827 lines
28 KiB
C++
827 lines
28 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
|
|
#include "profiler/profiler.h"
|
|
|
|
#include "Common/CPUDetect.h"
|
|
#include "Common/MemoryUtil.h"
|
|
#include "Core/Config.h"
|
|
|
|
#include "GPU/Common/GPUStateUtils.h"
|
|
#include "GPU/Common/SplineCommon.h"
|
|
#include "GPU/Common/DrawEngineCommon.h"
|
|
#include "GPU/ge_constants.h"
|
|
#include "GPU/GPUState.h" // only needed for UVScale stuff
|
|
|
|
#define HALF_CEIL(x) (x + 1) / 2 // Integer ceil = (int)ceil((float)x / 2.0f)
|
|
|
|
static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) {
|
|
if (type == GE_PATCHPRIM_LINES) {
|
|
*(indices++) = idx0;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx3;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx2;
|
|
} else {
|
|
*(indices++) = idx0;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx1;
|
|
*(indices++) = idx2;
|
|
*(indices++) = idx3;
|
|
}
|
|
}
|
|
|
|
static void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total = 0) {
|
|
for (int v = 0; v < num_v; ++v) {
|
|
for (int u = 0; u < num_u; ++u) {
|
|
int idx0 = v * (num_u + 1) + u + total; // Top left
|
|
int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left
|
|
|
|
CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1);
|
|
count += 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Weight {
|
|
float weights[4], derivs[4];
|
|
};
|
|
|
|
class Bezier3DWeight {
|
|
private:
|
|
void CalcWeights(float t, Weight &w) {
|
|
// Bernstein 3D basis polynomial
|
|
w.weights[0] = (1 - t) * (1 - t) * (1 - t);
|
|
w.weights[1] = 3 * t * (1 - t) * (1 - t);
|
|
w.weights[2] = 3 * t * t * (1 - t);
|
|
w.weights[3] = t * t * t;
|
|
|
|
// Derivative
|
|
w.derivs[0] = -3 * (1 - t) * (1 - t);
|
|
w.derivs[1] = 9 * t * t - 12 * t + 3;
|
|
w.derivs[2] = 3 * (2 - 3 * t) * t;
|
|
w.derivs[3] = 3 * t * t;
|
|
}
|
|
public:
|
|
Weight *CalcWeightsAll(u32 key) {
|
|
int tess = (int)key;
|
|
Weight *weights = new Weight[tess + 1];
|
|
const float inv_u = 1.0f / (float)tess;
|
|
for (int i = 0; i < tess + 1; ++i) {
|
|
const float t = (float)i * inv_u;
|
|
CalcWeights(t, weights[i]);
|
|
}
|
|
return weights;
|
|
}
|
|
};
|
|
|
|
class Spline3DWeight {
|
|
private:
|
|
struct KnotDiv {
|
|
float _3_0 = 1.0f / 3.0f;
|
|
float _4_1 = 1.0f / 3.0f;
|
|
float _5_2 = 1.0f / 3.0f;
|
|
float _3_1 = 1.0f / 2.0f;
|
|
float _4_2 = 1.0f / 2.0f;
|
|
float _3_2 = 1.0f; // Always 1
|
|
};
|
|
|
|
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
|
|
void CalcKnots(int n, int type, float *knots, KnotDiv *divs) {
|
|
// Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0)
|
|
// for (int i = 0; i < n + 5; ++i) {
|
|
for (int i = 0; i < n + 2; ++i) {
|
|
knots[i] = (float)i - 2;
|
|
}
|
|
|
|
// The first edge is open
|
|
if ((type & 1) != 0) {
|
|
knots[0] = 0;
|
|
knots[1] = 0;
|
|
|
|
divs[0]._3_0 = 1.0f;
|
|
divs[0]._4_1 = 1.0f / 2.0f;
|
|
divs[0]._3_1 = 1.0f;
|
|
if (n > 1)
|
|
divs[1]._3_0 = 1.0f / 2.0f;
|
|
}
|
|
// The last edge is open
|
|
if ((type & 2) != 0) {
|
|
// knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
// knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
// knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv
|
|
divs[n - 1]._4_1 = 1.0f / 2.0f;
|
|
divs[n - 1]._5_2 = 1.0f;
|
|
divs[n - 1]._4_2 = 1.0f;
|
|
if (n > 1)
|
|
divs[n - 2]._5_2 = 1.0f / 2.0f;
|
|
}
|
|
}
|
|
|
|
void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) {
|
|
#ifdef _M_SSE
|
|
const __m128 knot012 = _mm_loadu_ps(knots);
|
|
const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012);
|
|
const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0));
|
|
const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2));
|
|
const float &f32 = t012.m128_f32[2];
|
|
|
|
// Following comments are for explains order of the multiply.
|
|
// float a = (1-f30)*(1-f31);
|
|
// float c = (1-f41)*(1-f42);
|
|
// float b = ( f31 * f41);
|
|
// float d = ( f42 * f52);
|
|
const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0));
|
|
const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1));
|
|
const __m128 c1_1_0_0 = { 1, 1, 0, 0 };
|
|
const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52));
|
|
const float &a = acbd.m128_f32[0];
|
|
const float &b = acbd.m128_f32[2];
|
|
const float &c = acbd.m128_f32[1];
|
|
const float &d = acbd.m128_f32[3];
|
|
|
|
// For derivative
|
|
const float &f31 = f30_41_31_42.m128_f32[2];
|
|
const float &f42 = f30_41_31_42.m128_f32[3];
|
|
#else
|
|
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
|
|
float t0 = (t - knots[0]);
|
|
float t1 = (t - knots[1]);
|
|
float t2 = (t - knots[2]);
|
|
|
|
float f30 = t0 * div._3_0;
|
|
float f41 = t1 * div._4_1;
|
|
float f52 = t2 * div._5_2;
|
|
float f31 = t1 * div._3_1;
|
|
float f42 = t2 * div._4_2;
|
|
float f32 = t2 * div._3_2;
|
|
|
|
float a = (1 - f30) * (1 - f31);
|
|
float b = (f31 * f41);
|
|
float c = (1 - f41) * (1 - f42);
|
|
float d = (f42 * f52);
|
|
#endif
|
|
w.weights[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32)
|
|
w.weights[1] = 1 - a - b + ((a + b + c - 1) * f32);
|
|
w.weights[2] = b + ((1 - b - c - d) * f32);
|
|
w.weights[3] = d * f32; // f32*f42*f52
|
|
|
|
// Derivative
|
|
float i1 = (1 - f31) * (1 - f32);
|
|
float i2 = f31 * (1 - f32) + (1 - f42) * f32;
|
|
float i3 = f42 * f32;
|
|
|
|
float f130 = i1 * div._3_0;
|
|
float f241 = i2 * div._4_1;
|
|
float f352 = i3 * div._5_2;
|
|
|
|
w.derivs[0] = 3 * (0 - f130);
|
|
w.derivs[1] = 3 * (f130 - f241);
|
|
w.derivs[2] = 3 * (f241 - f352);
|
|
w.derivs[3] = 3 * (f352 - 0);
|
|
}
|
|
public:
|
|
Weight *CalcWeightsAll(u32 key) {
|
|
int tess, count, type;
|
|
FromKey(key, tess, count, type);
|
|
const int num_patches = count - 3;
|
|
Weight *weights = new Weight[tess * num_patches + 1];
|
|
|
|
// float *knots = new float[num_patches + 5];
|
|
float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory
|
|
KnotDiv *divs = new KnotDiv[num_patches];
|
|
CalcKnots(num_patches, type, knots, divs);
|
|
|
|
const float inv_tess = 1.0f / (float)tess;
|
|
for (int i = 0; i < num_patches; ++i) {
|
|
const int _tess = (i == num_patches - 1) ? (tess + 1) : tess;
|
|
for (int j = 0; j < _tess; ++j) {
|
|
const int index = i * tess + j;
|
|
const float t = (float)index * inv_tess;
|
|
CalcWeights(t, knots + i, divs[i], weights[index]);
|
|
}
|
|
}
|
|
|
|
delete[] knots;
|
|
delete[] divs;
|
|
|
|
return weights;
|
|
}
|
|
|
|
u32 ToKey(int tess, int count, int type) {
|
|
return tess | (count << 8) | (type << 16);
|
|
}
|
|
|
|
void FromKey(u32 key, int &tess, int &count, int &type) {
|
|
tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF;
|
|
}
|
|
};
|
|
|
|
template<class T>
|
|
class WeightCache : public T {
|
|
private:
|
|
std::unordered_map<u32, Weight*> weightsCache;
|
|
public:
|
|
Weight* operator [] (u32 key) {
|
|
Weight *&weights = weightsCache[key];
|
|
if (!weights)
|
|
weights = CalcWeightsAll(key);
|
|
return weights;
|
|
}
|
|
|
|
void Clear() {
|
|
for (auto it : weightsCache)
|
|
delete[] it.second;
|
|
weightsCache.clear();
|
|
}
|
|
};
|
|
|
|
static WeightCache<Bezier3DWeight> bezierWeightsCache;
|
|
static WeightCache<Spline3DWeight> splineWeightsCache;
|
|
|
|
struct Weight2D {
|
|
const Weight *u, *v;
|
|
|
|
template<class T>
|
|
Weight2D(WeightCache<T> &cache, u32 key_u, u32 key_v) {
|
|
u = cache[key_u];
|
|
v = (key_u != key_v) ? cache[key_v] : u; // Use same weights if u == v
|
|
}
|
|
};
|
|
|
|
void DrawEngineCommon::ClearSplineBezierWeights() {
|
|
bezierWeightsCache.Clear();
|
|
splineWeightsCache.Clear();
|
|
}
|
|
|
|
bool CanUseHardwareTessellation(GEPatchPrimType prim) {
|
|
if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) {
|
|
return CanUseHardwareTransform(PatchPrimToPrim(prim));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Prepare mesh of one patch for "Instanced Tessellation".
|
|
static void TessellateSplinePatchHardware(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) {
|
|
SimpleVertex *&vertices = (SimpleVertex*&)dest;
|
|
|
|
float inv_u = 1.0f / (float)spatch.tess_u;
|
|
float inv_v = 1.0f / (float)spatch.tess_v;
|
|
|
|
// Generating simple input vertices for the spline-computing vertex shader.
|
|
for (int tile_v = 0; tile_v < spatch.tess_v + 1; ++tile_v) {
|
|
for (int tile_u = 0; tile_u < spatch.tess_u + 1; ++tile_u) {
|
|
SimpleVertex &vert = vertices[tile_v * (spatch.tess_u + 1) + tile_u];
|
|
vert.pos.x = (float)tile_u * inv_u;
|
|
vert.pos.y = (float)tile_v * inv_v;
|
|
|
|
// TODO: Move to shader uniform and unify this method spline and bezier if necessary.
|
|
// For compute normal
|
|
vert.nrm.x = inv_u;
|
|
vert.nrm.y = inv_v;
|
|
}
|
|
}
|
|
|
|
BuildIndex(indices, count, spatch.tess_u, spatch.tess_v, spatch.primType);
|
|
}
|
|
|
|
template <bool sampleNrm, bool sampleCol, bool sampleTex, bool useSSE4>
|
|
static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) {
|
|
// Full (mostly) correct tessellation of spline patches.
|
|
// Not very fast.
|
|
|
|
u32 key_u = splineWeightsCache.ToKey(spatch.tess_u, spatch.count_u, spatch.type_u);
|
|
u32 key_v = splineWeightsCache.ToKey(spatch.tess_v, spatch.count_v, spatch.type_v);
|
|
Weight2D weights(splineWeightsCache, key_u, key_v);
|
|
|
|
// Increase tessellation based on the size. Should be approximately right?
|
|
int patch_div_s = (spatch.count_u - 3) * spatch.tess_u;
|
|
int patch_div_t = (spatch.count_v - 3) * spatch.tess_v;
|
|
|
|
// First compute all the vertices and put them in an array
|
|
SimpleVertex *&vertices = (SimpleVertex*&)dest;
|
|
|
|
const float inv_u = 1.0f / (float)spatch.tess_u;
|
|
const float inv_v = 1.0f / (float)spatch.tess_v;
|
|
|
|
int num_patches_u = spatch.count_u - 3;
|
|
int num_patches_v = spatch.count_v - 3;
|
|
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
|
|
int tess_u = (patch_u - 1 == num_patches_u) ? spatch.tess_u + 1 : spatch.tess_u;
|
|
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
|
|
int tess_v = (patch_v - 1 == num_patches_v) ? spatch.tess_v + 1 : spatch.tess_v;
|
|
|
|
// Prepare 4x4 control points to tessellate
|
|
const int idx = patch_v * spatch.count_u + patch_u;
|
|
const int idx_v[4] = { idx, idx + spatch.count_u, idx + spatch.count_u * 2, idx + spatch.count_u * 3 };
|
|
Tessellator<Vec3f> tess_pos(spatch.pos, idx_v);
|
|
Tessellator<Vec4f> tess_col(spatch.col, idx_v);
|
|
Tessellator<Vec2f> tess_tex(spatch.tex, idx_v);
|
|
Tessellator<Vec3f> tess_nrm(spatch.pos, idx_v);
|
|
|
|
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
|
|
int index_u = patch_u * spatch.tess_u + tile_u;
|
|
const Weight &wu = weights.u[index_u];
|
|
|
|
// Pre-tessellate U lines
|
|
tess_pos.SampleU(wu.weights);
|
|
if (sampleCol)
|
|
tess_col.SampleU(wu.weights);
|
|
if (sampleTex)
|
|
tess_tex.SampleU(wu.weights);
|
|
if (sampleNrm)
|
|
tess_nrm.SampleU(wu.derivs);
|
|
|
|
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
|
|
int index_v = patch_v * spatch.tess_v + tile_v;
|
|
const Weight &wv = weights.v[index_v];
|
|
|
|
SimpleVertex &vert = vertices[index_v * (patch_div_s + 1) + index_u];
|
|
|
|
// Tessellate
|
|
vert.pos = tess_pos.SampleV(wv.weights);
|
|
if (sampleCol) {
|
|
vert.color_32 = tess_col.SampleV(wv.weights).ToRGBA();
|
|
} else {
|
|
vert.color_32 = spatch.defcolor;
|
|
}
|
|
if (sampleTex) {
|
|
tess_tex.SampleV(wv.weights).Write(vert.uv);
|
|
} else {
|
|
// Generate texcoord
|
|
vert.uv[0] = patch_u + tile_u * inv_u;
|
|
vert.uv[1] = patch_v + tile_v * inv_v;
|
|
}
|
|
if (sampleNrm) {
|
|
const Vec3f derivU = tess_nrm.SampleV(wv.weights);
|
|
const Vec3f derivV = tess_pos.SampleV(wv.derivs);
|
|
|
|
vert.nrm = Cross(derivU, derivV).Normalized(useSSE4);
|
|
if (spatch.patchFacing)
|
|
vert.nrm *= -1.0f;
|
|
} else {
|
|
vert.nrm.SetZero();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BuildIndex(indices, count, patch_div_s, patch_div_t, spatch.primType);
|
|
}
|
|
|
|
// Define class TemplateParameterDispatcherTess
|
|
TEMPLATE_PARAMETER_DISPATCHER(Tess, SplinePatchFullQuality);
|
|
|
|
void TessellateSplinePatch(u8 *&dest, u16 *indices, int &count, SplinePatchLocal &spatch, u32 origVertType, int maxVertices) {
|
|
using TessFunc = void(*)(u8 *&, u16 *, int &, const SplinePatchLocal &);
|
|
constexpr int NumParams = 4;
|
|
static TemplateParameterDispatcherTess<TessFunc, NumParams> dispatcher; // Initialize only once
|
|
|
|
const bool params[NumParams] = {
|
|
(origVertType & GE_VTYPE_NRM_MASK) != 0,
|
|
(origVertType & GE_VTYPE_COL_MASK) != 0,
|
|
(origVertType & GE_VTYPE_TC_MASK) != 0,
|
|
cpu_info.bSSE4_1,
|
|
};
|
|
TessFunc func = dispatcher.GetFunc(params);
|
|
|
|
switch (g_Config.iSplineBezierQuality) {
|
|
case LOW_QUALITY:
|
|
spatch.tess_u = 2;
|
|
spatch.tess_v = 2;
|
|
break;
|
|
case MEDIUM_QUALITY:
|
|
// Don't cut below 2, though.
|
|
if (spatch.tess_u > 2) spatch.tess_u = HALF_CEIL(spatch.tess_u);
|
|
if (spatch.tess_v > 2) spatch.tess_v = HALF_CEIL(spatch.tess_v);
|
|
// Pass through
|
|
case HIGH_QUALITY:
|
|
int num_patches_u = spatch.count_u - 3;
|
|
int num_patches_v = spatch.count_v - 3;
|
|
// Downsample until it fits, in case crazy tessellation factors are sent.
|
|
while ((num_patches_u * spatch.tess_u + 1) * (num_patches_v * spatch.tess_v + 1) > maxVertices) {
|
|
spatch.tess_u--;
|
|
spatch.tess_v--;
|
|
}
|
|
break;
|
|
}
|
|
|
|
(*func)(dest, indices, count, spatch);
|
|
}
|
|
|
|
// Tessellate single patch (4x4 control points)
|
|
template<typename T>
|
|
class Tessellator {
|
|
private:
|
|
const T *const p[4]; // T p[v][u]; 4x4 control points
|
|
T u[4]; // Pre-tessellated U lines
|
|
public:
|
|
Tessellator(const T *p, const int idx[4]) : p{ p + idx[0], p + idx[1], p + idx[2], p + idx[3] } {}
|
|
|
|
// Linear combination
|
|
T Sample(const T p[4], const float w[4]) {
|
|
return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3];
|
|
}
|
|
|
|
void SampleEdgeU(int idx) {
|
|
u[0] = p[0][idx];
|
|
u[1] = p[1][idx];
|
|
u[2] = p[2][idx];
|
|
u[3] = p[3][idx];
|
|
}
|
|
|
|
void SampleU(const float weights[4]) {
|
|
if (weights[0] == 1.0f) { SampleEdgeU(0); return; } // weights = {1,0,0,0}, first edge is open.
|
|
if (weights[3] == 1.0f) { SampleEdgeU(3); return; } // weights = {0,0,0,1}, last edge is open.
|
|
|
|
u[0] = Sample(p[0], weights);
|
|
u[1] = Sample(p[1], weights);
|
|
u[2] = Sample(p[2], weights);
|
|
u[3] = Sample(p[3], weights);
|
|
}
|
|
|
|
T SampleV(const float weights[4]) {
|
|
if (weights[0] == 1.0f) return u[0]; // weights = {1,0,0,0}, first edge is open.
|
|
if (weights[3] == 1.0f) return u[3]; // weights = {0,0,0,1}, last edge is open.
|
|
|
|
return Sample(u, weights);
|
|
}
|
|
};
|
|
|
|
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
|
|
const float inv_u = 1.0f / (float)tess_u;
|
|
const float inv_v = 1.0f / (float)tess_v;
|
|
|
|
// First compute all the vertices and put them in an array
|
|
SimpleVertex *&vertices = (SimpleVertex*&)dest;
|
|
|
|
const bool sampleNrm = (origVertType & GE_VTYPE_NRM_MASK) != 0;
|
|
const bool sampleCol = (origVertType & GE_VTYPE_COL_MASK) != 0;
|
|
const bool sampleTex = (origVertType & GE_VTYPE_TC_MASK) != 0;
|
|
|
|
Weight2D weights(bezierWeightsCache, tess_u, tess_v);
|
|
|
|
int num_patches_u = (patch.count_u - 1) / 3;
|
|
int num_patches_v = (patch.count_v - 1) / 3;
|
|
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
|
|
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
|
|
|
|
// Prepare 4x4 control points to tessellate
|
|
const int idx = patch_v * 3 * patch.count_u + patch_u * 3;
|
|
const int idx_v[4] = { idx, idx + patch.count_u, idx + patch.count_u * 2, idx + patch.count_u * 3 };
|
|
Tessellator<Vec3f> tess_pos(patch.pos, idx_v);
|
|
Tessellator<Vec4f> tess_col(patch.col, idx_v);
|
|
Tessellator<Vec2f> tess_tex(patch.tex, idx_v);
|
|
Tessellator<Vec3f> tess_nrm(patch.pos, idx_v);
|
|
|
|
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
|
|
const Weight &wu = weights.u[tile_u];
|
|
|
|
// Pre-tessellate U lines
|
|
tess_pos.SampleU(wu.weights);
|
|
if (sampleCol)
|
|
tess_col.SampleU(wu.weights);
|
|
if (sampleTex)
|
|
tess_tex.SampleU(wu.weights);
|
|
if (sampleNrm)
|
|
tess_nrm.SampleU(wu.derivs);
|
|
|
|
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
|
|
const Weight &wv = weights.v[tile_v];
|
|
|
|
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
|
|
|
|
// Tessellate
|
|
vert.pos = tess_pos.SampleV(wv.weights);
|
|
if (sampleCol) {
|
|
vert.color_32 = tess_col.SampleV(wv.weights).ToRGBA();
|
|
} else {
|
|
vert.color_32 = patch.defcolor;
|
|
}
|
|
if (sampleTex) {
|
|
tess_tex.SampleV(wv.weights).Write(vert.uv);
|
|
} else {
|
|
// Generate texcoord
|
|
vert.uv[0] = patch_u + tile_u * inv_u;
|
|
vert.uv[1] = patch_v + tile_v * inv_v;
|
|
}
|
|
if (sampleNrm) {
|
|
const Vec3f derivU = tess_nrm.SampleV(wv.weights);
|
|
const Vec3f derivV = tess_pos.SampleV(wv.derivs);
|
|
|
|
vert.nrm = Cross(derivU, derivV).Normalized();
|
|
if (patch.patchFacing)
|
|
vert.nrm *= -1.0f;
|
|
} else {
|
|
vert.nrm.SetZero();
|
|
}
|
|
}
|
|
}
|
|
|
|
int patch_index = patch_v * num_patches_u + patch_u;
|
|
int total = patch_index * (tess_u + 1) * (tess_v + 1);
|
|
BuildIndex(indices + count, count, tess_u, tess_v, patch.primType, total);
|
|
|
|
dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare mesh of one patch for "Instanced Tessellation".
|
|
static void TessellateBezierPatchHardware(u8 *&dest, u16 *indices, int &count, int tess_u, int tess_v, GEPatchPrimType primType) {
|
|
SimpleVertex *&vertices = (SimpleVertex*&)dest;
|
|
|
|
float inv_u = 1.0f / (float)tess_u;
|
|
float inv_v = 1.0f / (float)tess_v;
|
|
|
|
// Generating simple input vertices for the bezier-computing vertex shader.
|
|
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
|
|
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
|
|
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
|
|
|
|
vert.pos.x = (float)tile_u * inv_u;
|
|
vert.pos.y = (float)tile_v * inv_v;
|
|
}
|
|
}
|
|
|
|
BuildIndex(indices, count, tess_u, tess_v, primType);
|
|
}
|
|
|
|
void TessellateBezierPatch(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType, int maxVertices) {
|
|
switch (g_Config.iSplineBezierQuality) {
|
|
case LOW_QUALITY:
|
|
tess_u = 2;
|
|
tess_v = 2;
|
|
break;
|
|
case MEDIUM_QUALITY:
|
|
// Don't cut below 2, though.
|
|
if (tess_u > 2) tess_u = HALF_CEIL(tess_u);
|
|
if (tess_v > 2) tess_v = HALF_CEIL(tess_v);
|
|
// Pass through
|
|
case HIGH_QUALITY:
|
|
int num_patches_u = (patch.count_u - 1) / 3;
|
|
int num_patches_v = (patch.count_v - 1) / 3;
|
|
// Downsample until it fits, in case crazy tessellation factors are sent.
|
|
while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) {
|
|
tess_u--;
|
|
tess_v--;
|
|
}
|
|
break;
|
|
}
|
|
|
|
_BezierPatchHighQuality(dest, indices, count, tess_u, tess_v, patch, origVertType);
|
|
}
|
|
|
|
static void CopyControlPoints(const SimpleVertex *const *points, float *pos, float *tex, float *col, int posStride, int texStride, int colStride, int size, bool hasColor, bool hasTexCoords) {
|
|
for (int idx = 0; idx < size; idx++) {
|
|
memcpy(pos, points[idx]->pos.AsArray(), 3 * sizeof(float));
|
|
pos += posStride;
|
|
if (hasTexCoords) {
|
|
memcpy(tex, points[idx]->uv, 2 * sizeof(float));
|
|
tex += texStride;
|
|
}
|
|
if (hasColor) {
|
|
memcpy(col, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float));
|
|
col += colStride;
|
|
}
|
|
}
|
|
if (!hasColor)
|
|
memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float));
|
|
}
|
|
|
|
class SimpleBufferManager {
|
|
private:
|
|
u8 *buf_;
|
|
size_t totalSize, maxSize_;
|
|
public:
|
|
SimpleBufferManager(u8 *buf, size_t maxSize)
|
|
: buf_(buf), totalSize(0), maxSize_(maxSize) {}
|
|
|
|
u8 *Allocate(size_t size) {
|
|
size = (size + 15) & ~15; // Align for 16 bytes
|
|
|
|
if ((totalSize + size) > maxSize_)
|
|
return nullptr; // No more memory
|
|
|
|
size_t tmp = totalSize;
|
|
totalSize += size;
|
|
return buf_ + tmp;
|
|
}
|
|
};
|
|
|
|
// This maps GEPatchPrimType to GEPrimitiveType.
|
|
const GEPrimitiveType primType[] = { GE_PRIM_TRIANGLES, GE_PRIM_LINES, GE_PRIM_POINTS, GE_PRIM_POINTS };
|
|
|
|
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
|
|
PROFILE_THIS_SCOPE("spline");
|
|
DispatchFlush();
|
|
|
|
// Real hardware seems to draw nothing when given < 4 either U or V.
|
|
if (count_u < 4 || count_v < 4)
|
|
return;
|
|
|
|
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
|
|
|
|
u16 index_lower_bound = 0;
|
|
u16 index_upper_bound = count_u * count_v - 1;
|
|
IndexConverter ConvertIndex(vertType, indices);
|
|
if (indices)
|
|
GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound);
|
|
|
|
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
|
|
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
|
|
|
|
// Simplify away bones and morph before proceeding
|
|
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
|
|
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
|
|
|
|
u32 origVertType = vertType;
|
|
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
|
|
|
|
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
|
|
|
|
int vertexSize = vdecoder->VertexSize();
|
|
if (vertexSize != sizeof(SimpleVertex)) {
|
|
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
|
|
}
|
|
|
|
// If specified as 0, uses 1.
|
|
if (tess_u < 1) tess_u = 1;
|
|
if (tess_v < 1) tess_v = 1;
|
|
|
|
// Make an array of pointers to the control points, to get rid of indices.
|
|
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
|
|
for (int idx = 0; idx < count_u * count_v; idx++)
|
|
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
|
|
|
|
int count = 0;
|
|
u8 *dest = splineBuffer;
|
|
|
|
SplinePatchLocal patch;
|
|
patch.tess_u = tess_u;
|
|
patch.tess_v = tess_v;
|
|
patch.type_u = type_u;
|
|
patch.type_v = type_v;
|
|
patch.count_u = count_u;
|
|
patch.count_v = count_v;
|
|
patch.primType = prim_type;
|
|
patch.patchFacing = patchFacing;
|
|
patch.defcolor = points[0]->color_32;
|
|
|
|
if (CanUseHardwareTessellation(prim_type)) {
|
|
tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType);
|
|
TessellateSplinePatchHardware(dest, quadIndices_, count, patch);
|
|
numPatches = (count_u - 3) * (count_v - 3);
|
|
} else {
|
|
patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v);
|
|
patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v);
|
|
patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v);
|
|
for (int idx = 0; idx < count_u * count_v; idx++) {
|
|
patch.pos[idx] = Vec3f(points[idx]->pos);
|
|
patch.tex[idx] = Vec2f(points[idx]->uv);
|
|
patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32);
|
|
}
|
|
int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
|
|
TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);
|
|
}
|
|
|
|
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
|
|
|
|
UVScale prevUVScale;
|
|
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
|
|
// We scaled during Normalize already so let's turn it off when drawing.
|
|
prevUVScale = gstate_c.uv;
|
|
gstate_c.uv.uScale = 1.0f;
|
|
gstate_c.uv.vScale = 1.0f;
|
|
gstate_c.uv.uOff = 0.0f;
|
|
gstate_c.uv.vOff = 0.0f;
|
|
}
|
|
|
|
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
|
|
|
|
int generatedBytesRead;
|
|
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
|
|
|
|
DispatchFlush();
|
|
|
|
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
|
|
gstate_c.uv = prevUVScale;
|
|
}
|
|
}
|
|
|
|
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
|
|
PROFILE_THIS_SCOPE("bezier");
|
|
DispatchFlush();
|
|
|
|
// Real hardware seems to draw nothing when given < 4 either U or V.
|
|
// This would result in num_patches_u / num_patches_v being 0.
|
|
if (count_u < 4 || count_v < 4)
|
|
return;
|
|
|
|
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
|
|
|
|
u16 index_lower_bound = 0;
|
|
u16 index_upper_bound = count_u * count_v - 1;
|
|
IndexConverter ConvertIndex(vertType, indices);
|
|
if (indices)
|
|
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
|
|
|
|
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
|
|
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
|
|
|
|
// Simplify away bones and morph before proceeding
|
|
// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
|
|
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
|
|
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
|
|
|
|
u32 origVertType = vertType;
|
|
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
|
|
|
|
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
|
|
|
|
int vertexSize = vdecoder->VertexSize();
|
|
if (vertexSize != sizeof(SimpleVertex)) {
|
|
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
|
|
}
|
|
|
|
// If specified as 0, uses 1.
|
|
if (tess_u < 1) tess_u = 1;
|
|
if (tess_v < 1) tess_v = 1;
|
|
|
|
// Make an array of pointers to the control points, to get rid of indices.
|
|
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
|
|
for (int idx = 0; idx < count_u * count_v; idx++)
|
|
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
|
|
|
|
int count = 0;
|
|
u8 *dest = splineBuffer;
|
|
u16 *inds = quadIndices_;
|
|
|
|
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
|
|
int num_patches_u = (count_u - 1) / 3;
|
|
int num_patches_v = (count_v - 1) / 3;
|
|
if (CanUseHardwareTessellation(prim_type)) {
|
|
tessDataTransfer->SendDataToShader(points, count_u * count_v, origVertType);
|
|
TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type);
|
|
numPatches = num_patches_u * num_patches_v;
|
|
} else {
|
|
BezierPatch patch;
|
|
patch.count_u = count_u;
|
|
patch.count_v = count_v;
|
|
patch.primType = prim_type;
|
|
patch.patchFacing = patchFacing;
|
|
patch.defcolor = points[0]->color_32;
|
|
patch.pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * count_u * count_v);
|
|
patch.tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * count_u * count_v);
|
|
patch.col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * count_u * count_v);
|
|
for (int idx = 0; idx < count_u * count_v; idx++) {
|
|
patch.pos[idx] = Vec3f(points[idx]->pos);
|
|
patch.tex[idx] = Vec2f(points[idx]->uv);
|
|
patch.col[idx] = Vec4f::FromRGBA(points[idx]->color_32);
|
|
}
|
|
int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
|
|
TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType, maxVertices);
|
|
}
|
|
|
|
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
|
|
|
|
UVScale prevUVScale;
|
|
if (origVertType & GE_VTYPE_TC_MASK) {
|
|
// We scaled during Normalize already so let's turn it off when drawing.
|
|
prevUVScale = gstate_c.uv;
|
|
gstate_c.uv.uScale = 1.0f;
|
|
gstate_c.uv.vScale = 1.0f;
|
|
gstate_c.uv.uOff = 0;
|
|
gstate_c.uv.vOff = 0;
|
|
}
|
|
|
|
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
|
|
int generatedBytesRead;
|
|
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
|
|
|
|
DispatchFlush();
|
|
|
|
if (origVertType & GE_VTYPE_TC_MASK) {
|
|
gstate_c.uv = prevUVScale;
|
|
}
|
|
}
|