } } } void TransformDrawEngine::DecodeVerts() { if (uvScale) { const UVScale origUV = gstate_c.uv; for (; decodeCounter_ < numDrawCalls; decodeCounter_++) { gstate_c.uv = uvScale[decodeCounter_]; DecodeVertsStep(); } gstate_c.uv = origUV; } else { for (; decodeCounter_ < numDrawCalls; decodeCounter_++) { DecodeVertsStep(); } } // Sanity check if (indexGen.Prim() < 0) { ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim()); // Force to points (0) indexGen.AddPrim(GE_PRIM_POINTS, 0); } } void TransformDrawEngine::DecodeVertsStep() { PROFILE_THIS_SCOPE("vertdec"); const int i = decodeCounter_; const DeferredDrawCall &dc = drawCalls[i]; indexGen.SetIndex(decodedVerts_); int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; u32 indexType = dc.indexType; if (indexType == (GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT)) { // Decode the verts and apply morphing. Simple. dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += indexUpperBound - indexLowerBound + 1; indexGen.AddPrim(dc.prim, dc.vertexCount); } else { // It's fairly common that games issue long sequences of PRIM calls, with differing // inds pointer but the same base vertex pointer. We'd like to reuse vertices between // these as much as possible, so we make sure here to combine as many as possible // into one nice big drawcall, sharing data. // 1. Look ahead to find the max index, only looking as "matching" drawcalls. // Expand the lower and upper bounds as we go. int lastMatch = i; const int total = numDrawCalls; if (uvScale) { for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; if (memcmp(&uvScale[j], &uvScale[i], sizeof(uvScale[0])) != 0) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } } else { for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } } // 2. Loop through the drawcalls, translating indices as we go. switch (indexType) { case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound); } break; } const int vertexCount = indexUpperBound - indexLowerBound + 1; // This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes. if (decodedVerts_ + vertexCount > VERTEX_BUFFER_MAX) { return; } // 3. Decode that range of vertex data. int stride = (int)dec_->GetDecVtxFmt().stride; dec_->DecodeVerts(decoded + decodedVerts_ * stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += vertexCount; // 4. Advance indexgen vertex counter. indexGen.Advance(vertexCount); decodeCounter_ = lastMatch; } } inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) { // Switch to u32 units. const u32 *p = (const u32 *)ptr; sz >>= 2; if (sz > 100) { size_t step = sz / 4; u32 hash = 0; for (size_t i = 0; i < sz; i += step) { hash += DoReliableHash32(p + i, 100, 0x3A44B9C4); } return hash; } else { return p[0] + p[sz - 1]; } } u32 TransformDrawEngine::ComputeMiniHash() { u32 fullhash = 0; const int vertexSize = dec_->GetDecVtxFmt().stride; const int indexSize = (dec_->VertexType() & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT ? 2 : 1; int step; if (numDrawCalls < 3) { step = 1; } else if (numDrawCalls < 8) { step = 4; } else { step = numDrawCalls / 8; } for (int i = 0; i < numDrawCalls; i += step) { const DeferredDrawCall &dc = drawCalls[i]; if (!dc.inds) { fullhash += ComputeMiniHashRange(dc.verts, vertexSize * dc.vertexCount); } else { int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; fullhash += ComputeMiniHashRange((const u8 *)dc.verts + vertexSize * indexLowerBound, vertexSize * (indexUpperBound - indexLowerBound)); fullhash += ComputeMiniHashRange(dc.inds, indexSize * dc.vertexCount); } } return fullhash; } void TransformDrawEngine::MarkUnreliable(VertexArrayInfo *vai) { vai->status = VertexArrayInfo::VAI_UNRELIABLE; if (vai->vbo) { FreeBuffer(vai->vbo); vai->vbo = 0; } if (vai->ebo) { FreeBuffer(vai->ebo); vai->ebo = 0; } } ReliableHashType TransformDrawEngine::ComputeHash() { ReliableHashType fullhash = 0; const int vertexSize = dec_->GetDecVtxFmt().stride; const int indexSize = (dec_->VertexType() & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT ? 2 : 1; // TODO: Add some caps both for numDrawCalls and num verts to check? // It is really very expensive to check all the vertex data so often. for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; if (!dc.inds) { fullhash += DoReliableHash((const char *)dc.verts, vertexSize * dc.vertexCount, 0x1DE8CAC4); } else { int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; int j = i + 1; int lastMatch = i; while (j < numDrawCalls) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)dc.indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)dc.indexUpperBound); lastMatch = j; j++; } // This could get seriously expensive with sparse indices. Need to combine hashing ranges the same way // we do when drawing. fullhash += DoReliableHash((const char *)dc.verts + vertexSize * indexLowerBound, vertexSize * (indexUpperBound - indexLowerBound), 0x029F3EE1); // Hm, we will miss some indices when combining above, but meh, it should be fine. fullhash += DoReliableHash((const char *)dc.inds, indexSize * dc.vertexCount, 0x955FD1CA); i = lastMatch; } } if (uvScale) { fullhash += DoReliableHash(&uvScale[0], sizeof(uvScale[0]) * numDrawCalls, 0x0123e658); } return fullhash; } void TransformDrawEngine::ClearTrackedVertexArrays() { for (auto vai = vai_.begin(); vai != vai_.end(); vai++) { FreeVertexArray(vai->second); delete vai->second; } vai_.clear(); } void TransformDrawEngine::DecimateTrackedVertexArrays() { if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; } else { return; } const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; for (auto iter = vai_.begin(); iter != vai_.end(); ) { bool kill; if (iter->second->status == VertexArrayInfo::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = iter->second->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = iter->second->lastFrame < threshold; } if (kill) { FreeVertexArray(iter->second); delete iter->second; vai_.erase(iter++); } else { ++iter; } } } GLuint TransformDrawEngine::AllocateBuffer(size_t sz) { GLuint unused = 0; for (GLuint buf : bufferNameCache_) { const BufferNameInfo &info = bufferNameInfo_[buf]; if (info.used) { continue; } unused = buf; if (info.sz == sz) { // Let's pick this one, it's exactly the right size. break; } } if (unused == 0) { size_t oldSize = bufferNameCache_.size(); bufferNameCache_.resize(oldSize + VERTEXCACHE_NAME_CACHE_SIZE); glGenBuffers(VERTEXCACHE_NAME_CACHE_SIZE, &bufferNameCache_[oldSize]); unused = bufferNameCache_[oldSize]; } BufferNameInfo &info = bufferNameInfo_[unused]; // Record the change in size. bufferNameCacheSize_ += sz - info.sz; info.sz = sz; info.used = true; return unused; } void TransformDrawEngine::FreeBuffer(GLuint buf) { // We can reuse buffers by setting new data on them, so let's actually keep it. auto it = bufferNameInfo_.find(buf); if (it != bufferNameInfo_.end()) { it->second.used = false; it->second.lastFrame = gpuStats.numFlips; } else { ERROR_LOG(G3D, "Unexpected buffer freed (%d) but not tracked", buf); } } void TransformDrawEngine::FreeVertexArray(VertexArrayInfo *vai) { if (vai->vbo) { FreeBuffer(vai->vbo); vai->vbo = 0; } if (vai->ebo) { FreeBuffer(vai->ebo); vai->ebo = 0; } } void TransformDrawEngine::DoFlush() { PROFILE_THIS_SCOPE("flush"); gpuStats.numFlushes++; gpuStats.numTrackedVertexArrays = (int)vai_.size(); // This is not done on every drawcall, we should collect vertex data // until critical state changes. That's when we draw (flush). GEPrimitiveType prim = prevPrim_; ApplyDrawState(prim); ShaderID vsid; Shader *vshader = shaderManager_->ApplyVertexShader(prim, lastVType_, &vsid); if (vshader->UseHWTransform()) { GLuint vbo = 0, ebo = 0; int vertexCount = 0; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) useCache = false; if (useCache) { u32 id = dcid_; auto iter = vai_.find(id); VertexArrayInfo *vai; if (iter != vai_.end()) { // We've seen this before. Could have been a cached draw. vai = iter->second; } else { vai = new VertexArrayInfo(); vai_[id] = vai; } switch (vai->status) { case VertexArrayInfo::VAI_NEW: { // Haven't seen this one before. ReliableHashType dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfo::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVerts(); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth creating a vertex buffer. case VertexArrayInfo::VAI_HASHING: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); ReliableHashType newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVerts(); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 32 vai->drawsUntilNextFullHash = std::min(32, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVerts(); goto rotateVBO; } } if (vai->vbo == 0) { DecodeVerts(); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } _dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); size_t vsz = dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(); vai->vbo = AllocateBuffer(vsz); glstate.arrayBuffer.bind(vai->vbo); glBufferData(GL_ARRAY_BUFFER, vsz, decoded, GL_STATIC_DRAW); // If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS, // there is no need for the index buffer we built. We can then use glDrawArrays instead // for a very minor speed boost. if (useElements) { size_t esz = sizeof(short) * indexGen.VertexCount(); vai->ebo = AllocateBuffer(esz); glstate.elementArrayBuffer.bind(vai->ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, esz, (GLvoid *)decIndex, GL_STATIC_DRAW); } else { vai->ebo = 0; glstate.elementArrayBuffer.bind(vai->ebo); } } else { gpuStats.numCachedDrawCalls++; glstate.arrayBuffer.bind(vai->vbo); glstate.elementArrayBuffer.bind(vai->ebo); useElements = vai->ebo ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; } vbo = vai->vbo; ebo = vai->ebo; vertexCount = vai->numVerts; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfo::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vbo = vai->vbo; ebo = vai->ebo; glstate.arrayBuffer.bind(vbo); glstate.elementArrayBuffer.bind(ebo); vertexCount = vai->numVerts; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfo::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVerts(); goto rotateVBO; } } vai->lastFrame = gpuStats.numFlips; } else { DecodeVerts(); rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } glstate.arrayBuffer.unbind(); glstate.elementArrayBuffer.unbind(); prim = indexGen.Prim(); } if (gstate_c.Supports(GPU_SUPPORTS_VAO) && vbo == 0) { vbo = BindBuffer(decoded, dec_->GetDecVtxFmt().stride * indexGen.MaxIndex()); if (useElements) { ebo = BindElementBuffer(decIndex, sizeof(short) * indexGen.VertexCount()); } } VERBOSE_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } ApplyDrawStateLate(); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); SetupDecFmtForDraw(program, dec_->GetDecVtxFmt(), vbo ? 0 : decoded); if (useElements) { glDrawElements(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex); } else { glDrawArrays(glprim[prim], 0, vertexCount); } } else { DecodeVerts(); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; TransformedVertex *drawBuffer = NULL; int numTrans; bool drawIndexed = false; u16 *inds = decIndex; SoftwareTransformResult result; memset(&result, 0, sizeof(result)); int maxIndex = indexGen.MaxIndex(); SoftwareTransform( prim, decoded, indexGen.VertexCount(), dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, framebufferManager_, textureCache_, transformed, transformedExpanded, drawBuffer, numTrans, drawIndexed, &result, 1.0); ApplyDrawStateLate(); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); if (result.action == SW_DRAW_PRIMITIVES) { if (result.setStencil) { glstate.stencilFunc.set(GL_ALWAYS, result.stencilValue, 255); } const int vertexSize = sizeof(transformed[0]); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; const uint8_t *bufferStart = (const uint8_t *)drawBuffer; if (gstate_c.Supports(GPU_SUPPORTS_VAO)) { bufferStart = 0; BindBuffer(drawBuffer, vertexSize * maxIndex); if (drawIndexed) { BindElementBuffer(inds, sizeof(short) * numTrans); inds = 0; } } else { glstate.arrayBuffer.unbind(); glstate.elementArrayBuffer.unbind(); } glVertexAttribPointer(ATTR_POSITION, 4, GL_FLOAT, GL_FALSE, vertexSize, bufferStart); int attrMask = program->attrMask; if (attrMask & (1 << ATTR_TEXCOORD)) glVertexAttribPointer(ATTR_TEXCOORD, doTextureProjection ? 3 : 2, GL_FLOAT, GL_FALSE, vertexSize, bufferStart + offsetof(TransformedVertex, u)); if (attrMask & (1 << ATTR_COLOR0)) glVertexAttribPointer(ATTR_COLOR0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, bufferStart + offsetof(TransformedVertex, color0)); if (attrMask & (1 << ATTR_COLOR1)) glVertexAttribPointer(ATTR_COLOR1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, bufferStart + offsetof(TransformedVertex, color1)); if (drawIndexed) { glDrawElements(glprim[prim], numTrans, GL_UNSIGNED_SHORT, inds); } else { glDrawArrays(glprim[prim], 0, numTrans); } } else if (result.action == SW_CLEAR) { u32 clearColor = result.color; float clearDepth = result.depth; const float col[4] = { ((clearColor & 0xFF)) / 255.0f, ((clearColor & 0xFF00) >> 8) / 255.0f, ((clearColor & 0xFF0000) >> 16) / 255.0f, ((clearColor & 0xFF000000) >> 24) / 255.0f, }; bool colorMask = gstate.isClearModeColorMask(); bool alphaMask = gstate.isClearModeAlphaMask(); bool depthMask = gstate.isClearModeDepthMask(); if (depthMask) { framebufferManager_->SetDepthUpdated(); } // Note that scissor may still apply while clearing. Turn off other tests for the clear. glstate.stencilTest.disable(); glstate.stencilMask.set(0xFF); glstate.depthTest.disable(); GLbitfield target = 0; if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT; if (alphaMask) target |= GL_STENCIL_BUFFER_BIT; if (depthMask) target |= GL_DEPTH_BUFFER_BIT; glstate.colorMask.set(colorMask, colorMask, colorMask, alphaMask); glClearColor(col[0], col[1], col[2], col[3]); #ifdef USING_GLES2 glClearDepthf(clearDepth); #else glClearDepth(clearDepth); #endif // Stencil takes alpha. glClearStencil(clearColor >> 24); glClear(target); framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; #ifndef MOBILE_DEVICE host->GPUNotifyDraw(); #endif } void TransformDrawEngine::Resized() { decJitCache_->Clear(); lastVType_ = -1; dec_ = NULL; for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) { delete iter->second; } decoderMap_.clear(); if (g_Config.bPrescaleUV && !uvScale) { uvScale = new UVScale[MAX_DEFERRED_DRAW_CALLS]; } else if (!g_Config.bPrescaleUV && uvScale) { delete uvScale; uvScale = 0; } } GLuint TransformDrawEngine::BindBuffer(const void *p, size_t sz) { // Get a new buffer each time we need one. GLuint buf = AllocateBuffer(sz); glstate.arrayBuffer.bind(buf); // These aren't used more than once per frame, so let's use GL_STREAM_DRAW. glBufferData(GL_ARRAY_BUFFER, sz, p, GL_STREAM_DRAW); buffersThisFrame_.push_back(buf); return buf; } GLuint TransformDrawEngine::BindBuffer(const void *p1, size_t sz1, const void *p2, size_t sz2) { GLuint buf = AllocateBuffer(sz1 + sz2); glstate.arrayBuffer.bind(buf); glBufferData(GL_ARRAY_BUFFER, sz1 + sz2, nullptr, GL_STREAM_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sz1, p1); glBufferSubData(GL_ARRAY_BUFFER, sz1, sz2, p2); buffersThisFrame_.push_back(buf); return buf; } GLuint TransformDrawEngine::BindElementBuffer(const void *p, size_t sz) { GLuint buf = AllocateBuffer(sz); glstate.elementArrayBuffer.bind(buf); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sz, p, GL_STREAM_DRAW); buffersThisFrame_.push_back(buf); return buf; } void TransformDrawEngine::DecimateBuffers() { for (GLuint buf : buffersThisFrame_) { FreeBuffer(buf); } buffersThisFrame_.clear(); if (--bufferDecimationCounter_ <= 0) { bufferDecimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; } else { return; } // Let's not keep too many around, will eat up memory. // First check if there's any to free, and only check if it seems somewhat full. bool hasOld = false; if (bufferNameCacheSize_ > VERTEXCACHE_NAME_CACHE_FULL_BYTES) { for (GLuint buf : bufferNameCache_) { const BufferNameInfo &info = bufferNameInfo_[buf]; const int age = gpuStats.numFlips - info.lastFrame; if (!info.used && age > VERTEXCACHE_NAME_CACHE_MAX_AGE) { hasOld = true; break; } } } if (hasOld) { // Okay, it is. Let's rebuild the array. std::vector toFree; std::vector toKeep; toKeep.reserve(bufferNameCache_.size()); for (size_t i = 0, n = bufferNameCache_.size(); i < n; ++i) { const GLuint buf = bufferNameCache_[i]; const BufferNameInfo &info = bufferNameInfo_[buf]; const int age = gpuStats.numFlips - info.lastFrame; if (!info.used && age > VERTEXCACHE_NAME_CACHE_MAX_AGE) { toFree.push_back(buf); bufferNameCacheSize_ -= bufferNameInfo_[buf].sz; bufferNameInfo_.erase(buf); // If we've removed all we want to this round, keep the rest and abort. if (toFree.size() >= VERTEXCACHE_NAME_DECIMATION_MAX && i + 1 < bufferNameCache_.size()) { toKeep.insert(toKeep.end(), bufferNameCache_.begin() + i + 1, bufferNameCache_.end()); break; } } else { toKeep.push_back(buf); } } bufferNameCache_ = toKeep; if (!toFree.empty()) { glstate.arrayBuffer.unbind(); glstate.elementArrayBuffer.unbind(); glDeleteBuffers((GLsizei)toFree.size(), &toFree[0]); } } } bool TransformDrawEngine::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); }